
Functional Principal Component Analysis
for Derivatives of Multivariate Curves ?

Maria Grith,1 Wolfgang K. Härdle,1,2 Alois Kneip 3 and Heiko Wagner 3

1 Ladislaus von Bortkiewicz Chair of Statistics and C.A.S.E. - Center for Applied Statistics and Economics, School of Business
and Economics, Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin, Germany
2 Sim Kee Boon Institute for Financial Economics, Singapore Management University, 81 Victoria Street, Singapore 188065
3 Institute for Financial Economics and Statistics, Department of Economics, Rheinische Friedrich-Wilhelms-Universität Bonn,

Adenauerallee 24-26, 53113 Bonn

Abstract

We present two methods based on functional principal component analysis (FPCA) for the es-
timation of smooth derivatives of a sample of random functions, which are observed in more
than one-dimensional domain. We apply eigenvalue decomposition to a) the dual covariance
matrix of the derivatives, and b) the dual covariance matrix of the observed curves. To handle
noisy data from discrete observations, we rely on local polynomial regressions. If curves are
contained in a finite-dimensional function space, the second method performs better asymp-
totically. We apply our methodology in a simulation and empirical study, in which we estimate
state price density (SPD) surfaces from call option prices. We identify three main components,
which can be interpreted as volatility, skewness and tail factors. We also find evidence for term
structure variation.

Keywords: functional principal component, dual method, derivatives, multivariate functions,
state price densities

JEL codes: C13, C14, G13

? Financial support from the German Research Foundation for the joint project no. 70102424 "Func-
tional Principal Components for Derivatives and Higher Dimensions", between Humboldt-Universität
zu Berlin and Rheinische Friedrich-Wilhelms-Universität Bonn, is gratefully acknowledged. We would
like to thank as well the Collaborative Research Center 649 “Economic Risk” for providing the data
and the International Research Training Group (IRTG) 1792 “High-Dimensional Non-Stationary Time
Series Analysis”, Humboldt-Universität zu Berlin for additional funding.



1 Introduction

Over the last two decades functional data analysis became a popular tool to handle
data entities that are random functions. Usually, discrete and noisy versions of them
are observed. Oftentimes, these entities are multivariate functions, i.e., functions with
more than one-dimensional domain. Examples include brain activity recordings gen-
erated during fMRI or EEG experiments (van Bömmel et al. (2014), Majer et al. (2015)).
In a variety of applications though, the object of interest is not directly observable but
can be recovered from the observed data by means of derivative. Typical examples
of financial applications are functionals retrieved from the observed prices, such as
implied risk neutral or state price density (Grith et al. (2012)), pricing kernel (Grith
et al. (2013)) or market price of risk (Härdle and Lopez-Cabrera (2012)). Motivated
by such data analysis situations, we address the problem of estimating derivatives of
multivariate functions from existing discrete and noisy data.

Functions, which are objects of an infinite-dimensional vector space, require spe-
cific methods that allow a good approximation of their variability with a small number
of components. FPCA is a convenient tool to address this task because it allows us to
explain complicated data structures with only a few orthogonal principal components
that fulfill the optimal basis property in terms of its L2 accuracy. These components
are given by the Karhunen-Loève theorem, see for instance Bosq (2000). In addition,
the corresponding principal loadings to this basis system can be used to study the
variability of the observed phenomena. An important contribution in the treatment
of the finite-dimensional PCA was done by Dauxois et al. (1982), followed by subse-
quent studies that fostered the applicability of the method to samples of observed
noisy curves. Besse and Ramsay (1986), among others, derived theoretical results for
observations that are affected by additive errors. Some of the most important contri-
butions for the extension of the PCA to functional data belong to Cardot et al. (1999),
Cardot et al. (2007), Ferraty and Vieu (2006), Mas (2002) and Mas (2008). Simple, one-
dimensional spatial curves are well understood from both numerical and theoretical
perspectives and FPCA is easy to implement in this case. Multivariate objects, with
more complicated spatial and temporal correlation structures, or not directly observ-
able functions of these objects, such as derivatives, lack a sound theoretical frame-
work. Furthermore, computational issues are considerable in higher-dimensional do-
main.

To our best knowledge, FPCA for derivatives has been tackled by Hall et al. (2009)
and Liu and Müller (2009). The first study handles one-dimensional directional deriva-
tives and gradients. The second paper analyses a particular setup in one-dimensional
domain where the observations are sparse. This method is applicable to non-sparse
data but can be computationally inefficient when dealing with large amounts of ob-
servations per curve. For the study of observed functions, there are a series of empiri-
cal studies for the two-dimensional domain case, see Cont and da Fonseca (2002) for
an application close to our empirical study. Further proposals to implement FPCA in
more than two dimensions to analyze functions, rather than their derivatives, have
been done particularly in the area of brain imaging, see for instance, Zipunnikov et al.
(2011) who implement multilevel FPCA (Staicu and Carroll (2010), Di et al. (2009)) to
analyze brain images of different groups of individuals. However, a thorough deriva-
tion of statistical properties of the estimators is missing in these works.
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In this paper, we aim to fill in the existent gaps in the literature on FPCA for the
study of derivatives of multivariate functions. We present two alternative approaches
to obtain the derivatives. The paper is organized as follows: the theoretical framework,
estimation procedure and statistical properties are derived through Section 2. Our
empirical study in Section 3 is guided by the estimation and the dynamics analysis
of the option implied state price densities. It includes a simulation study and a real
data example.

