Local Level Model

Siem Jan Koopman

http://sjkoopman.net
s.j.koopman@vu.nl
Department of Econometrics, Vrije Universiteit Amsterdam
CREATES, Aarhus University

October 2016: CREATES, Aarhus University

Day 1: Local Level Model

Program:

- Introduction
- Local level model
- Statistical dynamic properties
- Filtering, smoothing and forecasting.
- Literature: J. Durbin and S.J. Koopman (2012), "Time Series Analysis by State Space Methods", Second Edition, Oxford: Oxford University Press. Chapter 2.
- Exercises and Assignments.

Time Series

A time series is a set of observations y_t , each one recorded at a specific time t.

The observations are ordered over time. We assume to have n observations, t = 1, ..., n.

Examples of time series are:

- Number of cars sold each year
- Gross Domestic Product of a country
- Stock prices during one day
- Number of firm defaults

Our purpose is to identify and to model the serial or "dynamic" correlation structure in the time series.

Time series analysis is relevant for a wide variety of tasks including economic policy, financial decision making and forecasting

The US Economy

US Inflation, based on CPI, all products

US Gross Domestic Product (GDP), percentage growth

US Industrial Production, levels and growth

US Industrial Production, growth

US Treasury Bill Rate, 10 years

Sources of time series data

Data sources:

- US economics: http://research.stlouisfed.org/fred2/
- DK book data: http://www.ssfpack.com/files/DK-data.zip
- Financial data: Datastream, Wharton, Yahoo Finance
- Time Series Data Library of Rob Hyndman: http://datamarket.com/data/list/?q=provider:tsdl

Example: Nile data, yearly volumes

Time Series

A time series for a single entity is typical denoted by

$$y_1,\ldots,y_n \Leftrightarrow y_t, \qquad t=1,\ldots,n,$$

where t is the time index and n is time series length.

The current value is y_t .

The first lagged value, or first lag, is y_{t-1} .

The auth lagged value, or au-th lag, is $y_{t- au}$ for $au=1,2,3,\ldots$

The change between period t-1 and period t is $y_t - y_{t-1}$.

This is called the first difference denoted by $\Delta y_t = y_t - y_{t-1}$.

In economic time series, we often take the first difference of the logarithm, or the log-difference, that is

$$\Delta \log y_t = \log y_t - \log y_{t-1} = \log(y_t/y_{t-1}),$$

is a proxy of proportional change, see Appendix.

Percentage change is then $100\Delta \log y_t$.

Time Series Models: many

- Autoregressive models, unit roots
- Autoregressive moving average models
- Long memory models, fractional integration
- ... unobserved components time series models ...
- Dynamic regression models, error correction models
- Vector autoregressive models, cointegration, vector error correction models
- ... state space models ...
- Regime-switching, Markov-switching, treshold autoregression, smooth transitions models
- Generalized autoregressive conditional heteroskedasticity (GARCH) models
- Autoregressive conditional duration models and related models
- ... stochastic volatility models ...

Autoregressive model: AR(1)

The AR(1) model is given by

$$y_t = \mu + \phi y_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2),$$

with three parameter coefficients μ , ϕ and σ_{ε}^2 with $0 < \sigma_{\varepsilon} < \infty$.

Stationary condition: $|\phi| < 1$.

Statistical dynamic properties:

- Mean $\mathbb{E}(y_t) = \mu / (1 \phi)$; in case $\mu = 0$, $\mathbb{E}(y_t) = 0$;
- Variance $Var(y_t) = \sigma^2 / (1 \phi^2)$;
- Autocovariance lag 1 is $\mathbb{C}\text{ov}(y_t, y_{t-1}) = \phi \sigma^2 / (1 \phi^2)$;
- and for lag $\tau = 2, 3, 4, ...$ is $\mathbb{C}\text{ov}(y_t, y_{t-\tau}) = \phi^{\tau} \sigma^2 / (1 \phi^2)$;
- Autocorrelation lag $\tau=1,2,3,\ldots$ is $\mathbb{C}\mathrm{orr}(y_t,y_{t-\tau})=\phi^{\tau}$.

