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Chapter 1

Introduction

The overall project is concerned with optimization of freight transportation, with particular
focus on problems involving railways. This PhD project proposal is divided into 3 stages, �rst
we present a lower bound method for the node, edge, and arc routing problem (NEARP) in
chapter 3. Then in chapters 4 and 5 we present two proposal that together involves the overall
planning process at a freight railway operator, which is applied to a case at DB Schencker Rail
Scandinavia A/S (DBSRS). Finally we have a proposal regarding an intermodal planning problem
from a freight forwarder perspective in chapter 6.

In chapter 3, which concern the paper Lower and Upper Bounds for the Node, Edge, and Arc

Routing Problem we present an extended abstract that has been submitted for presentation at
the conference Odysseus 2012. In the appendix the full version of the paper can be found, this
is also the version already submitted to Computers & Operations Research in November 2011.
This paper is joint work with Geir Hasle, SINTEF ICT, Dept. of Applied Mathematics, Norway
and my supervisor Sanne Wøhlk.

Stage 2 of the project is divided into two proposals; I and II which is concerned with scheduling of
engines and crew for the aforementioned freight railway operator. In proposal I, two scheduling
problems will be handled in an integrated approach. This concerns a timetabling problem and a
engine routing problem at DBSRS. Proposal I in chapter 4, is presented as a draft paper, that
in some respects are well developed, but with respect to e.g. the branching and implementation
still has to be further developed.

The second proposal in chapter 5 consider the crew planning at a freight railway operator, again
with DBSRS as case. Furthermore, as we try to provide a degree of integration between the crew
planning phase and the timetable and engine planning phase presented in proposal I. This is done
in order to see how much there is to gain from combining these two parts of the planning process.
In proposal II, we present the problem and give scenarios that could form the integration with
proposal I. We do also as an outline provide some modeling of the crew planning problem. In
general this proposal is at an earlier stage than proposal I.

Stage 3 is the intermodal problem presented in chapter 6. Proposal III consider planning seen
from a freight forwarder perspective, where optimization methods are used to improve utiliza-
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tion of railways in freight forwarding. This projects thus seek to increase the amount of inter-
modal transportation. We will consider point to point deliveries, while using a �xed IM-railway
timetable as well as trucks in the planning of the transportation. The maturity level of proposal
3 is relatively low.

Finally in chapter 2 we present the PhD-plan for which courses has been (and will be attended),
along with the teaching obligations covered, and with a project plan for the development of the
proposals.
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Chapter 2

Activities

During the �rst year I have been working on two projects, the NEARP project and the project de-
scribed as proposal I. I have also conducted various teaching activities both as teaching assistant,
coordinator for teaching assistants and corrected exams. Furthermore I will at the beginning of
February 2012 have attended relevant PhD courses.

Table 2.1: Project plan

S11 F11 S12 F12 S13 F13

NEARP X
Paper I X X
Paper II X X
Paper III X X

Teaching X X
Courses X X
Change of environment X X

2.1 Change of Environment

From February 13th to August 7th 2012 a visit at CIRRELT at University of Montreal is planned.
Here I will be under the supervision of Professor Michel Gendreau. A second change of environ-
ment is planned for spring 2013, destination is still unknown.

2.2 Courses

As a part of the PhD-program it is required that I take the equivalent of 30 ECTS units of
courses. During this year I have taken the courses shown in 2.2, these courses represent an
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ECTS load of 32 units. The courses span di�erent areas of Operations Research, from practical
courses on Reviewing of papers to courses on both exact and approximate methods.

Table 2.2: Courses taken, by February 2012

Term Course / University ECTS

Spring 2011 Reviewing papers on O.R. applications in Logistics/SCM/OM 5
School of Business and Social Sciences, AU

Apr. 2011 Stochastic Modeling 3,5
NATCOR, Lancaster University

Fall 2011 Branch & Bound and CPLEX Implementations 5
School of Business and Social Sciences, AU

Aug. 2011 The Set Partitioning Optimization Model 5
Technical University of Denmark

Sep. 2011 Combinatorial Optimization 3,5
NATCOR, University of Southampton

Jan. 2012 Winter School on Optimization in Logistics and Transportation 5
CIRRELT, University of Montreal & CIO, University of Lisbon

Feb. 2012 Metaheuristics with Applications in Logistics 5
School of Business and Social Sciences, AU

Total 32

2.3 Teaching

The requirement for teaching activities are a total of 570 hours over the 3 year program. I will by
mid February 2012 have covered about 500 hours which is about 88% of the teaching obligation.

Table 2.3: Performed teaching activities, by February 2012

Course Code Term Description Hours

Advanced Excel 29063 Jan. 2011 Eval take-home paper 76
Advanced Excel 29063 Fall 2011 Class teaching 62,5
Driftsøkonomiske planlægningsmodeller 29204 Fall 2011 Class teaching (4x55) 220
Driftsøkonomiske planlægningsmodeller 29204 Fall 2011 Coordinator of TAs 35
Simulation: Model. & Analysis Fall 2011 Class teaching 30
Advanced Excel 29063 Jan. 2012 Eval take-home paper 40
Driftsøkonomiske planlægningsmodeller 29204 Jan. 2012 Eval written exam 4 hours 40

Total �nished 503,5

Advanced Excel 29063 Jan. 2013 Eval take-home paper 40
Driftsøkonomiske planlægningsmodeller 29204 Jan. 2013 Eval written exam 4 hours 26,5

Total �nished and remaining 570
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Chapter 3

Paper I: Lower and Upper Bounds for

the Node, Edge, and Arc Routing

Problem

This paper is joint work with Geir Hasle, SINTEF ICT, Dept. of Applied Mathematics, Norway
and my supervisor Sanne Wøhlk, CORAL, Dept. of Economics and Business, Aarhus University,
Denmark. The paper was submitted to Computers & Operations Research in November 2011.
The paper is also submitted for presentation at Odysseus 2012.

The following is an extended abstract of the paper.

3.1 Background

The Node, Edge, and Arc Routing Problem (NEARP) was de�ned by Prins and Bouchenoua in
2004 Prins and Bouchenoua (2004). The NEARP generalizes the classical CVRP, the CARP, and
the General Routing Problem. It captures important aspects of real-life routing problems that
were not adequately modeled in previous VRP variants. Hence, its de�nition and investigations
contribute to the development of rich VRPs.

Examples of arc routing problems are street sweeping, gritting, and snow clearing. However, the
arc routing model has been advocated in the literature for problems where the demand is located
in nodes, for instance distribution of subscription newspapers to households and municipal pickup
of waste. In real-life cases, there are often thousands of points to be serviced along a subset of
all road links in the area. Such cases are often formulated as CARPs, typically with a large
reduction of problem size. However, the reduction from points to arcs does not always provide
an adequate model.

In their 2004 paper Prins and Bouchenoua (2004), Prins and Bouchenoua motivate the Node,
Edge, and Arc Routing Problem (NEARP). They state that:
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Despite the success of metaheuristics for the VRP and the CARP, it is clear that
these two problems cannot formalize the requirements of many real-world scenarios.

There are good reasons to merge the arc / node routing problems and enable modeling of real-life
situations, where they together form a better representation of reality. The introduction of the
NEARP was a signi�cant step towards the goal of rich VRP. Despite its importance, studies
of the NEARP following its introduction are almost non-existent in the literature. Prins and
Bouchenoua also created the CBMix benchmark and provided the �rst upper bounds for it using
their memetic algorithm. Kokubugata and Kawashima Kokubugata et al. (2007) study problems
from city logistics, including the VRP with Time Windows and the NEARP. They propose a
Simulated Annealing metaheuristic for solving these problems. Computational results for the
CBMix instances of Prins and Bouchenoua are presented, with several improvements. In Hasle
et al. (2011) Hasle et al. report new best known results for the CBMix instances. To add to the
NEARP literature, we wish to provide the �rst (to the best of our knowledge) lower bound for
the NEARP.

Lower bounds have been developed for many VRP variants. Many of these are based on cutting
planes. Also for the General Routing Problem, there is a tradition of obtaining lower bounds
through algorithms involving cutting planes. In contrast to VRP the tradition for CARP are to
develop combinatorial lower bounds. The majority of these are based on the construction of one
or several matchings. The best such lower bound is the Multiple Cuts Node Duplication Lower
Bound (MCNDLB), Wøhlk (2006).

3.2 Lower Bound for NEARP

The algorithm is a further development of the Multiple Cuts Node Duplication Lower Bound
(MCNDLB) for the CARP.

For notational reasons, in the description of the algorithm we will assume that the graph is
simple, i.e. that there is at most one required link between any pair of nodes. We stress that the
algorithm can easily be extended to the non-simple case.

Starting with U1 = {1}, we consider mutually disjoint cuts (Uk , N \ Uk) such that U1 ⊂ U2 ⊂
. . . ⊂ Uk ⊂ Uk+1. For each such cut, Uk, the graph induced by N \Uk will consist of one or more
connected components, G′s = (N ′s, E

′
s, A

′
s), s = 1, . . . , t, as illustrated in �gure 3.1. The number

of vehicles needed to service the demand in G′s and the demand of links connecting G′s to Uk can
be estimated by ps = d(∑i∈N ′s qi +

∑
(i,j)∈E′s∪A′s∪δ(N ′s) qij)/Qe.

Ideally, each vehicle would service the demand of an edge or arc when entering G′s and when
leaving G′s. When this is not the case, we say that the vehicle is using an arti�cial link. Such
links can be either links without demand or links with demand not currently being serviced. We
estimate the number of arti�cial links (entering arcs, leaving arcs, and undirected edges) needed
for all vehicles to both enter and leave G′s. With this, we can estimate the cost of servicing
demand in G′s and demand of links connecting G′s to Uk by constructing a node duplicated
network and letting ms be the cost of a minimum cost perfect matching in this network. We do
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Figure 3.1: In each iteration, G is partitioned into Uk and a number of connected components, G′
s.

this for all the connected components and hence, L =
∑t

s=1ms estimates the cost of servicing
everything outside G(Uk).

To estimate the cost of servicing demand in G(Uk), we use the minimum cost c s of a link between
U and each component, G′s and multiply this by the number of arti�cial links needed to connect
the two: rs. Iterating over all the mutually disjoint cuts and all the connected components of
these, we can estimate the cost of servicing the demand in G(Uk) as L1 =

∑k−1
j=1

∑t
s=1 c srs.

For each of these cuts, L+L1 is a lower bound on the cost, and the algorithm selects the highest
of these.

Note in the details of the algorithm that the calculations become more complex than outlined
above due to the existence of both directed and undirected links. This is because the arti�cial
links from U and each component are split into a directed and undirected part, enabling us to
exploit the asymmetric cost structure the arcs create in the NEARP instances. This asymmetric
cost structure is also used in the matching network, which also strengthens the bound.

3.3 Computational experiments

Only one set of benchmark instances exists for the NEARP: the CBMix instances Prins and
Bouchenoua (2004). These instances are all based on graphs with a grid structure. To ensure
more variation of the test platform for future algorithm developments and for testing the lower
bound algorithm described above, we have developed two new sets of benchmark instances. The
�rst set is called the BHW benchmark and is based on 20 classical CARP instances. Some edges
have been transformed to directed arcs, and node demands have been added. The second set,
the DI-NEARP benchmark, contains 24 instances. It is based on six real-life NEARP cases from
the design of carrier routes for home delivery of subscription newspapers and other products in
the Nordic countries.

For the existing CBMix instances, we have compared the best known upper bounds with our
lower bound. Here the tests result in gaps between the LB and UB from 3.0 % to 39.9 %. For
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the BHW and DI-NEARP instances the �rst upper bounds will be provided and compared to
the lower bound.
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Chapter 4

Proposal I: Freight Railway Operator

Timetabling and Engine Routing

4.1 Introduction

When planning the timetable a railway operator has to apply for usage of railway infrastructure.
In Europe the organization RailNetEurope(RNE) work to harmonize the access to infrastructure
in their 38 member countries. The operators can, when designing their schedule apply for a train
path, which is an origin and destination pair with a given departure time and transit times.
These paths can be designed and applied for in multiple ways.

The paths are designed either by RNE, which is called a catalogue path, or the railway operator
can design and apply for path themselves, which is called a tailor-made path. Per de�nition the
catalogue paths comply with the regulations etc. for the paths to be feasible.

This paper focus on choosing among the RNE designed catalogue paths. Thus the problem is to
chose the set of paths that reduces the operating costs of the railway operator. We apply this
problem to a case arising at a railway operator, which manage the timetabling of block trains.

DB Schenker Rail Scandinavia A/S (DBSRS) is a railway operator who manage transports which
originates from and/or has destination in a Scandinavian country. The core business of DBSRS
is to provide engines and engine drivers to move customer's wagons between stations according
to long term contracts. More speci�cally DBSRS is used by its mother companies to handle the
timetabling and to allocate drivers and engines to the planned trips in the corridor 1 area from
Maschen (Hamburg) in south to Hallsberg (in southern Sweden) in the north.

In section 4.2 we describe the problem and case in detail. Then in section 4.3 we present the
modeling of the problem before we give a solution approach in section 4.4. Implementation
details are provided in section 4.5.
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4.2 Problem and case description

In this section we describe the problem in general and add to this the case speci�c details from
DBSRS and the network they operate in. The overall goal of the problem is to minimize total
costs for the railway operator when designing a timetable, the total costs can include both engine
usage, track usage and other driving related costs. In the DBSRS case we have a given set of
engines at hand, and the opportunity costs for these engines are not �xed. Thus it is di�cult
to associate the engines with a �xed charge. A review of railway routing and scheduling can be
found in Cordeau et al. (1998), for a more recent review of railway optimization see Lusby et al.
(2011).

The horizon for the timetable is weekly where it has to be repeated for a year. The timetable
design is typically done more than half a year in advance. The contracts between DBSRS and
their customers varies in length and scope, however, without loss generality the contracts all last
for at least a year, which covers the timetabling period of a year.

