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Day 1 : Local Level Model

Program :

• Introduction

• Local level model

• Statistical dynamic properties

• Filtering, smoothing and forecasting.

• Literature : J. Durbin and S.J. Koopman (2012), ”Time
Series Analysis by State Space Methods”, Second Edition,
Oxford: Oxford University Press. Chapter 2.

• Exercises and Assignments.
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Time Series

A time series is a set of observations yt , each one recorded at a
specific time t.

The observations are ordered over time.
We assume to have n observations, t = 1, . . . , n.

Examples of time series are:

• Number of cars sold each year

• Gross Domestic Product of a country

• Stock prices during one day

• Number of firm defaults

Our purpose is to identify and to model the serial or “dynamic”
correlation structure in the time series.

Time series analysis is relevant for a wide variety of tasks including
economic policy, financial decision making and forecasting
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The US Economy
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US Inflation, based on CPI, all products
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US Gross Domestic Product (GDP), percentage growth
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US Industrial Production, levels and growth

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

25

50

75

100

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

-10

0

10

7 / 53



US Industrial Production, growth
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US Treasury Bill Rate, 10 years
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Sources of time series data

Data sources :

• US economics :
http://research.stlouisfed.org/fred2/

• DK book data :
http://www.ssfpack.com/files/DK-data.zip

• Financial data : Datastream, Wharton, Yahoo Finance

• Time Series Data Library of Rob Hyndman :
http://datamarket.com/data/list/?q=provider:tsdl
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Example: Nile data, yearly volumes
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Time Series
A time series for a single entity is typical denoted by

y1, . . . , yn ⇔ yt , t = 1, . . . , n,

where t is the time index and n is time series length.
The current value is yt .
The first lagged value, or first lag, is yt−1.
The τ th lagged value, or τ -th lag, is yt−τ for τ = 1, 2, 3, . . ..

The change between period t − 1 and period t is yt − yt−1.
This is called the first difference denoted by ∆yt = yt − yt−1.

In economic time series, we often take the first difference of the
logarithm, or the log-difference, that is

∆ log yt = log yt − log yt−1 = log(yt/yt−1),

is a proxy of proportional change, see Appendix.
Percentage change is then 100∆ log yt .
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Time Series Models: many

• Autoregressive models, unit roots

• Autoregressive moving average models

• Long memory models, fractional integration

• ... unobserved components time series models ...

• Dynamic regression models, error correction models

• Vector autoregressive models, cointegration, vector error
correction models

• ... state space models ...

• Regime-switching, Markov-switching, treshold autoregression,
smooth transitions models

• Generalized autoregressive conditional heteroskedasticity
(GARCH) models

• Autoregressive conditional duration models and related models

• ... stochastic volatility models ...
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Autoregressive model: AR(1)

The AR(1) model is given by

yt = µ+ φyt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, φ and σ2ε with 0 < σε <∞.

Stationary condition: |φ| < 1.

Statistical dynamic properties:

• Mean E(yt) = µ / (1− φ); in case µ = 0, E(yt) = 0;

• Variance Var(yt) = σ2 / (1− φ2);

• Autocovariance lag 1 is Cov(yt , yt−1) = φσ2 / (1− φ2);

• and for lag τ = 2, 3, 4, . . . is Cov(yt , yt−τ ) = φτσ2 / (1− φ2);

• Autocorrelation lag τ = 1, 2, 3, . . . is Corr(yt , yt−τ ) = φτ .
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Moving Average model: MA(1)

The MA(1) model is given by

yt = µ+ θεt−1 + εt , εt ∼ NID(0, σ2ε),

with three parameter coefficients µ, θ and σ2ε with 0 < σε <∞.

Invertibility condition: |θ| < 1.

Statistical dynamic properties:

• Mean E(yt) = µ; in case µ = 0, E(yt) = 0;

• Variance Var(yt) = σ2 (1 + θ2);

• Autocovariance lag 1 is Cov(yt , yt−1) = θ σ2;

• ... for lag τ = 2, 3, 4, . . . is Cov(yt , yt−τ ) = 0;

• Autocorrelation lag 1 is Corr(yt , yt−1) = θ / (1 + θ2).