Moving Average model: MA(1)

The MA(1) model is given by

$$y_t = \mu + \theta \varepsilon_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2),$$

with three parameter coefficients μ , θ and σ_{ε}^2 with $0 < \sigma_{\varepsilon} < \infty$. Invertibility condition: $|\theta| < 1$.

Statistical dynamic properties:

- Mean $\mathbb{E}(y_t) = \mu$; in case $\mu = 0$, $\mathbb{E}(y_t) = 0$;
- Variance $Var(y_t) = \sigma^2 (1 + \theta^2)$;
- Autocovariance lag 1 is $\mathbb{C}\text{ov}(y_t, y_{t-1}) = \theta \sigma^2$;
- ... for lag $\tau = 2, 3, 4, ...$ is $\mathbb{C}ov(y_t, y_{t-\tau}) = 0$;
- Autocorrelation lag 1 is \mathbb{C} orr $(y_t, y_{t-1}) = \theta / (1 + \theta^2)$.

Example: Nile in levels and Nile in differences

Classical Decomposition

A basic model for representing a time series is the additive model

$$y_t = \mu_t + \gamma_t + \psi_t + \varepsilon_t, \qquad t = 1, \dots, n,$$

also known as the Classical Decomposition:

 $y_t =$ observation, $\mu_t =$ slowly changing component (trend), $\gamma_t =$ periodic component (seasonal), $\psi_t =$ stationary component (cycle, ARMA), $\varepsilon_t =$ irregular component (disturbance).

It is an *Unobserved Components* time series model, when the components are modelled as dynamic stochastic processes.

Local Level Model

- Component is stochastic or deterministic function of time:
 - Deterministic, eg: $y_t = \mu(t) + \varepsilon_t$ with $\varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2)$
 - Stochastic, eg: Local Level model:
- Local level model :

$$y_t = \mu_t + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2)$$

$$\mu_{t+1} = \mu_t + \eta_t, \qquad \eta_t \sim \mathcal{NID}(0, \sigma_{\eta}^2)$$

- The disturbances ε_t , η_s are independent for all s, t;
- The model is incomplete without initial specification for μ_1 .
- The time series processes for μ_t and y_t are nonstationary.

Local Level Model

The local level model or random walk plus noise model :

$$\begin{aligned} y_t &= \mu_t + \varepsilon_t, & \varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2) \\ \mu_{t+1} &= \mu_t + \eta_t, & \eta_t \sim \mathcal{NID}(0, \sigma_{\eta}^2) \end{aligned}$$

- The level μ_t and irregular ε_t are unobserved;
- Parameters σ_{ε}^2 and σ_{η}^2 are unknown;
- We still need to define μ₁;
- Trivial special cases:
 - $\sigma_{\eta}^2 = 0 \implies y_t \sim \mathcal{NID}(\mu_1, \sigma_{\varepsilon}^2)$ (IID constant level);
 - $\sigma_{\varepsilon}^2 = 0 \implies y_{t+1} = y_t + \eta_t$ (random walk);
- Local Level model is basic illustration of state space model.

Properties of Local Level model

$$y_t = \mu_t + \varepsilon_t,$$
 $\varepsilon_t \sim \mathcal{NID}(0, \sigma_{\varepsilon}^2),$
 $\mu_{t+1} = \mu_t + \eta_t,$ $\eta_t \sim \mathcal{NID}(0, \sigma_{\eta}^2),$

First difference is stationary:

$$\Delta y_t = \Delta \mu_t + \Delta \varepsilon_t = \eta_{t-1} + \varepsilon_t - \varepsilon_{t-1}.$$

• Dynamic properties of Δy_t :

$$\begin{split} \mathbb{E}(\Delta y_t) &= 0, \\ \gamma_0 &= \mathbb{E}(\Delta y_t \Delta y_t) = \sigma_\eta^2 + 2\sigma_\varepsilon^2, \\ \gamma_1 &= \mathbb{E}(\Delta y_t \Delta y_{t-1}) = -\sigma_\varepsilon^2, \\ \gamma_\tau &= \mathbb{E}(\Delta y_t \Delta y_{t-\tau}) = 0 \quad \text{for } \tau \geq 2. \end{split}$$