The goal is subject to a set of constraints, �rst we can describe the network that the railway
operator use. The general problem adheres to the RNE area, where catalogue paths are published.
In this paper we only consider catalogue paths and thus do not design our own additional
tailormade paths. To implement additional paths Kuo et al. (2010) suggest an iterative approach
to design and implement tailormade paths in a timetabling problem. The network DBSRS
operate in, covers a total of 15 stations that are connected in a tree structure such that there is
only one path between any two stations.

The rail network is managed by a di�erent infrastructure manager in each of the three countries
wherein DBSRS operate. Within the the corridors time slots are allocated by RNE, corridors are
stretches of railway that are coordinated by RNE. Time-slots are applied for through the local
infrastructure manager (in Denmark "BaneDanmark") during spring the year before an operator
actually use the tracks. Basically this requires contracts with clients to be made almost a year
in advance.

The cost structure for using the tracks is also deviating. The �rst cost category is quite simple and
is enforced per kilometer driven. In Denmark there is one constant charge for using a kilometer
of rails, in Sweden there are two di�erent charge levels, a base charge and a high charge. The
high charge covers the network in the triangle between Stockholm, Gothenburg and Malmo. In
Germany there is a more complex system that consist of di�erent priority categories for the train
driving where the cost varies depending on which priority chosen.

The cost in the model is not stationary and vary over time as the cost of using tracks in some
areas are subject to a capacity charge. Capacity costs are designed in order to reduce tra�c
at certain times are enforced in Denmark and Sweden. In Denmark it is simple as the charge
applies if the train is situated on any parts of the sections covered by the capacity charge within
the time window from 7:00 to 18:59. The rule covers three sections of the network; Copenhagen
airport Kastrup - Kalvebod, Hvidovre fjern - Hoeje Taastrup and Vojens - Vamdrup. In Sweden
they have a similar system but here the time windows are from 7:00-9:00 and from 16:00-18:00
covering the passage of a number of sections in Stockholm, Gothenburg and Malmo. Here there
are a total of �ve areas every time a train enters one of these areas a charge is made.
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The demand in this model is strictly "block train" demand, such that any demand is for a full
train driving from an origin to an arrival station. Hence it is not possible to aggregate demand.
For each of these demands we have a �xed time-window wherein we have to start service, as
transit times are quite stable, the start of service also implies an end of service time-window.

Currently the planning department at DBSRS has approximately 230 demands per week to cover.
DBSRS handle two types of service, provided by separate departments within the organization;
the Intermodal service and the Freight Logistics service. The two services are similar in the sense
that they are both "block train" services w.r.t. DBSRS. For each demand there is a time-window,
the width of the time-windows varies from customer to customer, but in general they are wider
for the freight logistics (FL) customers than the intermodal (IM) customers. As DBSRS are
a transit company the IM-demands are mainly originating from its two mother companies. In
general the IM time-windows are about one to two hours wide whereas the FL time-windows are
about 6 hours wide.

Each coverage of a demand is associated with some preparation time at the origin station and
�nalization time at the destination. This time is mainly used for shunting wagons but there can
also be a safety margin that serves to prevent propagation of delays.

The model allows for multiple engine types, these can be di�erent in the aspects of which demands
they can serve, costs and safety margins and such. DBSRS operates two di�erent types of engines,
diesel and electric. The diesel engines cannot be operated in Germany and Sweden. This is
because no environmental approval have been granted for this engine type in these countries.
Secondly, the electric engines cannot be used various places. This is due to the fact that the
track network is not completely electri�ed. Further there are 2 types of electric engines, where
they distinct themselves in engine size such that one can pull heavier loads than the other. Diesel
engines must be fueled at the end of each trip, a process which takes 15 minutes.

The transit times and time-slots in the DBSRS operational area on the main pathway of corridor
1 are identi�ed using the information from RailNetEurope. This approach cannot be used to
identify transit times and time-slots on legs outside the main pathway. The time-slots are not
speci�ed for legs outside the main pathway. Thus we design these by letting time-slots connect
to the time-slots in the main pathway.

The model does not consider maintenance. In the DBSRS case, maintenance are handled approx-
imately every 10,000 kilometers driven. Here the engines are taken out of service and replaced
by a spare engine that continues the engine rotation.

4.3 Modeling

The problem can be described as a timetabling problem, where a set of heterogeneous engines
have to serve a set of full-load demands that cannot be served simultaneously. Each demand
is given a time-window during which the service of the demand has to start where a time-slot
is available. The time-slots are laid out by the infrastructure manager(BaneDanmark), that set
these in advance. There is approximately a time-slot every half hour and with time-windows
between 1 and 6 hours there is a limited number of possible departure times to choose among.
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The planning horizon for the schedule developed is one week, whereas the rotation of the engines
can last for as long as necessary. In Cacchiani et al. (2008) perform timetabling in a similar
corridor and Ziarati et al. (1997) performs engine assignment with a heterogeneous �eet.

The goal of the model is to produce a weekly timetable that minimizes the total costs, an overview
of the model can be seen in �gure 4.1. In the following section we will cover the handling and
implications of the constraints.

Figure 4.1: Model overview

minimize Total costs

subject to Demand coverage

Availability of engines

Replication of weekly timetable

Time-slot usage

Time-slot compliance

Time-window compliance

Flow conservation

Engine type compliance

Waiting time after demands

Transit time between demands

The demand coverage is straight forward, as we are interested in covering all the demands exactly
once. Here we do not allow for multiple coverings of the demand. The engines are divided in
multiple categories and for each category we have a �xed number of engines available. There can
be a cost associated with the usage of the di�erent engine types.

The replication of weekly timetables two things will be handled in the following, �rst we need
to de�ne how we handle the circular nature of the weekly plan. Secondly we have to decide how
the engine rotations will be designed and the length hereof. A major problem with the weekly
plan, is that there is no time-period during the week where the engines has to be grounded. This
forces the planning period to be circular in the terms that an engine departing at the very end
of the week will arrive at the beginning of the week, see �gure 4.2.

Nahapetyan and Lawphongpanich (2007) solve a dynamic tra�c assignment problem, where they
also use the circular approach in opposition to starting and ending with an empty system. Caimi
et al. (2011) use the Periodic Event Scheduling Model (PESP) on a Infrastructure Management
level to generate feasible time-slot allocations. In PESP we have a time horizon over which
events are repeated, this is often 1 hour. Lindner and Zimmermann (2005) use the PESP model,
to create cost optimal train schedules for a railway operator. As our events in this case are
periodic over a week, this would have to be set to 1 week. The PESP model consider the design
of time-slots or at least the maximum time between di�erent events such as two di�erent trains
departing the same station and the headway between them. This is in our case handled by the
choice of time-slots and avoiding overlaps hereof.

For the replication of weekly cycles can be handled in several ways; one approach is to let
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Figure 4.2: Weekly timetable - example
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Note: A line in the �gure represent a demand in a timetable that is driven

from the station at the beginning to the station at the end of the line.

each engine follow a repetitive weekly plan such that each engine have the same routing every
week. Another way is to keep the weekly timetable but plan with a longer �nite horizon for the
individual engines e.g. 4 weeks. The approach chosen here is to have a weekly routing that is not
engine speci�c, in the sense that it is not necessarily operated by the same engine every week.

For the approach chosen to be viable we have to have a way to ensure the the di�erent routings
�t together. We would like to avoid a complex formulation where we have to balance the weekly
routings with respect to both place and time. With respect to place, there are no depots thus we
treat all stations as depots such that we have a problem with multiple depots. This is important
because an engine has to be ready at the end of one week at a place, that �ts with the starting
place of the following week.

Because there is no time during the week where all engines or groups hereof are grounded. We
have no natural point that we can designate as the beginning of a week. To remove the time
factor, such that the start of the week can be kept �xed at the same time for all engines, we
could chose a point during the week, where no - or the least - demands cross and then balance
the weekly routings at this point.

If we consider removing the time factor, we have a problem with de�ning the beginning/end of
the week. In �gure 4.2 we see a placement of the end of week (eow). It can be done in such a way
that demands starting in the last part of a week continue into the next week, which is essentially
the beginning of the week. When balancing the number of weekly routings having a given station
as origin station with the number having it as destination, we have to make sure that the origins
time-wise lie after the destinations, otherwise we cannot guarantee that the engines are actually
available.
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As we would like to remove the time factor, we now show how we can make sure that the
�rst station of any route, lies earlier in time than the last station for any route. To break the
circularity of the weekly timetable we proposed to �nd the point during a week that interferes
with the least demands. At this point we split all demands that crosses it in two parts, one from
the origin till the eow and one from the start of week until arrival. We call these two parts,
partial demands. These two partial demands are linked to what we call a dummy station, at the
time it was split, this concept is shown in �gure 4.3. Each dummy station is only used for one
single demand using a speci�c time-slot.

The dummy station ensures that there will be one weekly routing, that starts with the �rst of
the partial demands and one that ends with the last partial demand. Whether these two partial
demands are on the same routing is not important. If they are on the same there will be one
circular routing that will be driven by the same engine each week. If they are not on the same
routing, they will still be driven by the engine, but now they force the two weekly routings
involving them to be merged into a rotation of at least two weeks. At this point we do not
know and do not care what the other origin and destination stations are, as they will be balance
accordingly.

Figure 4.3: Weekly timetable with dummy stations - example
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For all demands not crossing the eow we do not change anything, as it is certain that the �rst
station in a routing is the origin and the last is the arrival and that these can never cross the
eow. Thus when the �ow in and out of ordinary and dummy stations are balanced, we ensure
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that all routings are able to be part of an engine rotation, with a possible in�nite time horizon.

After handling the replication of weekly timetable, we return to the remaining constraints. The
time-slot usage governs that we can only plan one train per time-slot. Hence two demands that
use the same or have partially overlapping routes, would have to be serviced at times such that
no time-slot is not used twice.

Time-slot and time-window compliance are related in the way that the start of service of a
demand have to be within the time-window. Within this time-window we have to select a time-
slot, thus it is not enough just to be within the time-window. Therefore any time-window will
have an associated set of time-slots, that can be used.

Engine type compliance, ensure that the right engine is used for a given demand. For all demands
a subset of the engine types can be used to service it, this is mainly due to the previously described
electri�cation issues. Thus it is important that we assign the right engine type to a demand to
keep the timetable feasible.

Flow conservation and transit time between demands, compliment each other. Flow conservation
ensure that the �ow in and out of stations are equal and transit time between demands ensure
that there are enough time to complete possible reposition trips between two jobs. It also concern
the necessary time to prepare for service of the following demand. Waiting time after demands
handles the safety margins that are planned after the completion of each demand, to avoid
propagation of delays.

4.4 Solution approach

The problem of developing the weekly timetable is as previously described constrained by multiple
constraints. Combining these into a joint formulation of the problem will result in a complex
formulation. Instead a column generation approach is chosen, it allows us to split the problem
in two and thus reduce the complexity. We use a Dantzig-Wolfe decomposition approach to split
the problem in a master and sub-problem.

The model will be split in two such that all constraints concerning the individual engine will
be dealt with in the sub-problem. In the master-problem we will consider replication of weekly
timetables, time-slot usage, availability of engines and demand coverage, which is because these
do apply to multiple engines at once. By solving the sub-problem we can generate engine routings
that in the master-problem can be combined into a weekly timetable, w.r.t. the constraints in
the master-problem. The splitting of the joint problem into sub and master-problems can be
seen in �gure 4.4. When considering the sub-problem it can be seen that there are numerous
possible combinations hereof. This would be a problem if we where to use a complete enumeration
approach where all columns for the master-problem where generated at the beginning. Instead
we use a delayed column generation approach, where we generate the columns that would enter
the basis i.e. the column with the most favorable reduced cost each time we solve this restricted
master problem to optimality. The restricted master problem is the master-problem concerning
a limited number of the columns that would be generated for the full master problem.

The integer properties of the problem are handled in the sub-problem where we only get integer
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Figure 4.4: Model overview - split into master and sub-problem
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solutions, but in the restricted master problem we solve a LP-relaxation of the problem. Then
at each time we have solved the LP-relaxation to optimality we branch the problem and remove
possible infeasible columns before we re-optimize the LP-relaxation of the restricted master-
problem. This process continues until we arrive at an integer solution to the restricted master-
problem that satisfy the optimality conditions. When solving the LP-relaxation of the restricted
master-problem from now on ZRMP , we would like to be able to terminate at an earlier stage
in each root node. Thus when branching we can apply a lower bound on the optimal integer
solution in each node. Because we know that the best ZIP for any node can be bound by the
lower bound Zlb found in equation 4.1. Among other Dell'Amico et al. (2006) show that ZIP
can be bounded by the ZRMP and column with the lowest reduced cost. This implies that we
can possibly terminate the LP-relaxation of the RMP at an earlier stage and then branch again,
which would possible speed up the solution process.

Zlb = ZRMP + c̄ (4.1)

In �gure 4.5 we show the overall column generation algorithm. The algorithm is initialized by
a set of columns allowing for a feasible solution. Normally this can be handled by a identity
matrix, but in this case it is not enough. Because we have a constraint on the engines available,
an identity matrix for the demands would not necessarily provide a feasible solution as it would
probably violate the engine availability constraints, as it implies that there will be one engine per
demand. Instead we will have an initialization phase where we get to a initial feasible starting
point, this will be described later in this section.

After solving the RMP, we solve the sub-problem to get the column with the lowest reduced
cost. Two conditions has to be satis�ed to check whether we let the column enter the RMP and
resolve it. First we check if the reduced cost is negative, if not then the RMP is optimal and we
have resolved the node. Second if the reduced cost is negative we use our lower bound to check
if we can achieve a solution that is better than the best integer solution already obtained. If we
can not close the node in this way, we add the column to the RMP and resolve it.