15 / 53



Example: Nile in levels and Nile in differences
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Classical Decomposition

A basic model for representing a time series is the additive model

yt = µt + γt + ψt + εt , t = 1, . . . , n,

also known as the Classical Decomposition:

yt = observation,

µt = slowly changing component (trend),

γt = periodic component (seasonal),

ψt = stationary component (cycle, ARMA),

εt = irregular component (disturbance).

It is an Unobserved Components time series model, when
the components are modelled as dynamic stochastic processes.
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Local Level Model

• Component is stochastic or deterministic function of time:
• Deterministic, eg: yt = µ(t) + εt with εt ∼ NID(0, σ2

ε)
• Stochastic, eg: Local Level model:

• Local level model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• The disturbances εt , ηs are independent for all s, t;
• The model is incomplete without initial specification for µ1.
• The time series processes for µt and yt are nonstationary.
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Local Level Model

The local level model or random walk plus noise model :

yt = µt + εt , εt ∼ NID(0, σ2ε)

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η)

• The level µt and irregular εt are unobserved;

• Parameters σ2ε and σ2η are unknown;

• We still need to define µ1;

• Trivial special cases:
• σ2

η = 0 =⇒ yt ∼ NID(µ1, σ
2
ε) (IID constant level);

• σ2
ε = 0 =⇒ yt+1 = yt + ηt (random walk);

• Local Level model is basic illustration of state space model.
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Simulated Local Level data
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Simulated Local Level data
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Simulated Local Level data
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Simulated Local Level data
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Properties of Local Level model

yt = µt + εt , εt ∼ NID(0, σ2ε),

µt+1 = µt + ηt , ηt ∼ NID(0, σ2η),

• First difference is stationary:

∆yt = ∆µt + ∆εt = ηt−1 + εt − εt−1.

• Dynamic properties of ∆yt :

E(∆yt) = 0,

γ0 = E(∆yt∆yt) = σ2η + 2σ2ε ,

γ1 = E(∆yt∆yt−1) = −σ2ε ,
γτ = E(∆yt∆yt−τ ) = 0 for τ ≥ 2.
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Properties of Local Level model
• Define q as the signal-to-noise ratio : q = σ2η / σ

2
ε

• The theoretical ACF of ∆yt is

ρ1 =
−σ2ε

σ2η + 2σ2ε
= − 1

q + 2
,

ρτ = 0, τ ≥ 2.

• It implies that
−1/2 ≤ ρ1 ≤ 0

• The local level model implies that ∆yt ∼ MA(1).
Hence yt ∼ is ARIMA(0, 1, 1). We have
∆yt = ξt + θξt−1, ξt ∼ NID(0, σ2).

• This implied MA(1) has ACF ρ1 = θ / (1 + θ2), and hence a
restricted parameter space for θ : −1 < θ < 0.

• To express θ as function of q, solve equality for ρ1’s:

θ =
1

2

(√
q2 + 4q − 2− q

)
.
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Local Level Model
The Local Level model is given by

yt = µt + εt , µt+1 = µt + ηt , t = 1, . . . , n.

• The parameters σ2ε and σ2η are unknown and need to be
estimated, typically via maximum likelihood estimation;

• MLE for this class of models is discussed in next session.
• When we treat parameters σ2ε and σ2η as known, how to

”estimate” the unobserved series µ1, . . . , µn ?
• This “estimation” is referred to as signal extraction.
• We base this “estimation” on conditional expectations.
• Signal extraction is the recursive evaluation of conditional

means and variances of the unobserved µt for t = 1, . . . , n.
• It is known as the Kalman filter;
• Next we provide the derivation only for the Local Level model.
• In our next session we discuss the Kalman filter for the

general linear state space model.
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Signal extraction: conditional expectation
Consider two random variable x and y that are normally distributed

x ∼ N (µx , σ
2
x), y ∼ N (µy , σ

2
y ), Cov(x , y) = σxy .

Assume that we do not know anything about x but we have
collected an observation for y .

The conditional expectation and variance are given by

E(x |y) = µx + σxy (y − µy ) / σ2y , Var(x |y) = σ2x − σ2xy / σ2y .

Verify these results and make sure you can derive these results
from basic principles. We have

x |y ∼ f (x |y) ≡ N (µx |y , σ
2
x |y ),

where µx |y ≡ E(x |y) and σ2x |y ≡ Var(x |y).

