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Day 1 : Local Level Model

Program :

Introduction

Local level model

Statistical dynamic properties
Filtering, smoothing and forecasting.

Literature : J. Durbin and S.J. Koopman (2012), " Time
Series Analysis by State Space Methods”, Second Edition,
Oxford: Oxford University Press. Chapter 2.

Exercises and Assignments.
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Time Series

A time series is a set of observations y;, each one recorded at a
specific time t.

The observations are ordered over time.
We assume to have n observations, t =1,...,n.
Examples of time series are:
e Number of cars sold each year
e Gross Domestic Product of a country
e Stock prices during one day
e Number of firm defaults
Our purpose is to identify and to model the serial or “dynamic”

correlation structure in the time series.

Time series analysis is relevant for a wide variety of tasks including
economic policy, financial decision making and forecasting
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The US Economy
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US Inflation, based on CPI, all products
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US Industrial Production, levels and growth
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US Industrial Production, growth
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US Treasury Bill Rate, 10 years

I
1965

| | | | | | | |
1970 1975 1980 1985 1990 1995 2000 2005

I
2010

|
2015

53



Sources of time series data

Data sources :

e US economics :
http://research.stlouisfed.org/fred2/

e DK book data :
http://wuw.ssfpack.com/files/DK-data.zip

e Financial data : Datastream, Wharton, Yahoo Finance

e Time Series Data Library of Rob Hyndman :
http://datamarket.com/data/list/7q=provider:tsdl
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Time Series
A time series for a single entity is typical denoted by

Yi,--+»Yn A Yt, t:17"'7n7

where t is the time index and n is time series length.

The current value is y;.

The first lagged value, or first lag, is y:—1.

The 7th lagged value, or 7-th lag, is y;— for T =1,2,3,....

The change between period t — 1 and period t is yy — y¢—1.
This is called the first difference denoted by Ay; = y; — yi—1.

In economic time series, we often take the first difference of the
logarithm, or the log-difference, that is

Alogy: = logy: —logy:—1 = log(yt/yt-1),

is a proxy of proportional change, see Appendix.
Percentage change is then 100A log y;.
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Time Series Models: many

Autoregressive models, unit roots
Autoregressive moving average models
Long memory models, fractional integration
. unobserved components time series models ...
Dynamic regression models, error correction models

Vector autoregressive models, cointegration, vector error
correction models

. state space models ...

Regime-switching, Markov-switching, treshold autoregression,
smooth transitions models

Generalized autoregressive conditional heteroskedasticity
(GARCH) models

Autoregressive conditional duration models and related models

. stochastic volatility models ...
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Autoregressive model: AR(1)

The AR(1) model is given by
Ve =+ oye1t+en, e~ NID(0,02),

with three parameter coefficients p, ¢ and o2 with 0 < 0. < 0.
Stationary condition: |¢| < 1.

Statistical dynamic properties:
o Mean E(y:) = /(1 — ¢); in case p =0, E(y¢) =0;
Variance Var(y;) = 02 / (1 — ¢?);
Autocovariance lag 1 is Cov(ys, yi_1) = ¢ o2 / (1 — ¢?);
and for lag 7 = 2,3,4,...is Cov(ys, yi—r) = ¢702 / (1 — ¢?);

T

Autocorrelation lag 7 =1,2,3,...is Corr(ys, yr—r) = ¢".
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Moving Average model: MA(1)

The MA(1) model is given by

yt:/l+6€t71+€t, 5tNNID(0,O'§),

with three parameter coefficients 1, 6 and o2 with 0 < 0. < 0.

Invertibility condition: |0| < 1.
Statistical dynamic properties:

o Mean E(y;) = p; in case p =0, E(y;) =0;
Variance Var(y;) = o2 (1 + 6?);

Autocovariance lag 1 is Cov(y;, yi—1) = 0 02;

... forlag 7 =2,3,4,...is Cov(ys, yt—r) = 0;
Autocorrelation lag 1 is Corr(ys, y:—1) = 60 / (1 + 62).
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Classical Decomposition

A basic model for representing a time series is the additive model
yt::ut—i_’yt_‘_wt—i_gt: t:]-v"':na
also known as the Classical Decomposition:

¥+ = observation,

pt = slowly changing component (trend),
~t = periodic component (seasonal),

1y = stationary component (cycle, ARMA),

g+ = irregular component (disturbance).