If the node is solved to optimality, we check if we have an integer solution. If the solution is
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Figure 4.5: Column generation algorithm
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integer we update the best integer solution and close the node, otherwise we branch on the node.
In both cases we will the return to selecting a new node solve. Before solving the node, we
remove columns that are infeasible in the selected node of the branching tree. The algorithm
terminates when there are no more nodes to select.

Figure 4.5 gave an overview of the algorithm. In the following sections, we will elaborate on the
details in the algorithm and will as well formulate the master-problem, restricted master-problem,
sub-problem and the branching techniques.

4.4.1 Master-problem

In this section we will �rst show the formulation of the full master-problem then we will deduce the
restricted master-problem and the linear relaxation hereof. The full master-problem is formulated
with the parameters given in table 4.1 and equations 4.2 through 4.7. As columns in the master-
problem we use routings generated in the sub-problem, thus selecting a column represent using
the corresponding routing for an engine. The only variable in the model xr represent choosing
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this column and equals 1 if a given column is used and 0 otherwise. The set R is the set of
columns r under consideration, hence this set will be adjusted as we add and remove columns in
the restricted master-problem.

The objective function is given in equation 4.2, where cr is the total cost for the column that
corresponds to a given routing for a speci�c engine type. Thus we try to minimize total costs,
which are composed by a �xed engine usage cost and driving costs, both are engine type speci�c.

Table 4.1: Parameters

Parameter Description

N Set of all Stations including dummy stations, indexed by n
D Set of all Demands, d
S Set of all time-slots, s
E Set of Engine types, e
we Engine availability for engine type e
cr Cost of routing r
αdr Demand d is covered on route r, 1 = yes, 0 = no
βnr Station n is used on route r, as origin station = 1, as destination = -1,

as both = 0 or neither = 0
γsr Time-slot s is used by route r, 1 = yes, 0 = no
δer Route r driven by engine type e, 1 = yes, 0 = no

minimize Z =
∑

crxr (4.2)

s.t.,
∑

r

αdrxr = 1,∀d ∈ D (4.3)

∑

r

βnr xr = 0, ∀n ∈ N (4.4)

∑

r

γsrxr ≤ 1, ∀s ∈ S (4.5)

∑

r

δerxr ≤ we,∀e ∈ E (4.6)

xr ∈ {0; 1}, ∀r ∈ R (4.7)

In (4.3) we make sure that all demands are serviced by the engines. To ensure that there are the
necessary balance between the starting and ending stations of the engines we have the balance
constraint (4.4). This constraint is also balancing the dummy stations such that an engine ending
at a dummy station force an engine to start at the same dummy station. In (4.5) we ensure that
each time-slot is used at most once. Engine availability is ensured by (4.6), where we constrain
the number of each engine type used. Finally the binary constraint (4.6) force each routing to
be used at most once.

To generate columns in the sub-problem we need to �nd columns with negative reduced costs. To
do this we have to calculate the reduced costs, for this we use the duals for the master problem
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to alter the costs in the sub-problem such that when minimizing the sub-problem it will result
in the the column with the lowest reduced cost. We de�ne the duals for each constraint set in
the master-problem such that π,ρ,σ and τ represent the vectors of dual variables de�ned by
constraints 4.3, 4.4, 4.5 and 4.6 respectively, e.g. π = [πd],∀d ∈ D.

4.4.2 Sub-problem

In the sub problem we handle one weekly routing of an engine through the network. The problem
is to chose a set of demands to form a route. To solve the routing we use Dynamic programming.
As cost for the jobs we use the original costs adjusted with the duals from the master-problem.
The total cost in the sub-problem is then the reduced cost for the corresponding column in the
master-problem.

The sub-problem will be solved using dynamic programming, where we are able to solve this
constrained shortest path problem (Bertsekas, 2005). A drawback of the dynamic programming
approach to the shortest path problem is that there is no guarantee that we do not visit the
same demand twice. This is called a cycle, a 1-cycle where we visit the same demand twice
immediately after each other are avoided in the standard algorithm. A 2-cycle is where we visit
an other demand in-between servicing the same demand twice, a k-cycle denominates such a
cycle with a length k.

Since we have time-windows wherein the service of a demand has to be started, we can be sure
that the highest k is limited. The shorter the time-window the smaller the worst case k-cycle
length becomes. When avoiding k-cycles the runtime of the algorithm can deteriorate. Houck
et al. (1980) shows how to avoid 2-cycles without deteriorating the asymptotic worst case running
time.

In section 4.4.2.1 we present a standard dynamic programming algorithm, in section 4.4.2.2 we
extend it to handle 2-cycles. For solving the sub-problem we will �rst use the standard algorithm
and if cycles occur we will apply the 2-cycle elimination, in this way we should be able to speed
up the runtime. Because the existence of such is limited in the case study, cases where 2-cycle
elimination is not enough, a branching can be applied on the duration of the time-windows.

For the sub-problem we have de�ned parameters as shown in table 4.2. The objective in the
sub-problem is to minimize total cost. If we denote ytij ∈ {0; 1} where ytij = 1 when demand j
is serviced after demand i at time t, and ytij = 0 otherwise. We also de�ne ze ∈ {0; 1} as ze = 1
when engine type e is used and ze = 0 otherwise. Then we can de�ne the objective function as
in equation 4.8.

cr =
∑

e∈E
υeze +

∑

t∈T

∑

j∈D

(
ψtj
∑

i∈D
ytij +

∑

i∈D
φtijytij

)
(4.8)

As the purpose with the sub-problem main is to get the reduced cost for a column, we have to
associate the dual values with the original costs. To do this we modify the original cost with
the dual costs, this modi�cation for e.g. υe is de�ned as υ̂e, the same applies to the other costs.
To arrive at the modi�ed cost we set υ̂e = υe − τe to be the altered cost of υe, thus when we
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Table 4.2: Parameters

Parameter Description

T Set of all time periods t in the model, T covers one week.
∆ Resolution of time-periods in minutes, ∆ = 1 gives |T | = 10080
gtij Transition time from demand i ∈ D to j ∈ D at time t
btj Whether the time-window for the given demand j ∈ D allows for start

of service at time t
oj Origin station for demand j ∈ D
aj Arrival station for demand j ∈ D
φtij Transit cost from demand i ∈ D to j ∈ D at time t
υe Cost of using engine type e
ψtj Cost of demand j ∈ D at time t

minimize using the altered costs in the algorithm we get the column with the lowest reduced
cost.

To set ψ̂tj we have to tie σs to the time of t where the demand j ∈ D is used. Hence we have to
de�ne which time-slots are used by ψtj , this can be done by de�ning Sdt ⊂ S where Sdt contains
the time-slots s which are used by job d at time t, if it is not possible to start the job at the
given time Sdt = ∅. Now we can set ψ̂tj = ψtj − πj −

∑
s∈Sjt σs.

Finally we have to handle the starting / ending stations and the duals hereof ρ. As we can
see in table 4.1, ρn represent the cost to use a station n as origin station, −ρn as destination,
ρn−ρn as both or 0 as neither. Hence ρ can have di�erent interpretations depending on it being
negative or positive. This could be counterintuitive, but it makes sense in the way that for the
master-problem it does the same di�erence for the balance whether we add a station as a origin
station or if we remove the same station as arrival station. As removing the origin station will
in fact free the corresponding arrival station and thus we do in fact add a arrival station by
removing a origin station. This argument also hold for the opposite situation, and thus we the
negative interpretation of ρ is the cost of using a station as arrival as this in turn force us to add
the corresponding origin station. In this way the cost of using a station will be 0 if we use the
same station as origin and arrival station.

Initially there are no cost for ρ as they do not carry a cost and do not interfere with any existing
cost parameters. But we need ρ when calculating the reduced cost, thus they are introduced to
the sub-problem.

The new modi�ed objective function can now be formulated as shown in equation 4.9. These
functions serves to �nd Hence we �nd the this �rst time period by

c̄r =
∑

e∈E
υ̂eze +

∑

t∈T

∑

j∈D

(
ψ̂tj
∑

i∈D
ytij +

∑

i∈D
φ̂tijytij

)
(4.9)

+
∑

j|y(argmint|∑j∈D yt0j=1{t})0j=1

ρoj −
∑

j|y(argmaxt|∑i∈D yti0=1{t})i0=1

ρaj
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In addition to using the modi�ed costs, we have introduced the costs for using a station as origin
station and arrival station. For the origin station, the �rst term with ρ, we �nd the origin station
oj by �nding the �rst demand of the week. Then we take the appropriate cost ρn for using this
station n as origin station. We �nd the �rst time-period t where we start service for any demand
by arg mint|∑j∈D yt0j=1{t}. We do this by �nding the �rst time-period t where we have yt0j = 1
for any j, we use i = 0 as we have use 0 to represent the source and sink station. For the last
time-period we reverse it so we have j = 0 and maximize t instead to �nd the last time-period
with a demand start in order to �nd the last arrival station using aj for the last demand j.

4.4.2.1 Dynamic programming

In this section we will present the standard dynamic programming algorithm for the sub-problem.
This algorithm will be used �rst in any case, if it results in cycles we will initiate the 2-cycle
elimination extension, that will be presented in section 4.4.2.2.

There are di�erent engine types and these are only allowed to handle a subset of the demands
due to di�erent requirements. Therefore we de�ne the subset of demands De ⊂ D which is the
set of demands that can be handled by a single engine type. Hence it is necessary to repeat
the algorithm once for each engine type e ∈ E and �nd the one with the lowest reduced cost.
The dynamic programming algorithm can now be de�ned as follows in algorithm 1, with the
parameters and variables shown in table 4.2 and 4.3.

Table 4.3: Variables

Variable Description

ftj Lowest Cost to reach job j ∈ D at time t
ptj Predecessor for ftj in job j at time t

In order to solve the sub-problem, algorithm 1 starts with setting the cost for being in demand
j at time 0. For most demands the time-window for time 0 is closed, thus we set the cost for
demand j at time-period 0, equal to the cost of demand j at the time-period where the demand
can be serviced, which is in the �rst time-period t where btj = 1.

To ensure that ρoj , the cost of starting at demand j, is only counted once we also add it at
the initialization. In this way we can handle the costs of origin stations ρoj at �rst and avoid
including them in later stages of the algorithm. We then deduct ρaj to ensure that the cost of
this station possibly being the �nal arrival station is considered, if we only service 1 demand it
will be the case. Finally we add the cost of using the engine being considered υe.

Now we iterate over all time-periods, note that the �rst t = 1, for each of these we iterate over
all demands D. If a time-window is not open for a given demand, we set the cost of ful�lling
this demand in the speci�c period equal to the last period, the same applies to the predecessor.

If a time-window is open we set the lowest cost of reaching the demand in the time-period ftj ,
equal to the cheapest of either the previous period or moving from another demand to this. In
the latter case we use the lowest cost to reach the demand when we move from at time t minus
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Algorithm 1 Dynamic program for sub-problem

1: initialize f0j = ψ̂(arg mint|btj=1{t})j + ρoj − ρaj + υ̂e, p0j = j, ∀j ∈ De.

2: for t = 1 to |T | do
3: for j ∈ De do

4: if btj 6= 1 then

5: ftj = f(t−1)j , ptj = p(t−1)j

6: else

7: ftj = min{mini 6=j{f(t−gij)i + ˆφtij + ψ̂tj + ρai − ρaj}, f(t−1)j}
8: if ftj = f(t−1)j then

9: ptj = p(t−1)j

10: else

11: ptj = arg mini 6=j{f(t−gij)i + ˆφtij + ψ̂tj + ρai − ρaj}
12: end if

13: end if

14: end for

15: end for

the travel time between the two jobs gtij , then we add the cost of this transit φtij and the cost
of the demand we are moving to ψtj . To make sure that the cost for the previous �nal arrival
station is removed, we add ρai and deduct the cost for the new �nal arrival station ρaj . Then we
set the predecessor to either the same as the previous if we did not move from another demand,
or we set it to the demand we moved from if that was the case.

Upon completion algorithm 1 returns two matrices from which we can get the column with the
lowest reduced costs. This is obtained by �nding the last job with arg minj{f|T |j} and then
backtrack using the predecessor variable p|T |j .

Algorithm 1 does not consider the risk of cycles between the same demands, as we are not
interested in covering the same demand more than once i.e. at di�erent times during the time-
window. The algorithm currently avoids servicing a demand in a 1-cycle, as it cannot follow
a demand with the same demand. To avoid case where we visit another demand in between a
repetition of the same demand, we introduce the 2-cycle elimination.

4.4.2.2 Dynamic programming with 2-cycle elimination

Algorithm 2 allows us to avoid 2-cycles, it uses a new set of matrices that also record an alternative
path through the demands, thus we introduce the new variables in table 4.4 that replace the
previous variables in table 4.3. In addition to the variables ftj and ptj we add the second lowest
cost f2

tj of reaching a demand at a given time and the predecessor hereof p2
tj .

This allows the dynamic programming to replace the lowest cost with the second lowest in the
case where the lowest cost would form a 2-cycle. In this way we still consider all options that
does not form a 2-cycle, whereas if we had just ignored ftj , we would not have considered that
the second best option could have involved this demand. This consideration of the alternative
option for every demand is introduced by the function seen in equation (4.11) which determines
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whether the predecessor of the previous move is allowed v.r.t. the 2-cycle elimination and then
choose the appropriate option.

Table 4.4: Variables - Extended to handle 2-cycles

Variable Description

ftj Lowest Cost to reach job j ∈ D at time t
f2
tj Second lowest cost to reach job j at time t
ptj Predecessor for ftj in job j at time t
p2
tj Predecessor for f2

tj in job j at time t

f(tij) =

{
f(t−gtij)i if j 6= p(t−gtij)i
f2

(t−gtij)i otherwise (4.10)

(4.11)

Algorithm 2 Dynamic program for sub-problem, with 2-cycle elimination

1: initialize f0j = ψ̂(arg mint|btj=1{t})j + ρoj − ρaj + υ̂e, p0j = j, f2
0j =∞, p2

0j = 0, ∀j ∈ De.