Properties of Local Level model

- Define q as the signal-to-noise ratio : $q=\sigma_{\eta}^2\,/\,\sigma_{\varepsilon}^2$
- The theoretical ACF of Δy_t is

$$ho_1 = rac{-\sigma_{arepsilon}^2}{\sigma_{\eta}^2 + 2\sigma_{arepsilon}^2} = -rac{1}{q+2}, \
ho_{ au} = 0, \qquad au \geq 2.$$

It implies that

$$-1/2 \le \rho_1 \le 0$$

- The local level model implies that $\Delta y_t \sim \text{MA}(1)$. Hence $y_t \sim \text{is ARIMA}(0,1,1)$. We have $\Delta y_t = \xi_t + \theta \xi_{t-1}, \quad \xi_t \sim \mathcal{NID}(0,\sigma^2)$.
- This implied MA(1) has ACF $\rho_1 = \theta / (1 + \theta^2)$, and hence a restricted parameter space for $\theta : -1 < \theta < 0$.
- To express θ as function of q, solve equality for ρ_1 's:

$$heta=rac{1}{2}\left(\sqrt{q^2+4q}-2-q
ight).$$

Local Level Model

The Local Level model is given by

$$y_t = \mu_t + \varepsilon_t, \qquad \mu_{t+1} = \mu_t + \eta_t, \qquad t = 1, \dots, n.$$

- The parameters σ_{ε}^2 and σ_{η}^2 are unknown and need to be estimated, typically via maximum likelihood estimation;
- MLE for this class of models is discussed in next session.
- When we treat parameters σ_{ε}^2 and σ_{η}^2 as known, how to "estimate" the unobserved series μ_1, \ldots, μ_n ?
- This "estimation" is referred to as signal extraction.
- We base this "estimation" on conditional expectations.
- Signal extraction is the recursive evaluation of conditional means and variances of the unobserved μ_t for t = 1,..., n.
- It is known as the Kalman filter;
- Next we provide the derivation only for the Local Level model.
- In our next session we discuss the Kalman filter for the general linear state space model.

Signal extraction: conditional expectation

Consider two random variable x and y that are normally distributed

$$x \sim \mathcal{N}(\mu_x, \sigma_x^2), \qquad y \sim \mathcal{N}(\mu_y, \sigma_y^2), \qquad \mathbb{C}\text{ov}(x, y) = \sigma_{xy}.$$

Assume that we do not know anything about x but we have collected an observation for y.

The conditional expectation and variance are given by

$$\mathbb{E}(x|y) = \mu_x + \sigma_{xy}(y - \mu_y) / \sigma_y^2, \qquad \mathbb{V}\operatorname{ar}(x|y) = \sigma_x^2 - \sigma_{xy}^2 / \sigma_y^2.$$

Verify these results and make sure you can derive these results from basic principles. We have

$$x|y \sim f(x|y) \equiv \mathcal{N}(\mu_{x|y}, \sigma_{x|y}^2),$$

where $\mu_{x|y} \equiv \mathbb{E}(x|y)$ and $\sigma_{x|y}^2 \equiv \mathbb{V}ar(x|y)$.

Notice that $\mu_{x|y}$ is a function of y but $\sigma_{x|y}^2$ is not.

Notice that when $\sigma_{xy}=0$, $\mathbb{E}(x|y)=\mu_x$ and $\mathbb{V}\mathrm{ar}(x|y)=\sigma_x^2$.

Local Level model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

Assume we have collected observations for y_1, \ldots, y_{t-1} and that the conditional density $f(\mu_t|y_1, \ldots, y_{t-1})$ is normal with known mean a_t and known variance p_t , we have

$$\mu_t|y_1,\ldots,y_{t-1}\sim f(\mu_t|y_1,\ldots,y_{t-1})\equiv \mathcal{N}(a_t,p_t).$$

Next we collect an observation for y_t , the conditional densities of interest are

$$f(\mu_t|y_1,\ldots,y_t), \qquad f(\mu_{t+1}|y_1,\ldots,y_t).$$

These conditional densities turn out to be normal as well

$$f(\mu_t|y_1,\ldots,y_t) \equiv \mathcal{N}(a_{t|t},p_{t|t}), \quad f(\mu_{t+1}|y_1,\ldots,y_t) \equiv \mathcal{N}(a_{t+1},p_{t+1}).$$

Can we express $(a_{t|t}, p_{t|t})$ in terms of (a_t, p_t) ? Also (a_{t+1}, p_{t+1}) ?