Notice that µx |y is a function of y but σ2x |y is not.

Notice that when σxy = 0, E(x |y) = µx and Var(x |y) = σ2x .
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Local Level Model: signal extraction
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

Assume we have collected observations for y1, . . . , yt−1 and that
the conditional density f (µt |y1, . . . , yt−1) is normal with known
mean at and known variance pt , we have

µt |y1, . . . , yt−1 ∼ f (µt |y1, . . . , yt−1) ≡ N (at , pt).

Next we collect an observation for yt , the conditional densities of
interest are

f (µt |y1, . . . , yt), f (µt+1|y1, . . . , yt).

These conditional densities turn out to be normal as well

f (µt |y1, . . . , yt) ≡ N (at|t , pt|t), f (µt+1|y1, . . . , yt) ≡ N (at+1, pt+1).

Can we express (at|t , pt|t) in terms of (at , pt) ? Also (at+1, pt+1) ?
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Local Level Model: signal extraction
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

Notation: Ys = {y1, . . . , ys}, for s = t − 1, s = t and s = n.

Define prediction error vt = yt − at with at = E(µt |Yt−1), with
properties such as

E(vt |Yt−1) = E(µt + εt − at |Yt−1) = at − at = 0,

Var(vt |Yt−1) = Var(µt − at + εt |Yt−1) = pt + σ2ε ,

E(vt |µt ,Yt−1) = µt − at ,

Var(vt |µt ,Yt−1) = σ2ε ,

We have E(εt) = 0 but verify that E(εt |Yt−1) = 0.
When yt is observed, it becomes fixed, just as y1, . . . , yt−1.
But also vt is then fixed, it is non-stochastic !!
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Local Level Model: signal extraction
Next, we aim to obtain an expression for f (µt |y1, . . . , yt), with an
eye on updating. Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

Consider filtered estimate f (µt |y1, . . . , yt) ≡ f (µt |vt ,Yt−1) since
vt = yt − at , where at = E(µt |Yt−1), are all fixed. We have

f (µt |vt ,Yt−1) = f (µt , vt |Yt−1)/f (vt |Yt−1)

= f (µt |Yt−1)f (vt |µt ,Yt−1)/f (vt |Yt−1),

where f ()’s are normals and f (µt |Yt) = const.× exp
(
− 1

2Qt

)
with

Qt = (µt − at)
2/pt + (vt − µt + at)

2/σ2ε − v2t /(pt + σ2ε).

After some algebra, we have

Qt =
pt + σ2ε
pt σ2ε

(
µt − at −

pt vt
pt + σ2ε

)2
.
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Local Level Model: signal extraction
Next we consolidate these results for the Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

We are interested in the filtered signal density

f (µt |Yt) = const.× exp
(
− 1

2
Qt

)
,

with

Qt =
pt + σ2ε
pt σ2ε

(
µt − at −

pt vt
pt + σ2ε

)2
.

It implies that
f (µt |Yt) ≡ N (at|t , pt|t),

with

at|t = at + kt vt , pt|t = kt σ
2
ε , kt =

pt
pt + σ2ε

.
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Local Level Model: signal extraction
Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

In addition, we are typically interested in the predicted signal
density

f (µt+1|Yt) ≡ N (at+1, pt+1),

where

at+1 = E(µt+1|Yt) = E(µt + ηt |Yt) = at|t ,

pt+1 = Var(µt + ηt |Yt) = pt|t + σ2η.

We have obtained the updating equations

at+1 = at + kt vt , pt+1 = kt σ
2
ε + σ2η, kt =

pt
pt + σ2ε

.

This is the celebrated Kalman filter for the Local Level model.
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Kalman filter for the Local Level Model

Local Level model :

yt = µt + εt , εt ∼ N (0, σ2ε), µt+1 = µt +ηt , ηt ∼ N (0, σ2η).