It is an Unobserved Components time series model, when
the components are modelled as dynamic stochastic processes.
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Local Level Model

e Component is stochastic or deterministic function of time:
e Deterministic, eg: y; = u(t) + &; with e, ~ N'ID(0, 02)
e Stochastic, eg: Local Level model:

e Local level model :

yt:,ut_‘_gt» EtNNID(O,Ug)
Heg1 = Mr + N, ne ~ NZID(0, U%)

e The disturbances ¢, 75 are independent for all s, t;
e The model is incomplete without initial specification for py.
e The time series processes for ; and y; are nonstationary.
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Local Level Model

The local level model or random walk plus noise model :

Yt = pt + €, ee ~ NID(0,02)
Pl = fir + N, ne ~ NID(0,07)

The level p+ and irregular € are unobserved;

Parameters ag and a% are unknown;

We still need to define uy;

Trivial special cases:
e 02=0 = y; ~NID(p1,02) (IID constant level);
¢ 02=0 = yr1=yi+n: (random walk);

Local Level model is basic illustration of state space model.
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Simulated Local Level data
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Simulated Local Level data
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Simulated Local Level data
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Simulated Local Level data
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Properties of Local Level model

yt:ut+€t, Et NNID(O,O’?),
Hty1 = ft + N, Mt NNID(O,C»'%),
e First difference is stationary:
Ayt = Dpe + Der =ne—1 + ¢ — €41
e Dynamic properties of Ay;:

E(Ayt) = 0,
v = E(Ay:Ay:) = 0727 + 202,
n =E(AyAyr 1) = —02,

vr =E(Ay:Ay:—-) =0 for 7 > 2.
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Properties of Local Level model
Define q as the signal-to-noise ratio : q = 0727 /o?
The theoretical ACF of Ay; is
_ —0? _ 1
02+ 202 q+2’
pr =0, T > 2.

P1

It implies that

-1/2<p1 <0
The local level model implies that Ay; ~ MA(1).
Hence y; ~ is ARIMA(O, 1,1). We have
ij_— = gt + eft_l, gt ~ NID(O, 0'2).
This implied MA(1) has ACF p; = 6 /(1 + 6?), and hence a
restricted parameter space for 0 : —1 < 8 < 0.
To express 6 as function of g, solve equality for p1's:

1
927(\/q2+4q—2—q).

2
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The

Local Level Model
Local Level model is given by

Yt = Wt + €ty Pyl = pe + N, t=1,...,n

The parameters o2 and 0727 are unknown and need to be
estimated, typically via maximum likelihood estimation;
MLE for this class of models is discussed in next session.
When we treat parameters o2 and 072] as known, how to
"estimate” the unobserved series p1, ..., tn ?

This “estimation” is referred to as signal extraction.

We base this “estimation” on conditional expectations.
Signal extraction is the recursive evaluation of conditional
means and variances of the unobserved u; for t =1,...,n.
It is known as the Kalman filter;

Next we provide the derivation only for the Local Level model.

In our next session we discuss the Kalman filter for the
general linear state space model.

26
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Signal extraction: conditional expectation
Consider two random variable x and y that are normally distributed

X~ N(MX70§)7 y ~ N(/’Lyvo_)z/)a (COV(XJ/) = ny-

Assume that we do not know anything about x but we have
collected an observation for y.
The conditional expectation and variance are given by

E(xly) = px + 0xy(y = py) /0y, Var(xly) = 0% — o3, / 0y,
Verify these results and make sure you can derive these results
from basic principles. We have

x|y ~ f(xly) = N (uxy: 02,5

where 11, = E(x|y) and o)%‘y = Var(xly).
Notice that p,j, is a function of y but U)z(‘y is not.

Notice that when o4, = 0, E(x|y) = ux and Var(x|y) = o2.
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Local Level Model: signal extraction
Local Level model :

ve=peten, e~ N(0,02), pryr=pe+ne,  me~N(0,07).