Local Level model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

Notation: $Y_s = \{y_1, \dots, y_s\}$, for s = t - 1, s = t and s = n.

Define prediction error $v_t = y_t - a_t$ with $a_t = \mathbb{E}(\mu_t | Y_{t-1})$, with properties such as

$$\begin{split} \mathbb{E}(v_t|Y_{t-1}) &= \mathbb{E}(\mu_t + \varepsilon_t - a_t|Y_{t-1}) = a_t - a_t = 0, \\ \mathbb{V}\mathsf{ar}(v_t|Y_{t-1}) &= \mathbb{V}\mathsf{ar}(\mu_t - a_t + \varepsilon_t|Y_{t-1}) = p_t + \sigma_\varepsilon^2, \\ \mathbb{E}(v_t|\mu_t, Y_{t-1}) &= \mu_t - a_t, \\ \mathbb{V}\mathsf{ar}(v_t|\mu_t, Y_{t-1}) &= \sigma_\varepsilon^2, \end{split}$$

We have $\mathbb{E}(\varepsilon_t) = 0$ but verify that $\mathbb{E}(\varepsilon_t|Y_{t-1}) = 0$. When y_t is observed, it becomes fixed, just as y_1, \ldots, y_{t-1} . But also v_t is then fixed, it is non-stochastic!!

Next, we aim to obtain an expression for $f(\mu_t|y_1,\ldots,y_t)$, with an eye on updating. Local Level model :

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

Consider filtered estimate $f(\mu_t|y_1,\ldots,y_t) \equiv f(\mu_t|v_t,Y_{t-1})$ since $v_t=y_t-a_t$, where $a_t=\mathbb{E}(\mu_t|Y_{t-1})$, are all fixed. We have

$$f(\mu_t|v_t, Y_{t-1}) = f(\mu_t, v_t|Y_{t-1})/f(v_t|Y_{t-1})$$

= $f(\mu_t|Y_{t-1})f(v_t|\mu_t, Y_{t-1})/f(v_t|Y_{t-1}),$

where f()'s are normals and $f(\mu_t|Y_t)=\mathrm{const.} imes \exp\left(-\frac{1}{2}Q_t\right)$ with

$$Q_t = (\mu_t - a_t)^2/p_t + (v_t - \mu_t + a_t)^2/\sigma_\varepsilon^2 - v_t^2/(p_t + \sigma_\varepsilon^2).$$

After some algebra, we have

$$Q_t = \frac{p_t + \sigma_{\varepsilon}^2}{p_t \, \sigma_{\varepsilon}^2} \left(\mu_t - a_t - \frac{p_t \, v_t}{p_t + \sigma_{\varepsilon}^2} \right)^2.$$

Next we consolidate these results for the Local Level model :

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

We are interested in the filtered signal density

$$f(\mu_t|Y_t) = \text{const.} \times \exp\left(-\frac{1}{2}Q_t\right),$$

with

$$Q_t = \frac{p_t + \sigma_{\varepsilon}^2}{p_t \, \sigma_{\varepsilon}^2} \left(\mu_t - a_t - \frac{p_t \, v_t}{p_t + \sigma_{\varepsilon}^2} \right)^2.$$

It implies that

$$f(\mu_t|Y_t) \equiv \mathcal{N}(a_{t|t}, p_{t|t}),$$

with

$$a_{t|t} = a_t + k_t v_t, \qquad p_{t|t} = k_t \sigma_{\varepsilon}^2, \qquad k_t = \frac{p_t}{p_t + \sigma_{\varepsilon}^2}.$$

Local Level model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

In addition, we are typically interested in the *predicted* signal density

$$f(\mu_{t+1}|Y_t) \equiv \mathcal{N}(a_{t+1}, p_{t+1}),$$

where

$$\begin{split} &a_{t+1} = \mathbb{E}(\mu_{t+1}|Y_t) = \mathbb{E}(\mu_t + \eta_t|Y_t) = a_{t|t}, \\ &p_{t+1} = \mathbb{V}\mathsf{ar}(\mu_t + \eta_t|Y_t) = p_{t|t} + \sigma_\eta^2. \end{split}$$

We have obtained the updating equations

$$a_{t+1} = a_t + k_t v_t, \qquad p_{t+1} = k_t \sigma_{\varepsilon}^2 + \sigma_{\eta}^2, \qquad k_t = \frac{p_t}{p_t + \sigma_{\varepsilon}^2}.$$

This is the celebrated Kalman filter for the Local Level model.