2: for t = 1 to |T | do
3: for j ∈ De do

4: if btj 6= 1 then

5: ftj = f(t−1)j , ptj = p(t−1)j , f2
tj = f2

(t−1)j , p
2
tj = p2

(t−1)j
6: else

7: ftj = min{mini 6=j{f(tij) + φ̂ij + ψ̂tj + ρai − ρaj}, f(t−1)j}
8: if ftj = f(t−1)j then

9: ptj = p(t−1)j

10: else

11: ptj = arg mini 6=j{f(tij) + φ̂ij + ψ̂tj + ρai − ρaj}
12: end if

13: f2
tj = mini 6=j,ptj{f(tij) + φ̂ij + ψ̂tj + ρai − ρaj}

14: p2
tj = arg mini 6=j,ptj{f(tij) + φ̂ij + ψ̂tj + ρai − ρaj}

15: if ptj 6= p(t−1)j and f(t−1)j ≤ f2
tj then

16: f2
tj = f(t−1)j , p2

tj = p(t−1)j

17: else if ptj = p(t−1)j and f
2
(t−1)j ≤ f2

tj then

18: f2
tj = f2

(t−1)j , p
2
tj = p2

(t−1)j
19: end if

20: end if

21: end for

22: end for

The initialization follows the previous version with the addition of f2
0j = ∞, p2

0j = 0, this is
to ensure that the alternative is not used before it is an alternative to the lowest cost solution
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for the demand at a given time. In line 5 we keep everything unchanged if there is no open
time-window for the given job. Then we set the lowest cost for reaching the demand on line 7
the addition here is the usage of the function (4.11) f(tij). When �nding the lowest cost for
this demand it checks whether the predecessor of the previous demand that we are moving from,
is the same as the current demand, if it is the alternative predecessor is used. Lines 8-12 are
unchanged and determines the primary predecessor.

From line 13 to 19 we determine the alternative lowest cost and its predecessor. First they are
both set to the case where we do not consider staying from the demand we are currently in,
notice that we do not consider the primary predecessor. This is to ensure that we do not pick
the predecessor that resulted in the lowest cost. Earlier we copied the previous predecessors
when staying in the same job or the time-window was closed. In this way we can ensure that the
alternative lowest cost is a real alternative and it just moved to the current demand at a later
time-period from the same predecessor.

After setting the initial values for arriving from other demands, we consider two scenarios that
could alter these values; if the primary predecessor changes i.e. that we updated ftj moving from
a new demand and f(t−1)j is lower than the alternative we already found, line 13. The second
scenario considered is; the primary predecessor remains unchanged and f2

(t−1)j is lower than the
new alternative set on line 13. In the case of scenario 1 we set the new alternative solution equal
to the previous primary solution, the same applies to the predecessor, for scenario 2 the previous
alternative solution and predecessor are kept unchanged in the new time-period.

Upon completion we �nd the solution as in algorithm 1 with the exception that, we when
back-tracking has to consider whether an alternative predecessor was used, this can be done
by reversing the 2-cycle condition.

4.4.3 Branching

To get integer solutions with our solution approach presented in �gure 4.5 we need to develop
a branching technique. We wish to impose a branching approach where we focus on matching
constraints. Such an approach is presented by Ryan and Foster (1981), where they identify
constraints that should be served together, Vance et al. (1994) use a similar branching approach.
This could e.g. be that we say that an engine serving one demand should also serve an other
speci�c demand. Also Anbil et al. (1992) suggest a "follow on", immediate predecessor, such
that we do not only say that two demands should be served on the same route but should be
served immediately after each other.

4.5 Implementation

In this section we present implementation related issues tied to the DBSRS case to which we
have applied the model presented in section 4.4. It will be coed i c++, using the ILOG CPLEX
callable library.
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4.5.1 Heuristics

In the sub-problem and the dynamic programming algorithm presented in section 4.4.2.1 and
4.4.2.2, we solve the sub-problem in a time resolution of 1 minute ∆ = 1 such that we have 10080
time-periods per week. In the dynamic programming we solve the sub-problem in a matrix that
has n rows one for each time-period and m columns one for each demand. We should be able
to reduce the runtime of the algorithm by introducing a heuristic approach to the sub-problem,
where we round the time-periods to an other resolution e.g. ∆ = 2, ∆ = 5 or ∆ = 10. As there
are normally one time-slot per half hour it would normally not result in two time-windows being
merged.

When rounding the time-periods we do a round up to ensure that we do not create infeasible
columns but we in worst case disregard some options and create less than optimal columns. The
rounding of time-periods are done according to equation 4.12.

t̂ =

⌈
t

∆

⌉
(4.12)

The new time period t̂ is equal to the original time-period t divided by the resolution of the new
time-periods ∆. When rouding up time-periods in the interval {1; 5} → 1. We apply the same
rounding to the duration of any transit times such that they will be rounded up as well. When
translating the solution back to the original problem, we �nd if something was planned in period
t̂ = 5 and ∆ = 5, that a time-slot must be found in a time-period t ∈ {∆(t̂− 1) + 1; ∆t̂}. We are
then guaranteed that the columns when translated back to the original problem that we have a
feasible solution to the sub-problem, but we are not guaranteed optimality. Hence we have to
solve the sub-problem with the exact approach at least once to conclude that we cannot get a
column with negative reduced costs.

4.6 Additional issues

In this section we present issues that still needs to be addressed in the �nal version of this paper.

(i) Cycle elimination, is it enough in the case to avoid 2-cycles or should we implement, if
not could it be enough with a simple method, as it is used seldom or should we design
something more sophisticated.

(ii) Catalogue paths vs. tailormade paths; is it enough just to consider the catalogue paths or
do we need to implement a method to consider extra paths as in Kuo et al. (2010).

(iii) Uncertainty in time-slots actually allocated; as stated we are not certain that we will get
the exact time-slot we apply for in the end. Is it a valid assumption that this can be
disregarded.

(iv) Branching methods are not completely developed and we should consider alternative meth-
ods.
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Chapter 5

Proposal II: Crew Planning Problem

and an overall integration of the

planning process at a freight railway

operator

5.1 Background

In this paper we seek to solve the Crew Planning Problem(CPP) as described by Caprara et al.
(2007), for a case at DB Schenker Rail Scandinavia (DBSRS), in a joint context where we seek
to integrate its two sub-problems; the Crew Scheduling Problem and Crew Rostering Problem.
Furthermore we investigate whether we can improve the overall planning at the railway operator,
by considering the CPP at earlier stages of the planning process.

The planning process at railway operators are described with di�erent levels of detail by, among
others, Lusby et al. (2011) and Caprara et al. (2007). In general the planning process can be
described in 5 levels as follows:

• Line Planning

• Timetabling

• Train Routing / Rolling Stock Circulation

• Crew Scheduling

• Crew Rostering

The line planning problem is the design of the lines to be operated, a line is a origin and
destination station with a set of intermediate stations. The frequency of the line, is how often
the line is operated. Hence this problem is related to the network and mainly demand driven.
In the timetabling problem we design a timetable for the desired lines and �x departure and
arrival times, also we allocate time-slots in the network to secure a feasible timetable. Before we
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in the Train Routing Problem assign engines and rolling stock to the lines in accordance with
the timetable. We ensure that this allocation gives a feasible plan and often the objective would
also be to minimize cost.

The purpose of the Crew Scheduling Problem is to design duties based on trips given by the
timetable, a set of work regulations govern the creation of these duties. In the Crew Rostering
Problem we assign these duties to rosters, for which a set of work regulations also applies.

In Proposal I (?) we joined the Timetabling and Train Routing problems and applied it to a case
at DBSRS, in this proposal we refer to that problem as problem A. Now we wish to investigate to
what extend it is possible and advantageous to consider the CPP when developing the timetable
and train rosters, as we do in problem A. Because problem A gives the set of trips to be handled
by the CPP, there is a clear connection which is not considered if the problems are handled
completely independent.

In this proposal, we will in section 5.2 give a problem description, in 5.3 an outline of the overall
approach, in 5.3.1 we cover the CPP and an exact solution approach hereto, in 5.4 an approach
to the integration of problem A, from proposal I, and the CPP, �nally we present further issues
that has to be addressed in 5.5.

5.2 Problem description

The CPP problem arises at a railway operator. In this proposal we adapt the general problem
to a case from DBSRS. A particular di�erence is that we consider crew employed in di�erent
countries, and thus with di�erent sets of working regulations. The crew considered work in Swe-
den, Denmark, or Germany. The main constraints for the working regulations will be explained
in this section. Other work can be found considering regulations related to these countries e.g.
see Rezanova and Ryan (2010) for a Danish and Jütte et al. (2011) for a German setting.

Before describing the problem we give a few de�nitions of key concepts; a trip is the shortest
segment of a route, driven by a train, that can be covered by a single crew member, this can also
be referred to as a task. A shift is a collection of trips and other tasks, such as breaks, that last
for one work engagement. A duty on the other hand can be a shift or multiple shifts if the shifts
do not return to the home depot at the end of a shift. A roster is a combination of one or more
shifts that extents for the crew planing horizon, working regulations not handled in building the
duties are handled here. In �gure 5.1 we give an overview of what regulations that are handled
in the di�erent level.

In �gure 5.1 we show the di�erent states the drivers can be in and where they apply to the duty
generation and rostering process. Working time is the time during a shift where we are engaged
with a task. For working time there are shift speci�c requirements, as there is a maximum work
time per shift. The work time is also limited on a weekly and monthly basis.

Shift time is regulated by a maximum that are greater than or equal to the working time. Here we
also have a minimum on the shift time, as there is a minimum time the employees can expect to
work when called to work. Shift time is also in some countries regulated by a monthly maximum.
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Figure 5.1: Work regulations
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The driving time is regulated by a maximum during the shift, this again depends on whether it
is a day or night shift. Also there is a maximum on continues driving time. The last state the
driver can be in during a shift is break time, here there are minimum regulations on the length
of the breaks. The length of breaks are dependent on the amount of driving in the shift, the
length of the shift and has to be placed within a certain time in the shift.

A shift can be deemed to be a night shift, of which the amount of are constrained. Night shifts
are de�ned by di�erent means in the di�erent countries, but mainly it is de�ned by the shift
involving a time of day which is considered to be night time.

An engine driver has a base station where he or she must start and end a shift if layovers are to
be avoided. Layovers are associated with speci�c costs depending on nationality of the driver and
the location where the layover takes place. In practice drivers can stay away from the home-base
a number of times during a month at an additional cost.

In the duties there are some tasks that have to be carried out. At the beginning of a duty an
engine driver has 15 minutes to do some preparation. Likewise a driver has 10 minutes to �nalize
a duty, meaning that the duty ends earliest 10 minutes after the driver has arrived at his or
her base station. In addition to the preparation and �nalization time, it takes some time for an
engine driver to go from the room where they start/end the duties and to/from the tracks where
the engine is, this is dependent on the station being used. This time also applies when having a
break.

The objective is to minimize the overall cost of using; tracks, engines and crew. Pertaining to
the crew mainly described in this proposal, we consider minimizing costs through the design of
the optimal rosters which adheres to the case speci�c constraints.

5.3 Possible overall solution approaches

In this section we present two alternative approaches to integrate the planning process described
in section 5.1. In �gure 5.2 and this section we illustrate and present these overall solutions
approaches.

If we consider �gure 5.2 we see that three blocks are presented; A, B and Ab. A is the solution
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Figure 5.2: Solution approaches
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Note: A: Engine Planning, B: Crew Planning,

Ab: Engine Planning with input from B

approach to the joint Engine and Timetabling problem presented in proposal I. B is the solution
approach for the Crew Planning Problem, that will be presented in section 5.3.1. Ab is a version
of A, where we try to consider the cost that will be incurred by using crew in problem B.

Scenario I is a classic sequential approach, where the Timetabling and Crew Scheduling are
performed completely disjoint. Thus we are not particularly constrained in our solution approach
and modeling of problem B. Scenario II has the same sequential approach but here we adjust
problem A with cost information from problem B. Which is done such that we to some extend
consider problem B when solving problem A. Again there are no special requirements to the
method applied to problem B.

Scenario III separates itself from the other scenarios in the way that it contains a stronger link
between problem A, which is kept unchanged, and problem B. Here the idea is to solve A, then
B and afterwards start an iterative approach. When iterating between A and B, we pass dual
variables that corresponds to adjusting the timetable. These dual variables are then used to
adjust the prices in problem A. To get dual variables that are meaningful we need to solve
problem B with an exact method, thus Scenario III entails that we apply an exact solution
method to the Crew Planning Problem.

In section 5.3.1 we present the Crew Planning Problem and solution methods pertaining hereto
and in section 5.4, we describe these scenarios in greater depth.

5.3.1 Problem B: Crew Planning Problem

The motivation for the Crew Planning Problem, which is sometimes referred to as the Crew Man-
agement Problem (Caprara et al., 1997; Ernst et al., 2004), is that solving the Crew Scheduling
Problem and Crew Rostering Problem sequentially does not adequately describe the full prob-
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lem. Here there is a degree of sub-optimization when we generate the duties before we generate
the rosters (Caprara et al., 2007). The motivation for integrating these two problems in the CPP
are presented in among others (Caprara et al., 2001; Ernst et al., 2001).

The integration of the two problems can be to di�erent degrees, thus in the following we present
�rst the Crew Scheduling Problem (CSP) and then the Crew Rostering Problem (CRP). Before
we suggest how to integrate and solve them.