2 Methodology

2.1 Two approaches to the derivatives of multivariate functions using FPCA

In this section, we review FPCA from a technical point of view and make the reader
familiar with our notation.

Let X be a centered smooth random function in L2([0,1]g ), where g denotes

the spatial dimension, with finite second moment
∫

[0,1]g E
[

X (t )2
]

d t < ∞ for t =
(t1, . . . , tg )>. The underlying dependence structure can be characterized by the covari-

ance function σ(t , v)
def= E

[
X (t )X (v)

]
and the corresponding covariance operator Γ

(Γϑ)(t ) =
∫

[0,1]g
σ(t , v)ϑ(v)d v.

Mercer’s lemma guarantees the existence of a set of eigenvalues λ1 ≥ λ2 ≥ . . . and a
corresponding system of orthonormal eigenfunctions γ1,γ2, . . . called functional prin-
cipal components such that

(1) σ(t , v) =
∞∑

r=1
λrγr (t )γr (v),

where the eigenvalues and eigenfunctions satisfy (Γγr )(t ) = λrγr (t ). Moreover,∑∞
r=1λr = ∫

[0,1]g σ(t , t )d t . The Karhunen-Loève decomposition for the random func-
tion X gives

(2) X (t ) =
∞∑

r=1
δrγr (t ),

where the loadings δr are random variables defined as δr = ∫
[0,1]g X (t )γr (t )d t that

satisfy E
[
δ2

r

]
=λr , as well as E

[
δrδs

]= 0 for r 6= s. Throughout the paper the following
notation for the derivatives of a function X will be used

(3) X (d)(t )
def= ∂|d |

∂t d
X (t ) = ∂d1

∂t d1
1

· · · ∂
dg

∂t
dg
g

X (t1, . . ., tg ),

for d = (d1, ...,dg )> and d j ∈N the partial derivative in the spatial direction j = 1, . . ., g .
We denote |d | = ∑g

j=1 |d j | and require that X is at least |d |+1 times continuously dif-
ferentiable.

Building on equations (1) and (2), we consider two approaches to model a de-
composition for derivatives X (d). The first one is stated in terms of the Karhunen-

Loève decomposition applied to their covariance function. We define σ(d)(t , v)
def=
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E
[

X (d)(t )X (d)(v)
]

and λ(d)
1 ≥ λ(d)

2 ≥ . . . be the corresponding eigenvalues. The prin-

cipal components ϕ(d)
r , r = 1, 2, . . . are solutions to

(4)
∫

[0,1]g
σ(d)(t , v)ϕ(d)

r (v)d v =λ(d)
r ϕ(d)

r (t ).

For nonderivatives |d | = 0, we introduce the following notation ϕ(0)
r (t ) ≡ γr (t ). Sim-

ilarly to equation (2), the decomposition of X (d) in terms of principal components
ϕ(d)

r (t ) is given by

(5) X (d)(t ) =
∞∑

r=1
δ(d)

r ϕ(d)
r (t ),

for δ(d)
r = ∫

[0,1]g X (d)(t )ϕ(d)
r (t )d t .

A different way to think about a decomposition for derivatives, is to take the deriva-
tives of the functional principal components in (2)

(6) X (d)(t ) =
∞∑

r=1
δrγ

(d)
r (t ),

where the d-th derivative of the r -th eigenfunction is the solution to

(7)
∫

[0,1]g

∂|d |

∂vd

(
σ(t , v)γr (v)

)
d v =λrγ

(d)
r (t ).

In general, for |d | > 0 it holds that ϕ(d)
r (t ) 6= γ(d)

r (t ), but both basis systems span
the same function space. In particular, there always exists a projection with ar p =〈
γ(d)

p ,ϕ(d)
r

〉
= ∫

[0,1]g γ
(d)
p (t )ϕ(d)

r (t )d t such that
∑∞

r=1 ar pϕ
(d)
r (t ) = γ(d)

p (t ). However, if we
consider a truncation of (2) after a finite number of components this is no longer true
in general. An advantage of using ϕ(d)

r instead of γ(d)
r is that the decomposition gives

orthonormal basis that fulfill the best basis property, such that for any fixed L ∈N and
every other orthonormal basis system ϕ′

(8) E ||X (d) −
L∑

r=1

〈
X (d),ϕ(d)

r

〉
ϕ(d)

r || ≤ E ||X (d) −
L∑

r=1

〈
X (d),ϕ′

r

〉
ϕ′

r ||.

This guarantees that by using ϕ(d)
r , r = 1, . . .,L we always achieve the best L dimen-

sional subset selection in terms of the L2 error function. In the next section we show
that estimating the basis functions with such property comes at the cost of inferior
rate of convergence. However, if the true underlying structure lies in a L-dimensional
function space, which is equivalent to a factor model setup, the advantage of deriv-
ing the best L-orthogonal basis vanishes, because it is possible to derive a basis sys-
tem with the same features using span(γ(d)). This is achieved by performing a spectral
decomposition of the finite-dimensional function space of γ(d)

r , r = 1, . . .,L to get an
orthonormal basis system fulfilling (8).