Assume we have collected observations for y1,...,y;_1 and that
the conditional density f(u¢|y1,-..,yt—1) is normal with known
mean a; and known variance p;, we have

pelyrs oo yem1 ~ f(pelya, - yee1) = N(ae, pe).

Next we collect an observation for y;, the conditional densities of
interest are

f()ut|y17'-'7yt)7 f(#t+1|}/1a---a)/t)~
These conditional densities turn out to be normal as well
fluelyr, - y) = N(at|t7 pt|t)a flperilys, o ye) = N(art1, pes)-

Can we express (ay¢, py¢) in terms of (at, pr) 7 Also (art1, pri1) ?
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Local Level Model: signal extraction
Local Level model :

ye =peter, e ~N(0,02), fier1 = pie + 1, ntNN(OaU%)-

Notation: Ys = {y1,...,ys}, fors=t—1,s=tand s =n.

Define prediction error vy = y; — ar with a; = E(u¢| Ye—1), with
properties such as

E(ve|Yi—1) = E(ue + ¢ — a¢| Ye—1) = ar — ar = 0,
Var(ve|Ye—1) = Var(pus — ar + e¢| Yeo1) = pt+0§,
(Vt’,ut, Yio 1) Mt — e,
Var(ve|pe, Yi—1) = 02

We have E(e;) = 0 but verify that E(e¢|Y:—1) = 0.
When y; is observed, it becomes fixed, just as yi,..., V:i—1.

But also v; is then fixed, it is non-stochastic !!
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Local Level Model: signal extraction

Next, we aim to obtain an expression for f(ut|yi,...,yt), with an
eye on updating. Local Level model :

yi=prter, e~N(0,02), peyr=pe+n,  ne~N(O 7).

Consider filtered estimate f(u¢|y1, ..., yt) = f(pe|ve, Ye—1) since
Ve = ¥t — ar, where a; = E(u¢|Y¢—1), are all fixed. We have

f(,uft‘vta Yt—l) = f(Mh Vt‘ Yt—l)/f(Vt’Yt—l)
= f(ﬂt|yt—1)f(Vt‘Mt7 Yt—l)/f(vt‘ Yt—1)7

where f()'s are normals and f(ji|Y:) = const. x exp ( — 3Q¢) with
Qt = (e — ac)?/pe + (ve — e + ae)? /02 — P [ (pe + 02).

After some algebra, we have

Pt+02 Pt Vvt 2
Q: = S (pe — ar — :
' pt 02 (t ' pt+a§)
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Local Level Model: signal extraction
Next we consolidate these results for the Local Level model :

Yt = pet+ €y, 5tNN(07052)a P+l = Mt + Mg, UtNN(OaU%)-

We are interested in the filtered signal density

1
f(pe|Y:) = const. x exp ( — EQt)’

it pt + o2 Pt Ve \2
Qe = ptags( t—dt — pt+03) .
It implies that
fuelYe) = N(at|ta Pt\t)»
with
arr = ar + ke vy, Pt|t:kt%2a ke = Pe 5
pt + 0
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Local Level Model: signal extraction
Local Level model :

yi=peter, e~N(0,02), per1=petne  ne~ N(O,ff%)-

In addition, we are typically interested in the predicted signal
density

flper1|Ye) = N(3t+17 Pt+1)

where
arr1 = E(per1] Ye) = E(ue + 06l Ye) = agpe,
per1 = Var(ue + ne| Ye) = pyje + 07

We have obtained the updating equations
Pt

2 2
arp1 = ar + ke vi, Pt+1 = ke og + oy, ki = 5

 pr+0?