Kalman filter for the Local Level Model

Local Level model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

The Kalman filter equations are given by

$$egin{aligned} v_t &= y_t - a_t, & \mathbb{V}\mathrm{ar}(v_t) &= p_t + \sigma_{arepsilon}^2, \ k_t &= p_t \, / \, (p_t + \sigma_{arepsilon}^2), \ a_{t|t} &= a_t + k_t v_t, \ p_{t|t} &= k_t \, \sigma_{arepsilon}^2, \ a_{t+1} &= a_{t|t}, \ p_{t+1} &= p_{t|t} + \sigma_{\eta}^2, \end{aligned}$$

for t = 1, ..., T with initialisation ...

Kalman filter for the Local Level Model

Local Level model:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2), \quad \mu_{t+1} = \mu_t + \eta_t, \quad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2).$$

The Kalman filter equations are given by

$$egin{aligned} v_t &= y_t - a_t, & \mathbb{V}ar(v_t) &= p_t + \sigma_{arepsilon}^2, \ k_t &= p_t \, / \, (p_t + \sigma_{arepsilon}^2), \ a_{t|t} &= a_t + k_t v_t, \ p_{t|t} &= k_t \, \sigma_{arepsilon}^2, \ a_{t+1} &= a_{t|t}, \ p_{t+1} &= p_{t|t} + \sigma_{\eta}^2, \end{aligned}$$

for $t=1,\ldots,T$ with initialisation ... $a_1=0$ and $p_1=\sigma_\varepsilon^2\times 10^7$. The equations are recursions, we update when new y_t is observed.

Signal Extraction for Nile Data: filtered estimate of level

Observation weights

We show next that $a_{t|t}$ is a weighted sum of past observations :

$$\begin{aligned} a_{t|t} &= a_t + k_t v_t &= a_t + k_t (y_t - a_t) \\ &= k_t y_t + (1 - k_t) a_t \\ &= k_t y_t + (1 - k_t) a_{t-1} + (1 - k_t) k_{t-1} (y_{t-1} - a_{t-1}) \\ &= k_t y_t + k_{t-1} (1 - k_t) y_{t-1} + (1 - k_t) (1 - k_{t-1}) a_{t-1} \\ &\vdots \\ &= k_t y_t + \sum_{j=1}^{t-1} w_{t,j} y_{t-j}, \qquad w_{t,j} &= k_{t-j} \prod_{m=0}^{j-1} (1 - k_{t-m}). \end{aligned}$$

Since $0 < k_t < 1$, the weights are decaying in j. A larger j implies that y_{t-j} is more remote from t.

Signal Extraction for Nile Data: observation weights

Local Linear Trend Model

The LLT model extends the LL model with a slope:

$$y_{t} = \mu_{t} + \varepsilon_{t}, \qquad \varepsilon_{t} \sim \mathcal{NID}(0, \sigma_{\varepsilon}^{2}),$$

$$\mu_{t+1} = \beta_{t} + \mu_{t} + \eta_{t}, \qquad \eta_{t} \sim \mathcal{NID}(0, \sigma_{\eta}^{2}),$$

$$\beta_{t+1} = \beta_{t} + \xi_{t}, \qquad \xi_{t} \sim \mathcal{NID}(0, \sigma_{\varepsilon}^{2}).$$

- All disturbances are independent at all lags and leads;
- Initial distributions β_1, μ_1 need to specified;
- If $\sigma_{\xi}^2 = 0$ the trend is a random walk with constant drift β_1 ; (For $\beta_1 = 0$ the model reduces to a LL model.)
- If additionally $\sigma_{\eta}^2 = 0$ the trend is a straight line with slope β_1 and intercept μ_1 ;
- If $\sigma_{\xi}^2 > 0$ but $\sigma_{\eta}^2 = 0$, the trend is a smooth curve, or an Integrated Random Walk;