2.2 Sample inference

Let X1, . . ., XN ∈ L2([0,1]g ) be a sample of i.i.d. realizations of the smooth random
function X . The empirical approximation for the covariance function based on the
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N curves is given by the sample counterpart

(9) σ̂(d)(t , v) = 1

N

N∑
i=1

X (d)
i (t )X (d)

i (v)

and for the covariance operator by

(10) Γ̂(d)
N ϕ̂(d)

r (t ) =
∫

[0,1]g
σ̂(d)(t , v)ϕ̂(d)

r (v)d v,

where the eigenfunction ϕ̂(d)
r corresponds to the r -th eigenvalue of Γ̂(d)

N . For infer-

ence, it holds that ||ϕ(ν)
r − ϕ̂(ν)

r || = Op (N−1/2) and |λ(ν)
r − λ̂(ν)

r | = Op (N−1/2), see for in-
stance Dauxois et al. (1982) or Hall and Hosseini-Nasab (2006). The loadings corre-
sponding to each realization Xi can be estimated via the empirical eigenfunctions as
δ̂(d)

r i = ∫
[0,1]g X (d)

i (t )ϕ̂(d)
r (t )d t .

2.3 The model

In most applications, the curves are only observed at discrete points and data is noisy.
To model these aspects, we assume that each curve in the sample is observed at inde-
pendent randomly-distributed points ti = (ti 1, . . ., ti Ti )>, ti k ∈ [0,1]g , k = 1, . . .,Ti , i =
1, . . ., N from a continuous distribution with density f such that inf

t∈[0,1]g
f (t ) > 0. We

assume that

(11) Yi (ti k ) = Xi (ti k )+εi k =
∞∑

r=1
δr iγr (ti k )+εi k ,

where εi k are i.i.d. random variables with E
[
εi k

] = 0, Var
(
εi k

) = σ2
iε and εi k is inde-

pendent of Xi .

2.4 Estimation procedure

1. Dual method— An alternative to the Karhunen-Loève decomposition relies on
the duality relation between the row and column space. The method was first used
in a functional context by Kneip and Utikal (2001) to estimate density functions and
later adapted by Benko et al. (2009) for general functions. Let ν= (ν1, . . .,νg )>, ν j ∈N,
|ν| < ρ ≤ m and M (ν) be the dual matrix of σ̂(ν)(t , v) from (9) consisting of entries

(12) M (ν)
i j =

∫
[0,1]g

X (ν)
i (t )X (ν)

j (t )d t .

Let l (ν)
r be the eigenvalues of matrix M (ν) and p(ν)

r = (p(ν)
1r , . . . , p(ν)

N r ) be the correspond-
ing eigenvectors. For ν= d , the estimators for the quantities in the right-hand side of
equations (4) and (5) are given by

(13) ϕ̂(d)
r (t ) = 1√

l (d)
r

N∑
i=1

p(d)
i r X (d)

i (t ) , λ̂(d)
r = l (d)

r

N
and δ̂(d)

r i =
√

l (d)
r p(d)

i r .
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Important for the representation given in equation (6) are the eigenvalues and eigen-

vectors of M (0) denoted by lr
def= l (0)

r , pr
def= p(0)

r and the corresponding orthonormal

basis γ̂r
def= ϕ̂(0)

r and loadings δ̂r i
def= δ̂(0)

r i . It is straightforward to derive

(14) γ̂(d)
r (t ) = 1√

lr

N∑
i=1

pi r X (d)
i (t ).

2. Quadratic integrated regression — Before deriving estimators of M (0) and M (d)

using the model from Section 2.3, we outline some results needed to construct these

estimators. For any vectors a, b ∈ Rg and c ∈ Ng , we define |a| def= ∑g
j=1 |a j |, a−1 def=

(a−1
1 , . . ., a−1

g )>, ab def= ab1
1 × . . .×a

bg
g , a ◦b

def= (a1b1, . . ., ag bg )> and c !
def= c1!× . . .× cg !.

Consider a curve Y observed at points t = {
t1, . . . , tT

}
, generated as in equation (11).

Let k = (k1, . . .,kg )>, kl ∈ N and consider a multivariate local polynomial estimator
β̂(t ) ∈Rρ that solves

(15) min
β(t )

T∑
l=1

Y (tl )− ∑
0≤|k|≤ρ

βk (t )(tl − t )k

2

KB (tl − t ).

KB is any non-negative, symmetric and bounded multivariate kernel function and B
a g ×g bandwidth matrix. For simplicity, we assume that B has main diagonal entries
b = (b1, . . .,bg )> and zero elsewhere.

As noted by Fan et al. (1997) the solution of the minimization problem (15) can also
be represented using a weight function W T

ν , see Appendix 5.2, such that

(16) X̂ (ν)
b (t ) = ν!β̂ν(t ) = ν!

T∑
l=1

W T
ν

(
(tl − t )◦b−1

)
Y (tl ).