The Kalman filter equations are given by

vt = yt − at , Var(vt) = pt + σ2ε ,

kt = pt / (pt + σ2ε),

at|t = at + ktvt ,

pt|t = kt σ
2
ε ,

at+1 = at|t ,

pt+1 = pt|t + σ2η,

for t = 1, . . . ,T with initialisation ...

a1 = 0 and p1 = σ2ε × 107.
The equations are recursions, we update when new yt is observed.
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Signal Extraction for Nile Data: filtered estimate of level
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Observation weights

We show next that at|t is a weighted sum of past observations :

at|t = at + ktvt = at + kt(yt − at)

= ktyt + (1− kt)at

= ktyt + (1− kt)at−1 + (1− kt)kt−1(yt−1 − at−1)

= ktyt + kt−1(1− kt)yt−1 + (1− kt)(1− kt−1)at−1
...

= ktyt +
t−1∑
j=1

wt,jyt−j , wt,j = kt−j

j−1∏
m=0

(1− kt−m).

Since 0 < kt < 1, the weights are decaying in j .
A larger j implies that yt−j is more remote from t.
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Signal Extraction for Nile Data: observation weights
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Local Linear Trend Model

The LLT model extends the LL model with a slope:

yt = µt + εt , εt ∼ NID(0, σ2ε),

µt+1 = βt + µt + ηt , ηt ∼ NID(0, σ2η),

βt+1 = βt + ξt , ξt ∼ NID(0, σ2ξ ).

• All disturbances are independent at all lags and leads;

• Initial distributions β1, µ1 need to specified;

• If σ2ξ = 0 the trend is a random walk with constant drift β1;
(For β1 = 0 the model reduces to a LL model.)

• If additionally σ2η = 0 the trend is a straight line with slope β1
and intercept µ1;

• If σ2ξ > 0 but σ2η = 0, the trend is a smooth curve, or an
Integrated Random Walk;
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Trend and Slope in LLT Model
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Trend and Slope in Integrated Random Walk Model
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Local Linear Trend Model

• The LLT model can be represented as the ARIMA(0,2,2)
model, please verify this;

• The estimation methodology is the same as for the LL model;

• It requires the general state space methods;

• LLT provides a model for Holt-Winters forecasting;

• The smooth trend model is with σ2ζ = 0;

• Smoother trend models can be obtained by higher-order
Random Walk processes:

∆dµt = ηt

and with yt = µt + εt .
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Seasonal Effects

We have seen specifications for µt in the basic model

yt = µt + γt + εt .

Now we will consider the seasonal term γt . Let s denote the
number of ‘seasons’ in the data:

• s = 12 for monthly data,

• s = 4 for quarterly data,

• s = 7 for daily data when modelling a weekly pattern.
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Dummy Seasonal

The simplest way to model seasonal effects is by using dummy
variables. The effect summed over the seasons should equal zero:

γt+1 = −
s−1∑
j=1

γt+1−j .

To allow the pattern to change over time, we introduce a new
disturbance term:

γt+1 = −
s−1∑
j=1

γt+1−j + ωt , ωt ∼ NID(0, σ2ω).

The expectation of the sum of the seasonal effects is zero.
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Trigonometric Seasonal

Defining γjt as the effect of season j at time t, an alternative
specification for the seasonal pattern is

γt =

[s/2]∑
j=1

γjt ,

γj ,t+1 = γjt cosλj + γ∗jt sinλj + ωjt ,

γ∗j ,t+1 = −γjt sinλj + γ∗jt cosλj + ω∗jt ,

ωjt , ω
∗
jt ∼ NID(0, σ2ω), λj = 2πj/s.

• Without the disturbance, the trigonometric specification is
identical to the deterministic dummy specification.

• The autocorrelation in the trigonometric specification lasts
through more lags: changes occur in a smoother way;
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Seatbelt Law
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Seatbelt Law: decomposition
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Seatbelt Law: forecasting
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Textbooks

• A.C.Harvey (1989). Forecasting, Structural Time Series
Models and the Kalman Filter. Cambridge University Press

• G.Kitagawa & W.Gersch (1996). Smoothness Priors Analysis
of Time Series. Springer-Verlag

• J.Harrison & M.West (1997). Bayesian Forecasting and
Dynamic Models. Springer-Verlag

• J.Durbin & S.J.Koopman (2012). Time Series Analysis by
State Space Methods, Second Edition. Oxford University
Press

• J.J.F.Commandeur & S.J.Koopman (2007). An Introduction
to State Space Time Series Analysis. Oxford University Press
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Exercises