In Crew Scheduling Problem we generate duties, also referred to as Crew Pairings (Al�eri et al.,
2007) and sometimes shifts, these duties are a set of tasks to be performed by a crew member
stationed at a given depot. Hence we �rst de�ne a set of depots Q, the tasks to be covered are
trips which is the shortest part of a demand route that can be covered by a single crew member.
Therefore a demand that is driven at a given time breaks down to a set of trips that together
covers the demand, all trips are described in the set P .

A duty consist of both trips and other tasks that has to be performed, such as breaks, dead-
heading, preparation, �nalization, walking to and from trains. The total length of the duties can
vary, usually they are restricted to a single day, but can be of longer length if it is necessary to
stay overnight at another depot. In general for train services duty lengths are shorter than for
instance the airline sector, as we often have more dense networks and it is therefore easier to
return the crew members to their home depot at the end of the shifts.

Depending on the degree of integration and other factors the objective of the CSP can be quite
di�erent, often it is to get the lowest cost of the duties or to reduce the crew necessary to perform
the duties. Where we have to cover all trips while adhering to all working regulations governing
the crew.

The duties generated in the CSP are then passed to the Crew Rostering Problem (Caprara and
Toth, 1998) where we combine the duties to general crew rosters, these rosters are again speci�c
for a crew depot but not necessarily on a single crew level.

In the CRP we now consider a longer planning horizon than in the CSP. Here we also have some
constraints that govern the forming of rosters, but there are in general fewer. The duties now
have features given by the trips and other tasks the duty contain. We use this information to
ensure that we comply with the regulations for the rosters.

When presenting the CSP and CRP it is obvious that there has to be some link between the
two problems. If we could formulate and solve it as a joint CPP it would be favorable as we
would then design the duties to form the optimal rosters, and not form the duties to reduce cost,
sta� or average work-time assigned. In the following section 5.3.1.1 we present exact solution
methods for the CSP and CRP. Whereas we have not yet given a joint formulation.

5.3.1.1 Exact approach

In this section we give the sequential formulation of the CPP. The CSP is often formulated as
a Set Partitioning Problem (SPP) or variation hereof, the Set Covering Problem (SCP) is also
widely used in the literature.
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We formulate the CSP as a SPP with extra constraints in equation (5.1-5.4) with the parameters
given in table 5.1. Where yr is a binary variable indicating whether a duty r is used or not.

Table 5.1: Parameters

Parameter Description

R Set of all duties (columns) under consideration, indexed by r
P Set of all trips, indexed by p
Q Set of all Depots, indexed by q
cr Cost of duty r
αpr Trip p is covered by duty r, 1 = yes, 0 = no
βqr Depot d is home depot for duty r, 1 = yes, 0 = no
wq Maximum work that can be allocated to depot q

minimize Z =
∑

r∈R
cryr (5.1)

s.t.,
∑

r∈R
αpryr = 1,∀p ∈ P (5.2)

∑

r∈R
βqryr ≤ wq,∀q ∈ Q (5.3)

yr ∈ {0; 1}, ∀r ∈ R (5.4)

The CSP is sometimes formulated such that we generate all relevant duties in advance in a
phase called duty generation (Caprara et al., 2007). Alternatively we can use a delayed column
generation method where we have equation (5.1-5.4) as a Restricted Master Problem and generate
duties ad-hoc in a Sub-problem. In this way we do not have to generate all duties in advance,
but we do instead have to pass dual variables to the sub-problem and solve it e�ciently.

For the CRP we can make a similar SPP formulation such that we allocate the duties from the
CSP to individual crew-members over a longer time horizon, could be 4 weeks. Due to the duties
being tied to the crew bases in the CSP, we can decompose the CRP on a crew base level. This
gives the SPP de�ned by equation (5.5-5.7), where xuk is equal 1 if a given roster k is covered by
crew member u and 0 otherwise. The set U is the set of all crew-members and K is all roster
under consideration, γrk is whether a roster k covers duty r.

minimize Z =
∑

k∈K
ckx

u
k (5.5)

s.t.,
∑

u∈U

∑

k∈K
γrkx

u
k = 1,∀r ∈ R (5.6)

xuk ∈ {0; 1}, ∀k ∈ K (5.7)

Again we need a way to generate columns, either by prede�ning them or through delayed column
generation.
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A joint formulation or integrated approach for the CPP is necessary in order to have an overall
iterative approach as described by scenario III in section 5.3.1. The joint approach can be
formulated as in Ernst et al. (2001), but here it is still necessary to solve the CRP and CSP
somewhat sequentially.

Though we have not formulated an exact joint approach for the CPP, we illustrate the integration
with problem A, which we do in section 5.4, by using the CSP. The CPP (problem B) should
be solved in a joint approach, whether it be a joint IP-formulation or an iterative or otherwise
integrated approach.

5.4 Overall Integration Approach

In this section we present the three approaches to overall integration (see �gure 5.1) between
problem A and B. As both problem A and B are quite time consuming to solve, we have to
consider the runtime of a joint approach. As described in section 5.2 the overall problem is
executed well in advance of when we have to apply for railway tracks, and almost a year before
we have to use the plan. Hence we can allow the joint runtime to be quite long e.g. up to a
week, as there are no requirements to the max runtime we are not particularly constrained here.

The motivation for integration of the two problems is to reduce the total costs for the joint
solution. Hence we seek to see whether an increase in cost or di�erent solutions at the same
cost for problem A, can in�uence problem B in such a way that the total costs are reduced
more than we increase the cost of problem A. Thus we de�ne C as the total costs for the
integrated problem, CA as the total costs for problem A and CB for problem B. Hence we have
the relationship between the costs shown in equation (5.8).

C = CA + CB (5.8)

In section 5.3.1 we had set P for all trips and set D for all demands. We de�ne P̃ to be a
set of trips that are �xed to a given time-period, we call these trips time-�xed-trips. We set
D̃ to be a set of demands �xed w.r.t. time, these are called time-�xed-demands. The sets are
indexed by p̃ and d̃ respectively. To tie the time-�xed-trips in problem B to the time-�xed-
demands from problem A, we let Λd̃, ∀d̃ ∈ D̃ be the set of time-�xed-trips corresponding to the
time-�xed-demand d̃.

5.4.1 Scenario I

As scenario I is the most simple, and the most commonly used in the literature, we designate
it as our benchmark scenario. The integration method here is straight forward as we �rst solve
problem A, we de�ne this solution as SA, and then apply our method for problem B and �nally
get our solution for B, which we de�ne as SB. Combined they de�ne the joint solution S. The
joint solution is therefore de�ned by S = SA ∪ SB.
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In this scenario the information passed from A to B is purely the timetable, where the demands
are split into trips, which is the shortest segment of work that can be allocated to the crew at a
speci�c time-period. Based on this we solve B and get the total cost C for scenario I.

5.4.2 Scenario II

Scenario II focus on adjusting the cost of the overall demands in problem A. Instead of just
focusing on the overall demands, we could also try to adjust the time-�xed-demands d̃. This
adjustment in the cost for problem A will be the link to problem B. Hence the adjustment
should somehow re�ect the attractiveness or the cost implications a d̃ has on the crew plan. This
could be that certain d̃ implies using corresponding number of p̃, that would possibly cause the
following costs in problem B such as:

(i) The time-�xed-trip is prone to cause an additional night shift.

(ii) Overlap or come to close time-wise to other trips: Could say that we maximally want a
certain amount of trips placed within a period of the week and impose a cost penalty on
exceeding this.

(iii) Lack of or to short time to connect to the next departure when servicing a destination that
has infrequent connections.

(iv) Others?

Commonly for anything to be included here, is that we should be able to calculate the cost
implication before solving problem A, and adjust the costs for A in such a way that we can
obtain a solution SA and pass it to problem B, and solve it as described previously in scenario I.

5.4.3 Scenario III

This scenario is the most complicated as we strive to optimize both A and B to minimize C. The
idea evolves around a joint solution S obtained as in scenario I. Then we try to pass information
from SB back to A in order to re-optimize A and obtain a new SA to provide input for B. In
�gure 5.3 we illustrate these iterations.

Figure 5.3 shows the �ow of information in the integration for scenario III. Starting with problem
A; we send information regarding when demands are driven to Evaluate(A). In Evaluate(A)
we check if we have met a stopping criterion. Then we split the demands into trips (remember,
trips are the shortest segment of a demand, that can be assigned to crew, derived from a demand
and as the demands here are �xed in time, so are the trips) and pass these to RMP (B), the
restricted master problem for B. Now we remove columns that have become infeasible due to
change in the trips. We pass the new trips and duals as we normally do along to the sub-problem
for B, Sub(B). In Sub(B) we then create su�ciently new columns and pass them to RMP (B)
that is re-solved until we meet the optimality condition, which is when no columns with negative
reduced costs can be generated.
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Figure 5.3: Scenario III
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Note: A: Engine Planning, B: Crew Planning.
Assuming B is solved using delayed column generation as explained in section 5.3.1.1,

and A is solved by the algorithm developed in proposal I

The duals for all trips are passed to Evaluate(B) that combine the duals for trips to duals
for demands and again evaluates the stopping criterion. As we need to pass cost information
regarding all trips, and not just the ones chosen i SA, we have to �nd a way to get duals for all
possible trips. The duals for all possible trips are found in RMP (B), the procedure herefore will
be shown in section 5.4.3.1. We re-optimize RMP (A) after adjusting the existing columns using
the duals for demands, and iterations with the sub-problem as usual. We now need to explain
how we get the duals for the trips not used in RMP (B) and elaborate on the stopping criterion,
this will be done in sections 5.4.3.1 and 5.4.3.2 respectively.

5.4.3.1 Duals from problem B

From the CSP formulated in equation (5.1-5.4) we extract constraint (5.2), or the corresponding
constraint in a joint formulation of the CPP, and reformulate it to constraint (5.9) and add
constraint (5.10).

Set D̃ equal all time-�xed-demands possible in problem A and set P̃ equal all possible time-
�xed-trips corresponding hereto. Now let Ω be all time-�xed-trips corresponding to the time-
�xed-demands not chosen in SA. This implies that there is a set {P̃ \ Ω} ⊂ P̃ , which are the
time-�xed-trips chosen in SA, which we currently service.

There are more than one time-�xed-trip in P̃ that cover a trip p ∈ P . Thus let P̃p ⊂ P̃ ,∀p ∈ P ,
be the set of time-�xed-trips that cover a trip p. All the sets P̃p are disjoint subsets of P̃ .

∑

r∈R

∑

p̃∈P̃p

αp̃ryr = 1, ∀p ∈ P (5.9)

∑

r∈R
αp̃ryr = 0, ∀p̃ ∈ Ω (5.10)
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We extract the duals to θ = [θp̃], ∀p̃ ∈ P̃ . From (5.9) we get the duals for the time-�xed-trips
not serviced; θp̃,∀p̃ ∈ Ω. The duals for the time-�xed-trips serviced; θp̃, ∀p̃ ∈ {P̃ \ Ω}, is set to
0. As we have to cover the corresponding trip which is implied by equation (5.9), and (5.10)
implies that all p̃ not being serviced are equal 0, we have that all p̃ ∈ {P̃ \ Ω} should equal 1 in
a feasible solution.

Let η = [ηd̃],∀d̃ ∈ D̃ be the dual vector for time-�xed-demands. Now combine the duals for the
time-�xed-trips to the duals for the corresponding time-�xed-demands by equation (5.11).

ηd̃ =
∑

p̃∈Λd̃

θp̃,∀d̃ ∈ D̃ (5.11)

Finally we pass the vector η to problem A, where we adjust the cost for performing the time-
�xed-demand d̃ accordingly.

5.4.3.2 Stopping criterion

When imposing a stopping criterion on scenario III, we have to consider that we, as previously
described, can allow for a relatively long runtime. Let Ci be the overall costs C for an iteration
i. An obvious stopping criterion is then if SAi = SAi−1 ,SBi = SBi−1 , which shows no change in
the solution to either A or B. Further stopping criteria can be considered:

(i) Total time limit

(ii) Ci = Ci−1

(iii) 4i ≤ minimum change,4i = Ci − Ci−1

(iv) SA = SAi−1

(v) Others?

Criteria (i) is necessary to introduce in order to risk any sort of endless loop. Stopping on
criteria (ii) should in most cases be su�cient, unless the underlying solution changed and further
iterations could lead to a lower C. Criteria (iii) is a general case of (ii), where4 = 0, here we stop
if the increments in solutions become so small that no further iterations are deemed worthwhile.
The last criteria (iv) is a simpli�cation of the basic as it would just force termination before we
recheck problem B as two identical SA will lead to the same SB in this case. Regarding (v), the
stopping criteria should be evaluated during numerical experimentation.

5.5 Additional issues

Here we present some issues that have to be further addressed in proposal II:

(i) In 5.3.1.1 we outline an exact approach for the CSP and CRP, but not an integrated
approach. It is the aim with this proposal to give an integrated approach and such we
should develop a joint approach to CPP?
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(ii) Will scenario III render an optimal solution if we were to allow for an unlimited runtime,
and if so can we prove it?

(iii) Is it realistic to execute an overall model, can we expect to get improved results with the
overall integration of the planning process?

The list is non-exhaustive and other ideas and modi�cations are appreciated.
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Chapter 6

Proposal III: Intermodal freight

transportation planning with time

windows

6.1 Background

With the increased focus on sustainability and the general wish to reduce co2 emissions there is
a focus on moving heavy duty trucks away from the roads and onto railways (Cacchiani et al.,
2010). A way to do this is to increase the attractiveness of the railways as they are sometimes
to slow compared to road transport.

Freight forwarding companies have incoming demand that gives a time and place to pick up a
container along with destination and deadline for delivery. The shipper have the opportunity
to deliver directly with a vehicle or deliver by combining the vehicle transportation with an
intermodal train service that performs a part of the transport.