Local polynomial regression estimators are better suited to estimate integrals like
(12) than other kernel estimators, e.g., Nadaraya-Watson or Gasser-Müller estimator,
since the bias and variance are of the same order of magnitude near the boundary as
well as in the interior, see for instance Fan and Gijbels (1992). We propose the follow-
ing estimator for the squared integrated functions

∫
[0,1]g X (ν)(t )2d t

θν,ρ =
∫

[0,1]g
ν!2

T∑
k=1

T∑
l=1

W T
ν

(
(tk − t )◦b−1

)
W T
ν

(
(tl − t )◦b−1

)
Y (tl )Y (tk )d t

−ν!2σ̂2
ε

∫
[0,1]g

T∑
k=1

W T
ν

(
(tk − t )◦b−1

)2
d t .

(17)

where σ̂2
ε is a consistent estimator of σ2

ε. The second term is introduced to cancel the

bias in E
[

Y 2(tk )
]
= X (tk )2 +σ2

ε.

Lemma 2.1 Under Assumptions 5.1- 5.4, X is m ≥ 2|ν| times continuously differen-

tiable, the local polynomial regression is of order ρ with |ν| ≤ ρ < m and |σ̂2
ε −σ2

ε| =
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OP (T −1/2). As T →∞ and max(b)ρ+1b−ν→ 0, log(T )
T b1×...×bg

→ 0 as T b1 × . . .×bg b4ν→∞

Et ,Y

[
θν,ρ

]
−

∫
[0,1]g

X (ν)(t )2d t =Op

(
max(b)ρ+1b−ν+ 1

T 3/2(b2νb1 × . . .×bg )

)

Vart ,Y (θν,ρ) =Op

(
1

T 2b1 × . . .×bg b4ν + 1

T

)
,

(18)

where Et ,Y denotes the conditional expectation and Vart ,Y the conditional variance
given t , Y . The proof of Lemma 2.1 is given in Appendix 5.2.

3. Estimation of M (0) and M (d) — The curves Yi in equation (11) are assumed to be
observed at different random points. For uniformly sampled points t1, . . ., tT ∈ [0,1]g

with T = min
i∈1,...,N

Ti , we replace the integrals in (17) with the Riemann sums, such that

M̂ (ν)
i j =

ν!2
∑Ti

k=1

∑T j

l=1 wT
ν (ti k , t j l ,b)Y j (t j l )Yi (ti k ) if i 6= j

ν!2
(∑Ti

k=1

∑Ti
l=1 wT

ν (ti k , ti l ,b)Yi (ti l )Yi (ti k )− σ̂2
iε

∑Ti
k=1 wT

ν (ti k , ti k ,b)
)

if i = j .

where wT
ν (ti k , t j l ,b) := T −1 ∑T

m=1 W T
ν

(
(ti k − tm)◦b−1

)
W T
ν

(
(t j l − tm)◦b−1

)
. The esti-

mator for M (0) is given by setting ν= (0, . . .,0)> and the estimator for M (d) by ν= d .
There are two possible sources of error in the construction of the estimator M̂ (ν).

One is coming from smoothing noisy curves at a common grid, and has been analyzed
in Lemma (2.1). The other one is from approximating the integral in (17) by a sum, see
equation above. In Appendix (5.3) we show that the error of the integral approxima-
tion is of order T −1/2.

Proposition 2.2 Under the requirements of Lemma 2.1

|M (ν)
i j − M̂ (ν)

i j | =OP

max(b)ρ+1b−ν+
(

1

T 2b1 × . . .×bg b4ν + 1

T

)1/2
 .

By Proposition 2.2, estimating M (d) gives an asymptotic higher bias and also a higher
variance than estimating M (0). This effect becomes more pronounced in higher di-
mensional domain. However, by using local polynomial regression with large polyno-
mial order ρ one can still get parametric rates within each method.

Remark 2.3 Under the assumptions of Lemma 2.1 and using Proposition 2.2 we can

estimate M (ν) such that if m > ρ ≥ g
2 −1+3

∑g
l=1νl , b = T −α with 1

2(ρ+1−∑g
l=1νl )

≤ α ≤
1

g+4
∑g

l=1νl
then |M (ν)

i j − M̂ (ν)
i j | =OP (1/

p
T ).

We can see that the orders of polynomial expansion and the bandwidths for estimat-
ing M (ν) will differ for ν= (0, . . .,0)> and ν= d . In particular, the estimator of M (d) re-
quires higher smoothness assumptions via m > ρ, and a higher bandwidth to achieve
the same parametric convergence rate as the estimator for M (0).

In Lemma 2.1 it is required that |σ2
iε − σ̂2

iε| = Op (T −1/2), which ensures paramet-
ric rates of convergence for M̂ (ν) under the conditions of Remark 2.3. By Assumption
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5.2, in the univariate case, a simple class of estimators for σ2
iε, which achieve the de-

sired convergence rate, are given by successive differentiation, see von Neumann et al.
(1941) and Rice (1984). However, as pointed out in Munk et al. (2005), difference esti-
mators are no longer consistent for g ≥ 4 due to the curse of dimensionality. A possi-
ble solution is to generalize the kernel based variance estimator proposed by Hall and
Marron (1990) for the multidimensional domain

(19) σ̂2
iε =

1

vi

Ti∑
l=1

Yi (ti l )−
Ti∑

k=1
wi lk Y (ti k )

2

,

where wi lk = Kr,H (ti l − ti k )/
∑Ti

k=1 Kr,H (ti l − ti k ) and vi = Ti −2
∑

l wi lk +
∑

l ,k w2
i lk and

Kr,H is a g -dimensional product kernel of order r with bandwidth matrix H . Munk
et al. (2005) show that if 4r > g and if the elements of the diagonal matrix H are of
order O (T −2/(4r+g )) then the estimator σ̂εi in equation (19) achieves parametric rates
of convergence.