Trend and Slope in LLT Model

Trend and Slope in Integrated Random Walk Model

Local Linear Trend Model

- The LLT model can be represented as the ARIMA(0,2,2) model, please verify this;
- The estimation methodology is the same as for the LL model;
- It requires the general state space methods;
- LLT provides a model for Holt-Winters forecasting;
- The smooth trend model is with $\sigma_{\zeta}^2=0$;
- Smoother trend models can be obtained by higher-order Random Walk processes:

$$\Delta^d \mu_t = \eta_t$$

and with $y_t = \mu_t + \varepsilon_t$.

Seasonal Effects

We have seen specifications for μ_t in the basic model

$$y_t = \mu_t + \gamma_t + \varepsilon_t.$$

Now we will consider the seasonal term γ_t . Let s denote the number of 'seasons' in the data:

- s = 12 for monthly data,
- s = 4 for quarterly data,
- s = 7 for daily data when modelling a weekly pattern.

Dummy Seasonal

The simplest way to model seasonal effects is by using dummy variables. The effect summed over the seasons should equal zero:

$$\gamma_{t+1} = -\sum_{j=1}^{s-1} \gamma_{t+1-j}.$$

To allow the pattern to change over time, we introduce a new disturbance term:

$$\gamma_{t+1} = -\sum_{i=1}^{s-1} \gamma_{t+1-j} + \omega_t, \qquad \omega_t \sim \mathcal{NID}(0, \sigma_\omega^2).$$

The expectation of the sum of the seasonal effects is zero.

Trigonometric Seasonal

Defining γ_{jt} as the effect of season j at time t, an alternative specification for the seasonal pattern is

$$\begin{split} \gamma_t &= \sum_{j=1}^{[s/2]} \gamma_{jt}, \\ \gamma_{j,t+1} &= \gamma_{jt} \cos \lambda_j + \gamma_{jt}^* \sin \lambda_j + \omega_{jt}, \\ \gamma_{j,t+1}^* &= -\gamma_{jt} \sin \lambda_j + \gamma_{jt}^* \cos \lambda_j + \omega_{jt}^*, \\ \omega_{jt}, \omega_{jt}^* &\sim \mathcal{NID}(0, \sigma_\omega^2), \qquad \lambda_j = 2\pi j/s. \end{split}$$

- Without the disturbance, the trigonometric specification is identical to the deterministic dummy specification.
- The autocorrelation in the trigonometric specification lasts through more lags: changes occur in a smoother way;

Seatbelt Law

Seatbelt Law: decomposition

Seatbelt Law: forecasting

Textbooks

- A.C.Harvey (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press
- G.Kitagawa & W.Gersch (1996). Smoothness Priors Analysis of Time Series. Springer-Verlag
- J.Harrison & M.West (1997). Bayesian Forecasting and Dynamic Models. Springer-Verlag
- J.Durbin & S.J.Koopman (2012). Time Series Analysis by State Space Methods, Second Edition. Oxford University Press
- J.J.F.Commandeur & S.J.Koopman (2007). An Introduction to State Space Time Series Analysis. Oxford University Press

Exercises

- 1 Consider the Local Level model (see slides, see DK chapter 2).
 - Reduced form is ARIMA(0,1,1) process. Derive the relationship between signal-to-noise ratio q of LL model and the θ coefficient of the ARIMA model;
 - Derive the reduced form in the case $\eta_t = \sqrt{q}\varepsilon_t$ and notice the difference in the general case.
 - Give the elements of the mean vector and variance matrix of $y = (y_1, \ldots, y_n)'$ when y_t is generated by a LL model for $t = 1, \ldots, n$.

Exercises

2 Consider the stationary time series model

$$y_t = \mu_t + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2),$$

$$\mu_{t+1} = \phi \mu_t + \eta_t, \qquad \eta_t \sim \mathcal{N}(0, \sigma_{\eta}^2),$$

with autoregressive coefficient $|\phi| < 1$ and variances $\sigma_{\varepsilon}^2 > 0$ and $\sigma_{\eta}^2 > 0$. The disturbances ε_t and η_s are independent of each other for all $t, s = 1, \ldots, n$.