We consider a set of full-truck-load demands with pick up and delivery points and time windows
for both. With a set of trucks we can serve these demands, which would be a one-to-one Pickup
and Delivery Problem with Time Windows (PDPTW) as described by Cordeau et al. (2008).
I propose to generalize the problem considered in that paper by including the option of using
intermodal transportation options. This is generalized such that a demand can be picked up and
delivered at an intermediate point, intermodal-station (IM-station), where it can be transported
to another IM-station in the network according to a �xed timetable, where it is again picked up
by a truck that handles the �nal transportation to the delivery point.

The objective is to reduce the total costs subject to capacity w.r.t. the number of vehicles and
space on trains, time-window compliance and that we serve all demand. There are costs for using
trains, driving vehicles, on/o� loading and penalties for delays.

The horizon of the problem can either be short or long term. In the short term we could consider
a real-time problem where we try to insert extra demand into an already existing solution. We
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though wish to consider a long term or static horizon where we start from scratch and create a
full plan for a given demand set.

Figure 6.1: Outline of stations and demands
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Note: Circles are stations in a railway network connected by tracks (lines), the stations are index A-F.

Small black circles are the pick up points referred to as Pi and the small white circles are delivery point

referred to as Di, where i = {1; 15} is the demand number.

An example of a problem with intermediate IM-stations are shown in �gure 6.1. Here we have
a set of IM-stations node A − F with are connected by railway. For each demand i ∈ {1; 15}
we have a pickup node Pi, a delivery node Di and a time-window [ai; bi], where ai is the earliest
pickup and bi the latest delivery.

We wish to solve this problem using variable neighbourhood search, see Hansen et al. (2010) for
a recent survey.

6.2 Additional issues

We here give a non-exhaustive list of issues that should be considered in connection with this
proposal III:

(i) We would like to �nd out whether to include a depot structure, or if it is more realistic
to assume that the vehicles do not return to a speci�c depot but instead cycles between
demands.

(ii) Do there exist benchmark problems in the literature?
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(iii) How to set the cost for delays, if we allow delays to occur?
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Abstract

The Node, Edge, and Arc Routing Problem (NEARP) was defined
by Prins and Bouchenoua in 2004. They also proposed a memetic al-
gorithm procedure and defined a set of test instances: the so-called
CBMix benchmark. The NEARP generalizes the classical CVRP, the
CARP, and the General Routing Problem. It captures important as-
pects of real-life routing problems that were not adequately modeled
in previous VRP variants. Hence, its definition and investigation con-
tribute to the development of rich VRPs. In this paper we present
the first lower bound for the NEARP. It is a further development of
lower bounds for the CARP. We also define two novel sets of test in-
stances to complement the CBMix benchmark. The first is based on
well-known CARP instances; the second consists of real life cases of
newspaper delivery routing. We provide numerical results in the form
of lower and best known upper bounds for all instances of all three
benchmarks. For two of the instances, the gap is closed.

Keywords: VRP; Node Edge Arc Routing; Bounds; Benchmarks
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1 Introduction

The Vehicle Routing Problem (VRP) [26, 18] is central to transportation
management. VRP research is regarded as one of the great successes of
OR, partly due to the fact that a tool industry has emerged and results
have been disseminated and exploited in industry. The VRP, construed in
a wide sense, is a family of problems. Since the first definition of the classi-
cal, capacitated VRP in 1959 [14], many generalizations have been studied
in a systematic fashion. Typically, exact and approximative solution meth-
ods have been proposed and investigated for each VRP variant. Efficient
procedures for generating good lower bounds are important, both to speed
up exact methods, and as a benchmark for approximative methods such as
metaheuristics.

There has been a tremendous increase in our ability to find exact and ap-
proximate solutions to VRP variants over the past half century. A few years
ago, the best exact methods could consistently solve instances of the classi-
cal Capacitated VRP (CVRP) up to some 70 customers. Today, the number
is around 100, see for instance [7]. Approximative methods such as heuris-
tic column generation, matheuristics, and metaheuristics seem to provide
high quality solutions in realistic times even for large size instances of com-
plex VRP variants. As problems are regarded as being solved for practical
purposes, researchers turn to new extensions and larger-size instances. This
trend is enhanced by market pull from the tool industry and their end users.
The somewhat imprecise term ”rich VRP” has recently been introduced to
denote variants that are close to capturing all essential aspects of some set
of real-life routing problems. Generalizations of models in the literature are
defined, exact and approximative methods are proposed and investigated,
and lower bounds are developed.

In contrast with the CVRP where demand for service is located in the nodes
of the graph, arc routing problems have been proposed to model the situation
where demand is located on edges or arcs in a transportation network [15].
Of particular industrial relevance is the Capacitated Arc Routing Problem
(CARP) defined by Golden and Wong in 1981 [19] and its generalizations,
as the CARP has multiple vehicles with capacity.

Up until 2004, there was a dichotomy in the VRP literature between arc
routing problems and node routing problems. Some cases are naturally mod-
eled as arc routing problems because the demand is fundamentally defined
on arcs or edges in a transportation network. Prime examples are street
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sweeping, gritting, and snow clearing. However, the arc routing model has
been advocated in the literature for problems where the demand is located
in nodes, for instance distribution of subscription newspapers to households
and municipal pickup of waste, particularly in urban areas. In real-life cases,
there are often thousands or tens of thousands of points to be serviced along
a subset of all road links in the area. Such cases are often formulated as
CARPs, typically with a drastic reduction of problem size.

In their 2004 paper [25], Prins and Bouchenoua motivate and define the
Node, Edge, and Arc Routing Problem (NEARP). They state that:

Despite the success of metaheuristics for the VRP and the CARP,
it is clear that these two problems cannot formalize the require-
ments of many real-world scenarios.

Their example is urban waste collection, where most demand may ade-
quately be modeled on street segments, but there may also be demand
located in points, for instance at supermarkets. Hence, they motivate a
generalization of both the classical CVRP and the CARP. To this end, they
define the NEARP, which can also be viewed as a capacitated extension of
the General Routing Problem [24]. A memetic algorithm for the NEARP
is proposed and investigated empirically on standard CVRP and CARP in-
stances from the literature. The authors also create a NEARP benchmark
consisting of 23 grid-based test cases, the so-called CBMix-instances, and
provide experimental results for their proposed method.

We would like to enhance the motivation for the NEARP and further empha-
size its high importance to practice. The arc routing model for node based
demand cases such as subscription newspaper delivery is based on an under-
lying idea of abstraction. The assumption that all point based demands can
be aggregated into edges or arcs may be crude in practice and lead to signif-
icant errors and plans that are unnecessarily costly even in urban cases. In
industry, a route planning task may cover areas that have a mixture of ur-
ban, suburban, and rural parts where many demand points will be far apart
and aggregation would impose unnecessary constraints on visit sequences.
A more sophisticated practical approach to contain the comutational com-
plexity resulting from a large number of demand points in industrial routing
is aggregation of demand based on the underlying transportation network
topology. Such aggregation procedures must also take capacity, time, and
travel restrictions into consideration to avoid aggregation that would lead to
impractical or low quality plans. In general, such procedures will produce a
NEARP instance with a combination of demands on arcs, edges, and nodes.
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There are clearly good reasons to remove the arc/node routing dichotomy
and enable modeling of the continuum of node and arc routing problems
that is needed for representational adequacy of real-life situations. The in-
troduction of the NEARP was a significant step towards the goal of rich
VRP. Despite its importance, studies of the NEARP following its introduc-
tion are almost non-existent in the literature. Kokubugata and Kawashima
[22] study problems from city logistics, including the VRP with Time Win-
dows and the NEARP. They propose a Simulated Annealing metaheuristic
for solving these problems. Computational results for the CBMix instances
of Prins and Bouchenoua are presented, with several improvements. In [21],
Hasle et al. describe results from experiments on NEARP test instances
using their rich VRP solver Spider [20, 2], also reporting new best known
results.

For the CARP, there has been an academic tradition for developing combi-
natorial lower bounds. The majority of these are based on the construction
of one or several matchings. The best such lower bound is the Multiple
Cuts Node Duplication Lower Bound (MCNDLB), [27], with the extensions
added in [4]. Two good lower bounds based on other strategies are the Hier-
archical Relaxations Lower Bound, [5], and a Cutting Plane Algorithm, [8].
See [4] for an overview of CARP lower bounds and [28] for a recent survey
on CARP in general.

Lower bounds have been developed for many VRP variants. Many of these
are based on cutting planes. See [17] and [23] for state-of-the-art lower
bounds for the VRP. Also for the General Routing Problem, there is a
tradition of obtaining lower bounds through algorithms involving cutting
planes. See [11], [12], and [13] for some of the best lower bound algorithms
for this problem.

The main contribution of this paper is to provide the first (to the best of
our knowledge) lower bound for the NEARP. This bound is inspired by the
MCNDLB for CARP and its extensions. We also define two new sets of test
instances that complement the grid based CBMix instances of Prins and
Bouchenoua. The first set is called the BHW benchmark. It is based on 20
well-known CARP instances from the literature. The second is called the
DI-NEARP benchmark, consisting of 24 instances inspired from real cases
of newspaper delivery routing. For all test instances, we provide numerical
results in the form of lower and best known upper bound.

The remainder of this paper is organized as follows. In Section 2, we for-
mally state the Node, Edge, and Arc Routing Problem and in Section 3, we
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describe our lower bound algorithm for the problem and argue its correct-
ness. In Section 4, we present two new benchmarks for the NEARP, and
in Section 5 we give computational results. Finally, in Section 6, we offer
concluding remarks.

2 The Node, Edge, and Arc Routing Problem

The Node, Edge, and Arc Routing Problem (NEARP) is defined on a con-
nected graph G = (N,E,A), where N is the set of nodes, E is the set of
undirected edges, and A is the set of directed arcs. Note that G is not nec-
essarily simple, i.e. there may be more that one link connecting any two
nodes. Let cij denote the non-negative traversal cost for (i, j) ∈ E ∪ A,
also known as deadheading cost. There traversal cost is zero for nodes. Let
NR ⊆ N be the set of required nodes, and let qi denote the demand and pi
the processing cost of node i ∈ NR. Similarly, let ER and AR be the set of
required edges and arcs, respectively, and let qij and pij denote the demand
and processing cost of (i, j) ∈ ER∪AR. The processing cost is the total cost
that accrues when the required edge or arc is serviced.

A fleet of identical vehicles each with capacity Q is initially located in a
special depot node, denoted node 1. It is assumed that the size of the fleet
is unbounded.

The goal is to identify a number of tours for the vehicles such that 1) every
node i ∈ NR, every edge (i, j) ∈ ER, and every arc (i, j) ∈ AR is serviced
by exactly one vehicle, 2) the sum of demands serviced by each vehicle does
not exceed Q, and 3) the total cost of the tours is minimized.

Please note that the total processing cost for all feasible solutions to a given
NEARP is constant. Hence, we do not need to consider processing costs in
our lower bound procedure. Also, the convention for reporting results on
the CBMix benchmark is such that the constant sum of processing costs has
been subtracted.

In the following we use SPL(i, j) to denote the cost of a shortest path in
G from i to j. Let N ′ ⊂ N be a subset of the nodes. We define δ−(N ′) =
{(i, j) ∈ E∪A|i ∈ N \N ′ and j ∈ N ′} to be the set of links entering N ′ and
δ+(N ′) = {(i, j) ∈ E∪A|i ∈ N ′ and j ∈ N \N ′} to be the set of links leaving
N ′. Note that due to the existence of undirected edges, δ−(N ′) and δ+(N ′)
are not necessarily disjoint. Finally, we define δ(N ′) = δ−(N ′) ∪ δ+(N ′) to
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Figure 1: In each iteration, G is partitioned into Uk and a number of con-
nected components, G′

s.

be the set of links connecting N ′ to the remaining graph. Finally, for any
set of nodes, U , we use G(U) to denote the graph induced by U .

3 Lower Bound for NEARP

The algorithm is a further development of the Multiple Cuts Node Duplica-
tion Lower Bound (MCNDLB) for the CARP, [27]. We give first an intuitive
description of the structure of the algorithm and subsequently a formal de-
scription.

For notational reasons, in the description of the algorithm we will assume
that the graph is simple, i.e. that there is at most one required link between
any pair of nodes. We stress that the algorithm can easily be extended to
the non-simple case.

Starting with U1 = {1}, we consider mutually disjoint cuts (Uk , N \ Uk)
such that U1 ⊂ U2 ⊂ . . . ⊂ Uk ⊂ Uk+1. For each such cut, Uk, the graph
induced by N \Uk will consist of one or more connected components, G′

s =
(N ′

s, E
′
s, A

′
s), s = 1, . . . , t, as illustrated in Figure 1. The number of vehicles

needed to service the demand in G′
s and the demand of links connecting G′

s

to Uk can be estimated by ps = �(∑i∈N ′
s
qi +

∑
(i,j)∈E′

s∪A′
s∪δ(N ′

s)
qij)/Q�.

Ideally, each vehicle would service the demand of an edge or arc when en-
tering G′

s and when leaving G′
s. When this is not the case, we say that
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the vehicle is using an artificial link. Such links can be either links without
demand or links with demand not currently being serviced. We estimate
the number of artificial links (entering arcs, leaving arcs, and undirected
edges) needed for all vehicles to both enter and leave G′

s. With this, we can
estimate the cost of servicing demand in G′

s and demand of links connecting
G′

s to Uk by constructing a node duplicated network and letting ms be the
cost of a minimum cost perfect matching in this network. We do this for all
the connected components and hence, L =

∑t
s=1ms estimates the cost of

servicing everything outside G(Uk).

To estimate the cost of servicing demand in G(Uk), we use the minimum
cost c us of a link between U and each component, G′

s and multiply this
by the number of artificial links needed to connect the two: rus . Iterating
over all the mutually disjoint cuts and all the connected components of
these, we can estimate the cost of servicing the demand in G(Uk) as L1 =∑k−1

j=1

∑t
s=1 c

u
s r

u
s .