Note that if the curves are observed at a common random grid with T = Ti =
T j , i , j = 1, . . ., N , a simple estimator for M (0) is constructed by replacing the integrals
with Riemann sums in (12). This estimator is given by

M̃ (0)
i j =

 1
T

∑T
l=1 Yi (tl )Y j (tl ) if i 6= j

1
T

∑T
k=1 Yi (tl )2 − σ̂2

iε if i = j
.(20)

In Appendix (5.3) we verify that the convergence rate of M̃ (0)
i j does not depend on g .

When working with more than one spatial dimension, in practice data is often
recorded using an equidistant grid with T points in each direction. For our approach,
this strategy will not improve the convergence rate of M̃ (0) due to the curse of dimen-
sionality. If it is possible to influence how data is recorded, we recommend using a
common random grid, which keeps computing time and the storage space for data
to a minimum and still gives parametric convergence rates for the estimator of M (0)

i j .
If T À N equation (20), gives a straightforward explanation why the dual matrix is
preferable to derive the eigendecomposition of the covariance operator, because tak-
ing sums has a computational cost that is linear.

4. Estimating the basis functions — We keep notations ν = d to refer to the spec-
ification in equation (5) and ν = (0, . . .,0)> to (6). A spectral decomposition of M̂ (ν)

is applied to obtain the eigenvalues l̂ (ν)
r and eigenvectors p̂(ν)

r for r, j = 1, . . ., N . This

gives straightforward empirical counterparts λ̂(ν)
r,T = l̂ (ν)

r /N and δ̂(ν)
r j ,T =

√
l̂ (ν)

r p̂(ν)
r j .

To estimate ϕ(d)
r and γ(d)

r , a suitable estimator for X (d)
i , r, j = 1, . . ., N is needed.

We use a local polynomial kernel estimator, denoted X̂ (d)
i ,h , similarly to (16), with a

polynomial of order p and bandwidth vector h = (h1, . . .,hg ). Here, h is not equal to
b, the bandwidth used to smooth the entries of the M̂ (0) and M̂ (d) matrix. In fact, we
show below that the optimal order for the bandwidth vector h differs asymptotically
from that of b derived in the previous section. An advantage of using local polynomial
estimators, compared for example to spline or wavelet estimators, is that the bias and
variance can be derived analytically. For the univariate case these results can be found
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in Fan and Gijbels (1996) and for the multivariate case in Masry (1996) and Gu et al.
(2015). We summarize them in terms of order of convergence below

Et ,Y

[
X (d)

j (t )− X̂ (d)
j ,h (t )

]
=Op (max(h)p+1h−d )

Vart ,Y

(
X̂ (d)

j ,h (t )
)
=Op

(
1

T h1 × . . .×hg h2d

)
.

(21)

Using these results, it follows that for max(h)p+1h−d → 0,
(
max(h)p+1T h−d

)−1 → 0
as T →∞ and p chosen such that p −|d | is odd

Et ,Y

 1√
l (ν)

r

N∑
i=1

p(ν)
i r

(
X (d)

i (t )− X̂ (d)
i ,h (t )

)= 1√
l (ν)

r

N∑
j=1

p(ν)
j r Bias

(
X̂ (d)

j ,h (t )
)
+Op

(
max(h)p+1h−d

)
=Op (max(h)p+1h−d )

Vart ,Y

 1√
l (ν)

r

N∑
i=1

p(ν)
i r X̂ (d)

i ,h (t )

= 1

l (ν)
r

N∑
j=1

(
p(ν)

j r

)2
Var

(
X̂ (d)

j ,h (t )
)
+Op

(
1

N T h1 × . . .×hg h2d

)

=Op

(
1

N T h1 × . . .×hg h2d

)
.

In the next Proposition we show that under certain assumptions the asymptotic mean
squared error of ϕ̂(d)

r,T and γ̂(d)
r,T is dominated by these two terms.

Proposition 2.4 Under the requirements of Lemma 2.1, Assumptions 5.6 and 5.7,

Remark 2.3, and for inf
s 6=r

|λr − λs | > 0, r, s = 1, . . ., N and max(h)p+1h−d → 0 with

N T h1 . . .hg h2d →∞ as T, N →∞ we obtain

a) |γ(d)
r (t )− γ̂(d)

r,T (t )| =Op

(
max(h)p+1h−d

)
+Op

(
(N T h1 × . . .×hg h2d )−1/2

)
b) |ϕ̂(d)

r (t )− ϕ̂(d)
r,T (t )| =Op

(
max(h)p+1h−d

)
+Op

(
(N T h1 × . . .×hg h2d )−1/2

)
A proof of Proposition 2.4 is provided in Appendix 5.4. As a consequence, the result-

ing global optimal bandwidth is given by hr,opt = Op

(
(N T )−1/(g+2p+2)

)
. Even if the

optimal bandwidth for both approaches and each basis function is of the same order
of magnitude, the values of the actual bandwidths may differ. A simple rule of thumb
for the choice of bandwidths in practice is given in Section 3.1.