This is the celebrated Kalman filter for the Local Level model.
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Kalman filter for the Local Level Model

Local Level model :

Yt = pe +Et, 5tNN(070§)7 Ht+1 = ft + ¢, UtNN(OaU%)-

The Kalman filter equations are given by

Vi = Yt — ay, Var(vy) :pt+0§,
ke = pe [ (pt + 02),
att = ar + kevy,
Ptjt = kt Ug,
At+1 = ity

2
Pt+1 = Ptt + 0y,

for t =1,..., T with initialisation ...
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Kalman filter for the Local Level Model

Local Level model :

Yo = pttEe, Er N(Oaag)v M+l = e+t Ne ™~ N(Oaff%)-

The Kalman filter equations are given by

Ve = yr — a, Var(v) = p: + 02,
ke = pe / (pe + 02),
att = ar + kevy,
Ptjt = kt Ug,
At+1 = ity
Pt+1 = Pt|t + 0727:

for t = 1,..., T with initialisation ... a1 = 0 and p; = 02 x 10".
The equations are recursions, we update when new y; is observed.
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Signal Extraction for Nile Data: filtered estimate of level
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Observation weights

We show next that a;; is a weighted sum of past observations :

e = ar + keve = ar + ke(yr — ar)
= keyr + (1 — ke)ar
= keye + (1 — ke)ae—1 + (1 — ke)ke—1(ye—1 — ae—1)
= keyr + ke—1(1 — ke)ye—1 + (1 — ke)(1 — ke—1)ar—1

t—1 j—1
= keyr + Z Wt jYt—j, Wej = ke—j H (1 —ke—m).
j=1 m=0

Since 0 < kt < 1, the weights are decaying in j.
A larger j implies that y;_; is more remote from t.
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Signal Extraction for Nile Data: observation weights
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The

Local Linear Trend Model

LLT model extends the LL model with a slope:
yt:/fbt—i_gta Et NNIID(O,O'&?),
pe+1 = Be + pe + 0, Mt NNID(OJ% )
Bev1 = P + &, §e ~ NZD(0,0’E).

All disturbances are independent at all lags and leads;

Initial distributions (1, 11 need to specified;

If ag = 0 the trend is a random walk with constant drift G1;
(For B1 = 0 the model reduces to a LL model.)

If additionally 0,27 = 0 the trend is a straight line with slope (1
and intercept pq;

If O'g > 0 but O'% = 0, the trend is a smooth curve, or an
Integrated Random Walk;
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Trend and Slope in LLT Model
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Trend and Slope in Integrated Random Walk Model
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Local Linear Trend Model

The LLT model can be represented as the ARIMA(0,2,2)
model, please verify this;

The estimation methodology is the same as for the LL model;
It requires the general state space methods;

LLT provides a model for Holt-Winters forecasting;

The smooth trend model is with 02 =0;

Smoother trend models can be obtained by higher-order
Random Walk processes:

Adﬂt =Nt

and with y; = u; + ;.
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Seasonal Effects

We have seen specifications for ¢ in the basic model

Ye = ft + vt + Er

Now we will consider the seasonal term ;. Let s denote the
number of ‘seasons’ in the data:

e s = 12 for monthly data,
e s = 4 for quarterly data,

e s =7 for daily data when modelling a weekly pattern.
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Dummy Seasonal

The simplest way to model seasonal effects is by using dummy
variables. The effect summed over the seasons should equal zero:

s—1
Yt+1 = — Z’Yrﬂ—j-
J=1

To allow the pattern to change over time, we introduce a new
disturbance term:

s—1

Y41 = — Z’Ytﬂ—j + we, wr ~ NZID(0, ai).
j=1

The expectation of the sum of the seasonal effects is zero.
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Trigonometric Seasonal
Defining j: as the effect of season j at time t, an alternative

specification for the seasonal pattern is

[s/2]

Yt = Z Vjts
=1

Vj,t4+1 = Vjr COS Aj + ’th sin \j + wjt,
’th+1 = —yjesin A —i—’yjtcos)\ +w Jt,
wjt; NNID(O g ) )\J = 277]/5

e Without the disturbance, the trigonometric specification is
identical to the deterministic dummy specification.

e The autocorrelation in the trigonometric specification lasts
through more lags: changes occur in a smoother way;
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Textbooks

A.C.Harvey (1989). Forecasting, Structural Time Series
Models and the Kalman Filter. Cambridge University Press

G.Kitagawa & W.Gersch (1996). Smoothness Priors Analysis
of Time Series. Springer-Verlag