For each of these cuts, L+L1 is a lower bound on the cost, and the algorithm
selects the highest of these.

Note in the details of the algorithm that the calculations become more com-
plex than outlined above due to the existence of both directed and undirected
links.

3.1 The Lower Bound Algorithm

The MCNDLB for NEARP is outlined as follows.

1. Set U = {1}, L1 = 0, L = 0, L2 = 0.

2. Let N ′ = N \ U and G′ be the graph induced by N ′.
Find the connected components of G′.
Suppose that G′ has t components: G′

s = (N ′
s, E

′
s, A

′
s), 1 ≤ s ≤ t.

2.1. For s = 1 to t do:

2.1.1. Number of vehicles needed to service the demand of nodes,
edges, and arcs in G′

s and δ(N ′
s).

ps = �(∑i∈N ′
s
qi +

∑
(i,j)∈E′

s∪A′
s∪δ(N ′

s)
qij)/Q�

2.1.2. Number of required edges and arcs in cutset.
ψu
s = |{(i, j) ∈ δ(N ′

s) ∩ ER}|

7



ψ−
s = |{(i, j) ∈ δ−(N ′

s) ∩AR}|
ψ+
s = |{(i, j) ∈ δ+(N ′

s) ∩AR}|
2.1.3. Number of artificial edges and arcs needed in cutset.

r−s = max{0, ps − (ψ−
s + ψu

s )}
r+s = max{0, ps − (ψ+

s + ψu
s )}

rus = max{0, 2ps − (ψu
s + ψ−

s + ψ+
s + r−s + r+s )}

2.1.4. Minimum cost of edges and arcs in cutset.
c−s = min(i,j)∈ δ−(N ′

s)
cij

c+s = min(i,j)∈ δ+(N ′
s)
cij

c us = min(i,j)∈ δ(N ′
s)
cij

2.1.5. Construct the Matching Network, GM
s . (Further explained

in Section 3.2.)

2.1.6. Set ms = cost of a minimum cost perfect matching in GM
s .

2.2. L =
∑t

s=1ms.

2.3. L2 = max{L2 , L+ L1 +
∑

(i,j)∈ER∪AR
cij}.

2.4. L1 = L1 +
∑t

s=1(r
u
s · c us + r+s · c+s + r−s · c−s ).

3. Set U ′ = {i ∈ N : i is adjacent to a vertex in U}.
Set U = U ∪ U ′.

4. If U 
= N : go to Step 2, otherwise go to Step 5.

5. Set MCNDLB = L2. Stop.

To strengthen the quality of the bound, for each of the nodes of U ′ in step
3, the node is added to U and steps 2 through 2.3 is repeated, hereafter
the node is once again removed from U . Step 2.4 is performed only after
all nodes of U ′ has been examined. This can strengthen the quality of the
bound in that part of the matching. This procedure has been proved valid
for similar lower bound procedures in [4, 10]. When testing the addition
of nodes from U ′ to U , the number of nodes added jointly as well as their
combination influences the quality of the bound. Unfortunately, the best
number and best combination cannot easily be predicted beforehand. We
have chosen to add the nodes individually.
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3.2 Construction of the Matching Network

For the construction of the matching network GM
s = (NM

s , EM
s ) in Step

2.1.5, we let the node set NM
s consist of three disjoint sets, S, T , and X,

where S will consist of copies of nodes from N ′
s, T will consist of copies of

nodes in U , and X can be considered to be extra copies of nodes in U and
will be added later.

Consider the s’th component, represented by the graph G′
s = (N ′

s, E
′
s, A

′
s).

For every node i in N ′
s setm

−(i) = minu∈U SPL(u, i) and similarly m+(i) =
minu∈U SPL(i, u), i.e., m−(i) and m+(i) is the length of a shortest path
from any node in U to i and from i to any node in U , respectively.

Furthermore, consider the degree information of nodes i ∈ N : LetD−(R, i) =
|{(j, i) ∈ AR}| be the number of required arcs entering node i, D+(R, i) =
|{(i, j) ∈ AR}| the number of required arcs leaving node i, let Du(R, i) =
|{(i, j) ∈ ER}| be the number of required edges incident to node i and let
D(R, i) = D−(R, i) +D+(R, i) +Du(R, i) be the total number of required
edges and arcs incident to node i.

For each node i in N ′
s, we add D(R, i) nodes to S and call these nodes

the family of i, denoted by χ(i). We say that the nodes in χ(i) are copies
of i. Given a node j in χ(i), we refer to i as the origin of j, denoted
by ω(j). We partition S into three disjoint subsets γ−, γ+ and γu. For
each node i in N ′

s, we consider the family χ(i) consisting of D(R, i) =
D−(R, i) + D+(R, i) + Du(R, i) nodes. Of these, we associate D−(R, i)
nodes with γ−, D+(R, i) with γ+, and Du(R, i) with γu.

Now, consider the nodes in N ′
s ∩ NR for which D(R, i) = 0, i.e. required

nodes without incident required arcs or edges. Note that these nodes were
not considered above. For each such node, i, we add two nodes to S and call
these the family of i, denoted by χ(i). We add one of the nodes to γ− and
the other to γ+. As above, we call these nodes copies of i and for a node j
in χ(i), we say that i is the origin of j, denoted by ω(j).

The set T consists of 2ps nodes which can be considered to be copies of nodes
in U . Because we know the minimum number of artificial edges needed in
U , we can partition T into four disjoint subsets τ−, τ+, τu and τR, where
the values of r−s , r

+
s , and rus determines the number of nodes in each of the

first three subsets, respectively, and the remaining nodes are assigned to τR.
Due to the definitions in Step 2.1.3 of the algorithm, the number of nodes
in τR equals the total number of required links in the cutset δ(N ′

s).
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We let GM
s be a complete undirected graph. The demand of required arcs

and edges in G′
s is assigned to edges in GM

s as explained in the following.
These assignments are done in such a way that no node in NM

s is chosen
more than once and no demand in G′

s is assigned more than once.

For each required edge, (i, j) ∈ E′
s ∩ER we choose a node i′ ∈ χ(i)∩ γu and

a node j′ ∈ χ(j) ∩ γu in NM
s , and assign the demand, qij, of (i, j) to (i′, j′).

For each required arc, (i→ j) ∈ A′
s ∩AR we choose a node i′ ∈ γ+(i) and a

node j′ ∈ γ−(j) in NM
s , and assign the demand, qij, of (i→ j) to (i′, j′).

For required edges (i, j) in δ(N ′
s) ∩ ER (say without loss of generality that

i ∈ N ′
s and j ∈ U) we choose a node i′ ∈ χ(i) ∩ γu in NM

s and a node k in
T ∩ τR and assign the demand of (i, j) to the edge (i′, k). For required arc
(i, j) in δ+(N ′

s) ∩ AR we choose a node i′ ∈ χ(i) ∩ γ+ in NM
s and a node k

in T ∩ τR and assign the demand of (i, j) to the edge (i′, k). For required
arc (i, j) in δ−(N ′

s)∩AR we choose a node j′ ∈ χ(j)∩γ− in NM
s and a node

k in T ∩ τR and assign the demand of (i, j) to the edge (k, j′).

For every node i in N ′
s ∩ NR with D(R, i) = 0 we assign the demand qi of

the node to the edge (γ−(i), γ+(i)) in G′
s. All other edges in E

M
s have zero

demand.

The cost of edges (i, j) in EM
s are set to
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cij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if qij > 0

0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γ− and j /∈ γ−

0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γ+ and j /∈ γ+

0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γu

∞ if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γ− and j ∈ γ−

SPL(i, j) if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γ− and j /∈ γ−

∞ if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γ+ and j ∈ γ+

SPL(j, i) if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γ+ and j /∈ γ+

SPL(j, i) if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γu and j ∈ γ−

SPL(i, j) if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γu and j ∈ γ+

min{SPL(i, j), SPL(j, i)} if i, j ∈ S and ω(i) 
= ω(j) and i ∈ γu and j ∈ γu

∞ if i, j ∈ T
∞ if i ∈ S ∩ γ+ and j ∈ T ∩ τ+
m−(i) if i ∈ S ∩ γ+ and j ∈ T \ τ+
∞ if i ∈ S ∩ γ− and j ∈ T ∩ τ−
m+(i) if i ∈ S ∩ γ− and j ∈ T \ τ−
min{m−(i),m+(i)} if i ∈ S ∩ γu and j ∈ T
∞ if i ∈ T ∩ τ+ and j ∈ S ∩ γ+
m−(j) if i ∈ T \ τ+ and j ∈ S ∩ γ+
∞ if i ∈ T ∩ τ− and j ∈ S ∩ γ−
m+(j) if i ∈ T \ τ− and j ∈ S ∩ γ−
min{m−(j),m+(j)} if i ∈ T and j ∈ S ∩ γu

In order to tighten the bound, consider every pair of demand edges, (i, j) and
(k, l) in EM

s . If qij + qkl > Q, we set the cost of the edges (i, k), (i, l), (j, k),
and (j, l) to ∞, since (i, j) and (k, l) cannot be serviced on the same tour.
Next, remove all copies of nodes in T ∩ τR and all edges incident to them.

To finalize the construction of GM
s , let the number of nodes in X be deter-

mined by

|X| =

⎧
⎨
⎩

|S| − |T | if |S| − |T | > 0
0 if |S| − |T | is even
1 if |S| − |T | is odd

Each node j in X is connected by an edge to every node i in S ∪X with a
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cost given by

cij =

⎧
⎪⎪⎨
⎪⎪⎩

0 if i, j ∈ X
m−(i) if i ∈ γ+ and j ∈ X
m+(i) if i ∈ γ− and j ∈ X
min{m−(i),m+(i)} if i ∈ γu and j ∈ X

Nodes inX are not connected to nodes in T . X can be considered to be extra
copies of nodes in U . There are now enough nodes in T ∪X for every node
in S to be matched to one of these at cost m−(i) or m+(i). X is necessary
because for any two nodes, i and j in S, it might be cheaper to match both i
and j to something in U instead of matching them to each other, illustrating
the vehicle driving back to subgraph U and then returning to S. Note that
although the triangle inequality may not apply in the original graph, it does
apply in this matching network as long as no edges with cost infinity are
involved.

3.3 Correctness of the Lower Bound

Since the bound is an extension of the MCNDLB for the CARP, which was
proved valid in [27], we focus on the changes that are made to the original
algorithm.

The first change occurs in the calculation of ps, i.e. the number of vehicles
needed to service component s and the links connecting it to U in Step 2.1.1.
In the original algorithm the demand was summarized over all demand edges.
Because, in the NEARP, we have both required edges, arcs, and nodes,
clearly the summation should be over all of these.

In Step 2.1.3, we calculate the number of artificial links needed. In the
original algorithm, this was calculated as rs = max{0 , 2ps − qs}. Needing
at least ps vehicles, each of which must both enter and leave the component,
and having rs required edges in the cut, this is clearly correct. For the
NEARP, we will first consider entering vehicles. Note that we must have at
least ps of these. We have ψ−

s entering arcs and ψu
s edges in the cut. Hence,

up to ψ−
s +ψu

s vehicles can use these existing links and we need to construct
max{0 , ps− (ψ−

s +ψu
s )} artificial entering arcs. The argumentation for arcs

leaving the component is symmetrical.

Needing at least 2ps links in total, we can now add the number of undirected
edges corresponding to the difference between 2ps and the sum of all required
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links (arcs and edges) and the number of artificial arcs added to the network.
Thereby the correctness of Step 2.1.3 has been argued.

With these definitions in place, it follows directly that the estimate for
servicing everything inside U , L1, in Step 2.4 is correctly generqalized to
the NEARP.

Left is only to argue that the construction of the matching network in Step
2.1.5 leads to a valid estimate for servicing G′

s and the cutset. The structure
of the matching network is similar to the one in the original bound. For each
original node, we add D(R, i) nodes to S in the matching network. This is
exactly the number of times we must either enter or leave the node due
to arc and edge requirements. Clearly, we may partition these into nodes
representing entering, leaving, and undirected demand. We use the same
number of nodes in the sets T and X as in the original algorithm, but again,
for the set T , we can partition the nodes into sets based on the knowledge
described above. For required nodes with no adjacent required links, it is
clearly legal to add two nodes to S - one for entering and one for leaving.

The assignment of required edges is done precisely as in the original al-
gorithm, except that now we take the direction of arcs into account when
selecting the nodes in each family to be matched. Furthermore, for required
nodes we legally select the edge between the two copies of the original node
to absorb the demand. As in the original algorithm, the cost of all these
demand-assigned edges is set to infinity to prevent them from being used in
the matching.

The remaining cost structure is far more complex in this algorithm than in
the original one. This is due to the partitioning of families into entering,
leaving and undirected sets. When two nodes are in the same family, the
cost of the edge connecting them is zero if it is possible to enter through
one of the copies and leave through the other. Otherwise, the cost is set to
infinity, to prevent this connection from being used in the matching.

For two nodes in different families, the cost is also infinity if either both
nodes are entering nodes or both are leaving nodes, as this combination is
illegal. If the combination is legal, the cost between such nodes corresponds
to the cost of a shortest path between the origins of the nodes, while taking
possibility of directions into account.

When considering a node i in S and a nodes j in T or in X, we use the
different m(i) estimates as in the original algorithm, except that again, we
need to take into account the different combinations of entering and leaving,
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making the expression less pretty. Connections internal to T and X are
handled as in the original algorithm.

As can be concluded from the above argumentation, the algorithm presented
in this paper is indeed a feasible lower bound for the NEARP.

4 New NEARP benchmarks

Only one set of test instances exists for the NEARP: the CBMix instances
[25]. These instances are all based on graphs with a grid structure. To
ensure more variation of the test platform for future algorithm developments
and for testing the lower bound algorithm described above, we present two
new benchmarks. The first is based on classical CARP instances from the
literature, and the second set is based on real-life instances of an industrial
application of the NEARP. We adopt the convention for reporting results
on the CBMix benchmark, i.e., the constant sum of processing costs should
be subtracted from the total cost.