2.5 Properties under a factor model structure

Often, the variability of curves can be expressed with only a few basis functions mod-
eled by a truncation of (2) after L basis functions. If a true factor model with L com-
ponents is assumed, the basis representation to reconstruct X (d) is arbitrary, in the
sense that

(22) X (d)(t ) =
L∑

r=1
δrγ

(d)
r (t ) =

Ld∑
r=1

δ(d)
r ϕ(d)

r (t ).

9



Here L is always an upper bound for Ld . The reason for this is that by taking derivatives
it is possible that γ(d)

r (t ) = 0 or that there exits some ar ∈ RL−1 such that γ(d)
r (t ) =∑

s 6=r asrγ
(d)
s (t ).

Based on the methodology described in Section 2.4, the two estimators for deriva-
tives are given by

(23) X̂ (d)
i ,F PC A1

(t )
def=

L∑
r=1

δ̂i r,T γ̂
(d)
r,T (t ) ≈ X̂ (d)

i ,F PC A2
(t )

def=
Ld∑

r=1
δ̂(d)

i r,T ϕ̂
(d)
r,T (t ).

Proposition 2.5 Assume that a factor model with L factors holds for X . For N T −1 → 0,

together with the requirements of Proposition 2.4, the true curves can be reconstructed

a) |X (d)
i (t )− X̂ (d)

i ,F PC A1
(t )| =Op

(
T −1/2 +max(h)p+1h−d + (N T h1 × . . .×hg h2d )−1/2

)
b) |X (d)

i (t )− X̂ (d)
i ,F PC A2

(t )| =Op

(
T −1/2 +max(h)p+1h−d + (N T h1 × . . .×hg h2d )−1/2

)
.

A proof of Proposition (2.5) is given in Appendix (5.5). Compared with the conver-
gence rates of the individual curves estimators, see (21), the variance of our estima-
tors reduces not only in T but also in N . Equations (13) and (14) can be interpreted as
an average over N curves for only a finite number of L components. The intuition be-
hind it is that only those components are truncated that are related to the error term
and thus a more accurate fit is possible. If N increases at a certain rate, it is possible to
get close to parametric rates. Such rates are not possible when smoothing the curves
individually.

For the estimation of X̂ (d)
i ,F PC A2

, as illustrated in Remark 2.3, additional assumptions
on the smoothness of the curves are needed to achieve the same rates of convergence
for the estimators M̂ (d) and M̂ (0). With raising g and |d | it is required that the true
curves become much smoother which makes the applicability of estimating X̂ (d)

i ,F PC A2

limited for certain applications. In contrast, the estimation of M (0) still gives almost
parametric rates if less smooth curves are assumed. In addition, if the sample size is
small, using a high degree polynomial needed to estimate M (d) might lead to unre-
liable results. To learn more about these issues, we check the performance of both
approaches in a simulation study in Section 3.2 using different sample sizes.

3 Application to state price densities implied from option prices

In this section we analyze the state price densities (SPDs) implied by the stock in-
dex option prices. As state dependent contingent claims, options contain information
about the risk factors driving the underlying asset price process and give information
about expectations and risk patterns on the market. Mathematically, SPDs are equiv-
alent martingale measures for the stock index and their existence is guaranteed in
the absence of arbitrage plus some technical conditions. In mathematical-finance ter-
minology they are known as risk neutral densities (RNDs). A very restrictive model,
with log-normal marginals for the asset price, is the Black-Scholes model. This model
results in log-normal SPDs that correspond to a constant implied volatility surface

10



across strikes and maturity. This feature is inconsistent with the empirically docu-
mented volatility smile or skew and the term structure, see Rubinstein (1985). There-
fore, richer specifications for the option dynamics have to be used. Most of earlier
works adopt a static viewpoint; they estimate curves separately at different moments
in time, see the methodology reviews by Bahra (1997), Jackwerth (1999) and Bliss and
Panigirtzoglou (2002). In order to exploit the information content from all data avail-
able, it is reasonable to consider them as collection of curves.

The relation between the SPDs and the European call prices has been demon-
strated by Breeden and Litzenberger (1987) and Banz (1978) for a continuum of strike
prices spanning the possible range of future realizations of the underlying asset. For
a fixed maturity, the SPD is proportional to the second derivative of the European call
options with respect to the strike price. In this case, SPDs are one-dimensional func-
tions. A two-dimensional point of view can be adopted if maturities are taken as an
additional argument and the SPDs are viewed as a family of curves.