1 Consider the Local Level model (see slides, see DK chapter 2).

• Reduced form is ARIMA(0,1,1) process. Derive the
relationship between signal-to-noise ratio q of LL model and
the θ coefficient of the ARIMA model;

• Derive the reduced form in the case ηt =
√
qεt and notice the

difference in the general case.
• Give the elements of the mean vector and variance matrix of

y = (y1, . . . , yn)′ when yt is generated by a LL model for
t = 1, . . . , n.
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Exercises

2 Consider the stationary time series model

yt = µt + εt , εt ∼ N (0, σ2ε),

µt+1 = φµt + ηt , ηt ∼ N (0, σ2η),

with autoregressive coefficient |φ| < 1 and variances σ2ε > 0
and σ2η > 0. The disturbances εt and ηs are independent of
each other for all t, s = 1, . . . , n.

• Explore the dynamic properties of yt (mean, variance,
autocovariances, autocorrelations).

• Assume that parameters φ, σ2
ε and σ2

η are given. Develop the
Kalman filter recursions for this model.

• Propose initial values for mean and variance of the
autoregressive component µt , that is, µ1 ∼ N (a1, p1) and
propose values for a1 and p1.
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Assignment

3 Consider the Local Level model (see slides, see DK chapter 2).

• Implement the Kalman filter for the Local Level model in a
computer program.

• Apply the Kalman filter to the Nile data
(Nile data is part of DK book data, see page 11 of these slides)

• Replicate the Figure on page 34 of these slides.
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Appendix – Taylor series
The Taylor expansion for function f (x) around some value x∗ is

f (x) = f (x = x∗)+f ′(x = x∗)[x−x∗]+
1

2
f ”(x = x∗)[x−x∗]2+. . . ,

where

f ′(x) =
∂f (x)

∂x
, f ”(x) =

∂2f (x)

∂x∂x
,

and g(x = x∗) means that we evaluate function g(x) at x = x∗.

Example: consider f (x) = log(1 + x) with f ′(x) = (1 + x)−1 and
f ”(x) = −(1 + x)−2; the expansion of f (x) around x∗ = 0 is

log(1 + x) = 0 + 1 · (x − 0) +
1

2
(−1) · (x − 0)2 + . . . = x − 1

2
x2 + . . .

Notice that f (x = 0) = 0, f ′(x = 0) = 1 and f ”(x = 0) = −1. For
small enough x (when x is close to x∗ = 0), we have

log(1 + x) ≈ x .

Check: log(1.01) = .00995 ≈ 0.01 and log(1.1) = 0.0953 ≈ 0.1.
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Appendix – Percentage growth
Observation at time t is yt and observation at time t − 1 is yt−1.

We define rate rt as the proportional change of yt wrt yt−1, that is

rt =
yt − yt−1

yt−1
⇒ yt − yt−1 = yt−1 · rt ⇒ yt = yt−1 · (1 + rt).

We notice that rt can be positive and negative !

When we take logs of yt = yt−1 · (1 + rt), we obtain

log yt = log yt−1 + log(1 + rt)⇒ log yt − log yt−1 = log(1 + rt)⇒

∆ log yt = log(1 + rt).

Since log(1 + rt) ≈ rt , see previous slide, when rt is small, we have

rt ≈ ∆ log yt .

The percentage growth is defined as 100× rt ≈ 100 ·∆ log yt .
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Appendix – Lag operators and polynomials

• Lag operator Lyt = yt−1, Lτyt = yt−τ , for τ = 1, 2, 3, . . .

• Difference operator ∆yt = (1− L)yt = yt − yt−1

• Autoregressive polynomial φ(L)yt = (1− φL)yt = yt − φyt−1
• Other polynomial θ(L)εt = (1 + θL)εt = εt + θεt−1

• Second difference
∆2yt = ∆(∆yt) = ∆(yt − yt−1) = yt − 2yt−1 + yt−2

• Seasonal difference ∆s yt = yt − yt−s for typical
s = 2, 4, 7, 12, 52

• Seasonal sum operator
S(L)yt = (1 +L+L2 + . . .+Ls−1)yt = yt +yt−1 + . . .+yt−s+1

• Show that ∆S(L) = ∆s .
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