J.Harrison & M.West (1997). Bayesian Forecasting and
Dynamic Models. Springer-Verlag

J.Durbin & S.J.Koopman (2012). Time Series Analysis by
State Space Methods, Second Edition. Oxford University
Press

J.J.F.Commandeur & S.J.Koopman (2007). An Introduction
to State Space Time Series Analysis. Oxford University Press
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Exercises

1 Consider the Local Level model (see slides, see DK chapter 2).

e Reduced form is ARIMA(0,1,1) process. Derive the
relationship between signal-to-noise ratio g of LL model and
the 0 coefficient of the ARIMA model;

e Derive the reduced form in the case 7; = ,/ge; and notice the
difference in the general case.

e Give the elements of the mean vector and variance matrix of
y=01,...,¥n) when y; is generated by a LL model for
t=1,...,n
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Exercises

2 Consider the stationary time series model

Yt = Mt Tt €, et ~ N(0,02),
Pt+1 = Qpue + e, ne ~ N (0, 072,)7

with autoregressive coefficient |¢| < 1 and variances 02 > 0
and 0727 > 0. The disturbances €; and 75 are independent of
each other for all t,s =1,...,n.

e Explore the dynamic properties of y; (mean, variance,
autocovariances, autocorrelations).

e Assume that parameters ¢, 02 and o7 are given. Develop the
Kalman filter recursions for this model.

e Propose initial values for mean and variance of the
autoregressive component py;, that is, u; ~ N (a1, p1) and
propose values for a; and p;.
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Assignment

3 Consider the Local Level model (see slides, see DK chapter 2).

e Implement the Kalman filter for the Local Level model in a

computer program.
e Apply the Kalman filter to the Nile data
(Nile data is part of DK book data, see page 11 of these slides)

o Replicate the Figure on page 34 of these slides.
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Appendix — Taylor series
The Taylor expansion for function f(x) around some value x* is
) = £ = x4/ = 3 x o 7 = XY Pt
here , Of (x) " 0?f(x)
Fia) = ox '’ F00) = OxOx '

and g(x = x*) means that we evaluate function g(x) at x = x*.

Example: consider f(x) = log(1 + x) with f'(x) = (1 + x)~! and
" (x) = —(1 + x)~2; the expansion of f(x) around x* = 0 is

1 1
Iog(1+x):0—|—1-(X—O)+§(—1)-(x—0)2+...:x—Exz—i—...

Notice that f(x =0) =0, f'(x =0) =1 and f"(x = 0) = —1. For
small enough x (when x is close to x* = 0), we have

log(1+ x) ~ x.
Check: log(1.01) = .00995 ~ 0.01 and log(1.1) = 0.0953 ~ 0.1.
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Appendix — Percentage growth

Observation at time t is y; and observation at time t — 1 is y;_1.
We define rate r; as the proportional change of y; wrt y;_1, that is

_ Yt — Yi-1
Yt—1

I SYe—Ye1=Ye-1 = Ye = ye—1- (1 + rt).

We notice that r; can be positive and negative !
When we take logs of y; = y;—1 - (1 + r+), we obtain
logy: = logyt—1 + log(1 + rt) = logy: — log yr—1 = log(1 + rt) =

Alogy: = log(1 + rt).

Since log(1 + r¢) & r¢, see previous slide, when r; is small, we have
re = Alog y;.

The percentage growth is defined as 100 x r; = 100 - A log y;.
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Appendix — Lag operators and polynomials

Lag operator Ly; = y;—1, L'V = y4—r, for 7 =1,2,3, ...
Difference operator Ay = (1 — L)yr = yr — yr—1
Autoregressive polynomial ¢(L)y: = (1 — ¢L)y: = yr — dyr—1
Other polynomial O(L)e; = (1 + 0L)ey = ¢ + 041

Second difference

D%y = A(Aye) = Alye — Ye-1) = Yt — 2¥e-1 + Ye-2
Seasonal difference Ag y: = yr — y+—s for typical
s=2,4,7,12,52

Seasonal sum operator

S(L)ye=A+L+L24. AL Nye = yetye1+. . +yesi
Show that A S(L) = As.
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