Let C : R2
≥0 → R denote the price function of a European call option with strike

price k and maturity τ such that

(24) C (k,τ) = exp(−rττ)
∫ ∞

0
(sτ−k)+q(sτ,τ)d sτ,

where rτ is the annualized risk free interest rate for maturity τ, sτ the unknown price
of the underlying asset at maturity, k the strike price and q the state price density of
sτ. One can show that

(25) q(sτ,τ) = exp(rττ)
∂2C (k,τ)

∂k2

∣∣∣∣∣
k=sτ

.

Let s0 be the asset price at the moment of pricing and assume it to be fixed. Then by
the no-arbitrage condition, the forward price for maturity τ is

(26) Fτ =
∫ ∞

0
sτq(sτ,τ)d sτ = s0 exp(rττ).

Suppose that the call price is homogeneous of degree one in the strike price. Then

(27) C (k,τ) = FτC (k/Fτ,τ).

If we denote m = k/Fτ the moneyness, it is easy to verify that

(28)
∂2C (k,τ)

∂k2 = 1

Fτ

∂2C (m,τ)

∂m2 .

Then one can show that for d = (2,0)>, C (d)(m,τ)|m=sτ/Fτ = q(sτ/s0,τ) = s0q(sτ,τ). In
practice, it is preferable to work with densities of returns instead of prices when ana-
lyzing them jointly because prices are not stationary. Also, notice that call price curves
are not centered. This leads to an additional additive term in equations (4) and (6),
which refers to the population mean. We show in the next section how to handle this
in practice. For our application, X will refer to the rescaled call price C (m,τ). Therein,
we also assume that the index i = 1, . . . , N refers to ordered time-points.

The code used to generate the results reported in this section is published online
at www.github.com/QuantLet/FPCA and www.quantlet.de. The data used in the em-
pirical study is available from the authors upon request.
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3.1 Implementation

1. Centering the observed curves — Throughout the paper it is assumed that the
curves are centered. To satisfy this assumption, we subtract the empirical mean
X̄ (ν)(tk ) = 1

N

∑N
i=1 X̂ (ν)

i ,b (tk ) from the the observed call prices to obtained centered

curves. A centered version M
(ν)

, ν= (0,d) is given by

(29) M
(ν)
i j = M̂ (ν)

i j − 1

T

T∑
k=1

(
X̄ (ν)(tk )X̂ (ν)

i ,b (tk )+ X̄ (ν)(tk )X̂ (ν)
j ,b (tk )− X̄ (ν)(tk )2

)
.

It is still possible to improve the centering the curves. One possibility is to use a dif-
ferent bandwidth to compute the mean because averaging will necessarily lower the
variance. Secondly, by the arguments of Section 2.4, the 1

T

∑T
k=1 X̄ (ν)(tk )2 term can be

improved accordingly to Lemma 2.1 by subtracting σ̂ε weighted by suitable parame-
ters. We decide to omit these fine tunings in our application because it would involve a
significant amount of additional computational effort for only minor improvements.

2. Bandwidth selection — To get parametric rates of convergence for M̂ (d) related
to Remark 2.3 we choose ρ = 7 and b between O (T −1/10) and O (T −1/12). The choice
of b to estimate M̂ (0) is similar, with the difference that ρ > 0, we choose ρ = 1 and
b has to lie between O (T −1/3) and O (T −1/5). We use a simple criteria to choose the
bandwidth because by Proposition 2.4 the dominating error depends mainly on the
choice of h. Let ti k = (ti k1, . . .ti kg ), then the bandwidth for direction j is determined

by b j =
(
(maxk (ti k j )−mink (ti k j ))Ti

)α
. When estimating state price densities ti k =

(τi k ,mi k ) and Ti is replaced by the cardinality of τi = {τi 1, . . .τi Ti } and mi respectively.
In the estimation of M̂ (d) we set α=−1/10 and α=−1/3 for M̂ (0).

The choice of bandwidths h is a crucial parameter for the quality of the estimators.
To derive an estimator for the bandwidths first note that in the univariate case (g = 1)
the theoretical optimal univariate asymptotic bandwidth for the r -th basis is given by

(30) hd ,ν
r,opt =Cd ,p (K )

T −1

∫ 1
0

∑N
i=1(p(ν)

i r )2σ2
εi (t ) fi (t )−1d t∫ 1

0

{∑N
i=1 p(ν)

i r X (p+1)
i (t )

}2
d t


1/(2p+3)

,

Cd ,p (K ) =

 (p +1)!2(2d +1)
∫

K ∗2
p,d j

(t )d t

2(p +1−d){
∫

up+1K ∗
d ,p (t )d t }2


1/(2p+3)

.

Like in the conventional local polynomial smoothing case Cd ,p (K ) does not depend
on the curves and is an easily computable constant. It only depends on the chosen
kernel, the order of the derivative and the order of the polynomial, see for instance
Fan and Gijbels (1996).

For our bandwidth estimator we treat every dimension separately, similar to choos-
ing an optimal an optimal bandwidth for derivatives in the univariate case, and cor-
rect for the asymptotic order, see Section 2.4. In practice, we can not use equation
(30) to determine the optimal bandwidth because some variables are unknown and
only discrete points are observed. As a rule-of-thumb, we replace these unknown vari-
ables with empirical quantities: estimates of p(0)

i r from M̂ (0) and of p(d)
i r from M̂ (d).
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With these approximations, a feasible rule for computing the optimal bandwidth in
direction j for the r -th basis function h j r is given by

(31) hd ,ν
j r,r ot =

T −1
C 2p+3

d ,p σ̂2
ε

f j
∫ 1

0

{∑N
i=1 p̂(ν)

i r X̃ (p+1)
i (t j )

}2
d t j


1/(g+2p+2)

.