- Explore the dynamic properties of y_t (mean, variance, autocovariances, autocorrelations).
- Assume that parameters ϕ , σ_{ε}^2 and σ_{η}^2 are given. Develop the Kalman filter recursions for this model.
- Propose initial values for mean and variance of the autoregressive component μ_t , that is, $\mu_1 \sim \mathcal{N}(a_1, p_1)$ and propose values for a_1 and p_1 .

Assignment

- 3 Consider the Local Level model (see slides, see DK chapter 2).
 - Implement the Kalman filter for the Local Level model in a computer program.
 - Apply the Kalman filter to the Nile data (Nile data is part of DK book data, see page 11 of these slides)
 - Replicate the Figure on page 34 of these slides.

Appendix - Taylor series

The Taylor expansion for function f(x) around some value x^* is

$$f(x) = f(x = x^*) + f'(x = x^*)[x - x^*] + \frac{1}{2}f''(x = x^*)[x - x^*]^2 + \dots,$$

where

$$f'(x) = \frac{\partial f(x)}{\partial x}, \qquad f''(x) = \frac{\partial^2 f(x)}{\partial x \partial x},$$

and $g(x = x^*)$ means that we evaluate function g(x) at $x = x^*$.

Example: consider $f(x) = \log(1+x)$ with $f'(x) = (1+x)^{-1}$ and $f''(x) = -(1+x)^{-2}$; the expansion of f(x) around $x^* = 0$ is

$$\log(1+x) = 0 + 1 \cdot (x-0) + \frac{1}{2}(-1) \cdot (x-0)^2 + \dots = x - \frac{1}{2}x^2 + \dots$$

Notice that f(x = 0) = 0, f'(x = 0) = 1 and f''(x = 0) = -1. For small enough x (when x is close to $x^* = 0$), we have

$$\log(1+x)\approx x.$$

Check: $log(1.01) = .00995 \approx 0.01$ and $log(1.1) = 0.0953 \approx 0.1$.

Appendix – Percentage growth

Observation at time t is y_t and observation at time t-1 is y_{t-1} .

We define rate r_t as the proportional change of y_t wrt y_{t-1} , that is

$$r_t = \frac{y_t - y_{t-1}}{y_{t-1}} \Rightarrow y_t - y_{t-1} = y_{t-1} \cdot r_t \Rightarrow y_t = y_{t-1} \cdot (1 + r_t).$$

We notice that r_t can be positive and negative!

When we take logs of $y_t = y_{t-1} \cdot (1 + r_t)$, we obtain

$$\log y_t = \log y_{t-1} + \log(1+r_t) \Rightarrow \log y_t - \log y_{t-1} = \log(1+r_t) \Rightarrow$$

$$\Delta \log y_t = \log(1+r_t).$$

Since $\log(1+r_t) \approx r_t$, see previous slide, when r_t is small, we have

$$r_t \approx \Delta \log y_t$$
.

The percentage growth is defined as $100 \times r_t \approx 100 \cdot \Delta \log y_t$.

Appendix – Lag operators and polynomials

- Lag operator $Ly_t = y_{t-1}, \ L^{\tau}y_t = y_{t-\tau}, \ \text{for} \ \tau = 1, 2, 3, \dots$
- Difference operator $\Delta y_t = (1-L)y_t = y_t y_{t-1}$
- Autoregressive polynomial $\phi(L)y_t = (1 \phi L)y_t = y_t \phi y_{t-1}$
- Other polynomial $\theta(L)\varepsilon_t = (1 + \theta L)\varepsilon_t = \varepsilon_t + \theta \varepsilon_{t-1}$
- Second difference $\Delta^2 y_t = \Delta(\Delta y_t) = \Delta(y_t y_{t-1}) = y_t 2y_{t-1} + y_{t-2}$
- Seasonal difference $\Delta_s y_t = y_t y_{t-s}$ for typical s = 2, 4, 7, 12, 52
- Seasonal sum operator $S(L)y_t = (1 + L + L^2 + ... + L^{s-1})y_t = y_t + y_{t-1} + ... + y_{t-s+1}$
- Show that $\Delta S(L) = \Delta_s$.