4.1 The BHW instances

This benchmark is generated from benchmark instances for the CARP.
Specifically, we have used a number of instances from the Gdb instances,
[6], the Val instances, [9], and the Eglese instances, [16].

For each instance, we have kept the underlying graph structure, the existing
demand, and the vehicle capacity. We have made the following modifications
to the instances: Some undirected edges are replaced by directed arcs. If the
edge was required, the demand is transmitted to the arc. Other undirected
edges are replaced by two directed arcs, one in each direction. If the edge
was required, the demand is either transferred to one of the arcs or both arcs
are made required, each with a demand equal to the demand of the edge.
Finally, some edges are left unchanged. Furthermore, some of the nodes are
made required.

Table 1 gives the most important properties for each instance. The first col-
umn states the name of the instance and the second provides a reference to
the underlying CARP instance. The next three columns give the total num-
ber of nodes, undirected edges, and directed arcs in the graph, whereas the
following three columns give the same information for required entities. The
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next column states the vehicle capacity. Note that the vehicles are assumed
to be identical. The remaining six columns provide statistical information
regarding required entities. Pairwise these columns provide the mean and
standard deviation of the demand of the required nodes, edges, and arcs in
the graph. Note that only the required entities are included in these calcu-
lations. All instances have relatively sparse networks, as they simulate real
life situations. The depot is located in node 1 in all BHW instances. The
instance definition files are found at SINTEF’s TOP web site [3].

4.2 The DI-NEARP instances

This benchmark is taken from six real life cases from the design of carrier
routes for home delivery of subscription newspapers and other media prod-
ucts in the Nordic countries. The company Distribution Innovation AS (DI)
[1] operates a web based solution for design, revision, management and con-
trol of carrier routes. Route design and revision is based on electronic road
and address data that are provided by commercial GIS vendors. Sophisti-
cated models for travel and service time are utilized. The Spider VRP solver
provided by SINTEF [2] is integrated in the solution.

The GIS road network data may have been improved by the user through
manual editing due to errors or lack of detail. All delivery points are
geocoded, and the enhanced road network data are transformed into an
internal graph representation in Spider. The basic node routing problem
cases typically have a large number of points. Through road topology based
aggregation heuristics in Spider, the original problem has been transformed
to a NEARP with side constraints. The graph topology of the instances is
taken directly from the Spider graph.

Data for the six instances was retrieved from the DI web server in 2011. In
these particular cases there are only required edges and nodes, no required
arcs. The edges have symmetrical travel costs. All nodes have coordinates,
but this is only for visualization purposes. The travel and service costs are
set to the travel and service times calculated by the models in the DI system,
as there is a close correlation between total route duration and route plan
cost in reality. The index of the depot node is given explicitly.

The industrial problem does not have active capacity constraints, but there
is a constraint on route duration. We have transformed the duration con-
straint to a capacity constraint and selected four different values for capacity
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that produce a reasonable range for the number of routes that includes the
number used in reality. Hence, the DI-NEARP benchmark consists of 24
instances. They are named DI-NEARP-nabc-Qqk, where abc is the total
number of required nodes, edges, and arcs and q is capacity in thousands.
Table 2 gives the most important properties for each instance. The struc-
ture of this table is similar to that of Table 1 except for the second column
which is not relevant for the DI-NEARP instances. The instance definition
files are found at SINTEF’s TOP web site [3].

5 Computational Results

We have implemented the lower bound algorithm in two versions. A ver-
sion where all nodes neighboring U are added at once, and a version where
the addition of each node is tested separately before all nodes are added,
as explained in Section 3.1. In this section, we give the results for both
implementations, while referring to the latter as AD1. All lower bound cal-
culations are performed on a PC with an Intel Core 2 Duo CPU, running
at 2.53 GHz and with 2GB of RAM.

The results obtained for the three benchmark sets are given in Tables 3, 4,
and 5. In each table, the second column provides the best known upper
bound for the instance, hereafter referred to as UB∗. For the CBMix in-
stances these are obtained from [25], [22], and [21]. For the BHW and the
DI-NEARP instances the first upper bounds were obtained with the Spider
solver [21]. Please remember that the constant sum of processing costs has
been subtracted from the total cost.

For each of the two lower bound versions, we give the obtained value of the
algorithm (LB), and the percentage gap from the of the best known upper
bound to the lower bound, as calculated by the following formula:

gap =
UB∗ − LB

(UB∗ + LB)/2
· 100

Finally, we provide the running time of the lower bound algorithm in sec-
onds. We imposed a time limit of 9600 seconds. For the large-size DI-
NEARP instances, the calculation of the AD1 LB was not completed within
this time limit. Hence, the AD1 column has been omitted in Table 5.

For the CBMix benchmark, gaps vary between 3.0% and 39.5% with an
average of 25.2%. The variation is larger for the BHW benchmark, where
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the average and maximum gaps are 25.2% and 55.4%, respectively. The
instances BHW4 and BHW6 have been solved to optimality. The average
lower bound for the large size DI-NEARP benchmark instances is 27.0%,
with a minimum of 4.2% and a maximum of 55.4%.

6 Concluding Remarks

The VRP literature has often been criticized for being based on idealized
assumptions that render the proposed models inadequate for real life appli-
cations. In particular, there has been a strict separation of node routing
and arc routing problems in the literature until 2004. In [25] Prins and
Bouchenoua proposed the Node, Edge, and Arc Routing Problem (NEARP).
They argued that there are real-life applications that can neither be ade-
quately modeled as strict arc routing, nor as strict node routing problems.

In this paper, we have reinforced the claims of Prins and Bouchenoua and
argued that the NEARP represents an important, new dimension of VRP
model richness. We have also argued that the tradition of modeling ap-
plications such as newspaper delivery, mail delivery, and communal waste
collection as arc routing problems is problematic. For real-life, large-size
instances of such applications, where demand is basically located in nodes,
abstraction techniques such as aggregation of demand may be needed to pro-
vide high quality solutions. Reasonable aggregation heuristics will typically
produce instances with demand on nodes, edges, and arcs.

The main contribution of this paper is, to our knowledge, the first lower
bound for the NEARP. Also, we provide two new sets of test instances:
the BHW benchmark derived from 20 well-known CARP instances, and
the DI-NEARP benchmark with 24 instances derived from real life data
from carrier routing of subscription newspapers and other media products.
These complement the grid based CBMix benchmark proposed by Prins and
Bouchenoua, for which two other papers also provide upper bounds. For
the BHW and DI-NEARP benchmarks the first upper bounds have been
produced by Hasle et al. [21], so we now have lower and upper bounds for
all test instances. For the instances BHW4 and BHW6, the gaps have been
closed.

In our opinion, the NEARP is a theoretically interesting problem with high
industrial relevance. We strongly encourage the research community to de-
velop heuristic solution procedures as well as exact algorithms taking ad-
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vantage of the structure of this important problem. Moreover, NEARP
extensions should be proposed on the basis of important industrial aspects.

7 Acknowledgments

The authors would like to thank the company Distribution Innovation AS for
giving us access to real-life case data from their newspaper delivery routing
system. We would also like to thank Morten Smedsrud at SINTEF ICT
for his assistance in extracting and processing the data for the DI-NEARP
benchmark and for running the Spider solver on all three benchmarks.

The work presented here has been funded by the Research Council of Norway
as a part of the Effekt project (contract number 187293/I40, SMARTRANS),
and the DOMinant II project (contract number 205298/V30, eVita).

References

[1] Distribution innovation home page. http://www.di.no/?lang=en. Ac-
cessed: 19/10/2011.

[2] Spider web pages. http://www.sintef.no/Projectweb/

Transportation-planning/Software/Spider/. Accessed:
19/10/2011.

[3] Top web pages. http://www.sintef.no/TOP. Accessed: 19/10/2011.

[4] Dino Ahr. Contributions to multiple postmen problems. PhD thesis,
University of Heidelberg, 2004.

[5] Anita Amberg and Stefan Voss. A hierarchical relaxations lower bound
for the capacitated arc routing problem. Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, 3, 2002.

[6] Edward K. Baker, James S. DeArmon, and Bruce L. Golden. Compu-
tational experiments with algorithms for a class of routing problems.
Computers and Operations Research, 10(1):47–59, 1983.

[7] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An ex-
act algorithm for the vehicle routing problem based on the set parti-

18



tioning formulation with additional cuts. Mathematical Programming,
115(2):351–385, 2008.
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Instance Best Known Lower Bound Lower Bound AD1

UB∗ LB Gap Runtime LB Gap Runtime

CBMix1 2589 2409 7.2 1.0 2409 7.2 3.1
CBMix2 12190 9742 22.3 76.7 9742 22.3 353.4
CBMix3 3646 3014 19.0 7.5 3014 19.0 30.6
CBMix4 7583 5302 35.4 20.9 5302 35.4 118.8
CBMix5 4531 3747 18.9 3.8 3789 17.8 13.1
CBMix6 6970 4983 33.2 16.2 5201 29.1 43.1
CBMix7 9615 7296 27.4 58.7 7296 27.4 193.6
CBMix8 10524 7956 27.8 33.4 7956 27.8 196.8
CBMix9 4005 3460 14.6 2.5 3460 14.6 7.8
CBMix10 7582 6409 16.8 37.5 6432 16.4 113.0
CBMix11 4494 2998 39.9 4.6 3031 38.9 43.9
CBMix12 3235 3138 3.0 2.1 3138 3.0 12.9
CBMix13 9110 6489 33.6 19.4 6524 33.1 238.3
CBMix14 8553 5719 39.7 15.7 5731 39.5 107.5
CBMix15 8280 6270 27.6 10.9 6318 26.9 64.3
CBMix16 8886 7416 18.0 24.5 7416 18.0 172.6
CBMix17 4037 3654 10.0 1.8 3654 10.0 22.0
CBMix18 7098 6089 15.3 25.7 6089 15.3 120.9
CBMix19 16347 11065 38.5 110.5 11143 37.9 549.6
CBMix20 4844 3400 35.0 2.3 3452 33.6 15.7
CBMix21 18069 12474 36.6 61.8 12474 36.6 221.5
CBMix22 1941 1825 6.2 1.8 1825 6.2 4.8
CBMix23 780 667 15.6 0.1 667 15.6 0.8

Table 3: Results obtained for the CBMix instances.
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Instance Best Known Lower Bound Lower Bound AD1

UB∗ LB Gap Runtime LB Gap Runtime

BHW1 337 324 3.9 0.3 324 3.9 1.3
BHW2 511 470 8.4 0.4 470 0.4 0.9
BHW3 426 326 26.6 0.2 326 26.6 0.5
BHW4 240 240 0.0 0.5 240 0.0 3.8
BHW5 514 498 3.2 5.4 502 2.4 52.1
BHW6 388 388 0.0 2.9 388 0.0 32.3
BHW7 1100 930 16.7 41.7 930 16.7 347.2
BHW8 673 644 4.4 6.8 644 4.4 118.8
BHW9 895 791 12.3 28.0 791 12.3 346.5
BHW10 8556 6810 22.7 21.6 6810 22.7 123.1
BHW11 5021 3986 23.0 6.9 3986 23.0 40.0
BHW12 10981 6346 53.5 33.4 6346 53.5 207.7
BHW13 14610 8746 50.2 86.3 8746 50.2 576.7
BHW14 25700 17762 36.5 113.0 17762 36.5 737.5
BHW15 15743 12193 25.4 20.7 12193 25.4 214.2
BHW16 45248 26014 54.0 787.2 26014 54.0 4905.3
BHW17 27195 15396 55.4 162.7 15396 55.4 900.6
BHW18 16042 11202 35.5 77.9 11202 35.5 435.3
BHW19 9470 7065 29.1 14.1 7080 28.9 101.6
BHW20 16930 10730 44.8 269.9 10730 44.8 1388.4

Table 4: Results obtained for the BHW instances.
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Instance Best Known Lower Bound

UB∗ LB Gap Runtime

DI-NEARP-n240-Q2k 24417 16376 39.4 368
DI-NEARP-n240-Q4k 14984 14362 4.2 311
DI-NEARP-n240-Q8k 14984 13442 10.8 324
DI-NEARP-n240-Q16k 14873 13116 12.6 334

DI-NEARP-n422-Q2k 19095 11623 48.6 1571
DI-NEARP-n422-Q4k 15953 11284 34.3 1337
DI-NEARP-n422-Q8k 14523 11220 25.7 1049
DI-NEARP-n422-Q16k 14455 11198 25.4 1702

DI-NEARP-n442-Q2k 52393 35068 39.6 1689
DI-NEARP-n442-Q4k 45725 33585 30.6 1715
DI-NEARP-n442-Q8k 45725 32985 32.4 1736
DI-NEARP-n442-Q16k 42877 32713 26.9 1816

DI-NEARP-n477-Q2k 23272 19722 16.5 1572
DI-NEARP-n477-Q4k 20308 18031 11.9 1574
DI-NEARP-n477-Q8k 18652 17193 8.1 1582
DI-NEARP-n477-Q16k 18039 16873 6.7 1575

DI-NEARP-n699-Q2k 60233 34101 55.4 7249
DI-NEARP-n699-Q4k 40686 26891 40.8 6921
DI-NEARP-n699-Q6k 30797 23302 27.7 7133
DI-NEARP-n699-Q8k 27074 21967 20.8 7400

DI-NEARP-n833-Q2k 57476 32435 55.7 8239
DI-NEARP-n833-Q4k 42069 29381 35.5 8739
DI-NEARP-n833-Q8k 35331 28453 21.6 8675
DI-NEARP-n833-Q16k 33192 28233 16.1 8157

Table 5: Results obtained for the DI-NEARP instances.
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