In our application as well as our simulation we have g = 2, d = (0,2) and do a third
order local polynomial regression. The integrals are approximated by Riemann sums.

• The density of the observed points is approximated by a uniform distribution
with f1 = maxi , j (τi j )−mini , j (τi j ) and f2 = maxi , j (mi j )−mini , j (mi j ).

• To get a rough estimator for X (p+1)
i based on Xi , we use a polynomial regres-

sion. For our application, we take p = 3 and are thus interested in estimates for
X (4)

i (m) and X (4)
i (τ). We expect the curves to be more complex in the money-

ness direction than in the maturity direction and we adjust the degree of the
polynomials to reflect this issue. The estimates are then given by

a∗
i =arg min

ai

(
Xi (m,τ)−ai 0 +

5∑
l=1

ai l ml +
9∑

l=6
ai lτ

(l−5)

)
X̃ (4)

i (m) =24a∗
i 4 +120a∗

i 5m

X̃ (4)
i (τ) =24a∗

i 9.

(32)

• To estimate the variance for each curve we use the kernel approach given in
(19) using a Epanechnikov kernel with a bandwidth of T −2/(4+g ) for each spatial
direction. In addition, these estimates are used to correct for the diagonal bias
when M̂ (0) and M̂ (d) are estimated. In (31) the average over all σ̂iε is used.

We use the product of Gaussian kernel functions to construct local polynomial es-
timators. We can verify from Proposition 2.4 that the optimal bandwidth h decreases
in N . By using a global bandwidth and a compact kernel the matrix given in equation
(45) may become singular when N is large and T is small.

In our simulation and application we use the mean optimal hd ,ν
i ,r ot = L−1 ∑L

r=1 hd ,ν
i r,r ot

for each γ̂(d)
r ,ϕ̂(d)

r to reduce computation time. Since we demean the sample in (29),
finally we add N−1 ∑N

i=1 X̂ (d)

i ,hd ,ν
i ,r ot

to the resulting truncated decomposition to derive the

final estimate.

3. Estimation of the number of components— In Section 2.5 we assumed that the
number of components is given. In general, the number of basis functions needed is
unknown a priori. For the case |d | = 0 there exists a wide range of criteria that can be
adapted to our case to determine the upper bound L. The easiest way to determine
the number of components is by choosing the model accuracy by an amount of vari-
ance explained by the eigenvalues. In (71) we show that under the conditions from
Proposition 2.4 λ̂(d)

r −λ̂(d)
r,T =Op (N−1/2T −1/2+T −1) and λ(d)

r −λ̂(d)
r =Op (N−1/2). The as-

sumptions in Corollary 1 from Bai and Ng (2002) can be adapted to our case and give
several criteria for finding L or Ld by generalizing Mallows (1973) Cp criteria for panel
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data settings. These criteria imply minimizing the sum of squared residuals when k
factors are estimated and penalizing the overfitting. One such formulation suggests
choosing the number of factors using the criteria

(33) PC (ν)(k∗) = min
k∈N,k≤Lmax

(
N∑

r=k+1
λ̂(ν)

r

)
+k

(
N∑

r=Lmax
λ̂(ν)

r

)(
log(C 2

N T )

C 2
N T

) ,

for the constant CN T = min(
p

N ,
p

T ) and a prespecified Lmax < min(N ,T ). Bai and
Ng (2002) propose information criteria that do not depend on the choice of Lmax. We
consider the above modified version

(34) IC (ν)(k∗) = min
k∈N,k≤L

log

(
1

N

N∑
r=k+1

λ̂(ν)
r

)
+k

(
log(C 2

N T )

C 2
N T

) .

Here using ν= (0, . . .,0)> will give L while using ν= d will give the factors Ld .

Another possibility for the choice of number of components is to compute the vari-
ance explained by each nonorthogonal basis by

(35) Var(δ̂(d)
r,T γ̂

(d)
r,T ) = 〈γ̂(d)

r,T , γ̂(d)
r,T 〉λ̂r .

We can sort the variances in decreasing order and use either equation (33) or (34) to
select the number of components.

3.2 Simulation Study

We investigate the finite sample behavior of our estimators in a simulation study,
which is guided by the real data application in Section 3.3. Simulated SPDs are mod-
eled as mixtures of G components, q(m,τ) = ∑G

l=1 wl q l (m,τ), where q l are fixed ba-
sis functions and wl are random weights. For fixed τ we consider q l (·,τ) to be a log-

normal density functions, with mean
(
µl − 1

2σ
2
l

)
τ and variance σ2

l τ, and simulate

weights wi l with
∑G

l=1 wi l = 1, where i = 1, . . . , N is the index for the day, then

(36) qi (m,τ) =
G∑

l=1
wi l

1

m
√

2πσ2
l τ

exp

−1

2


log(m)−

(
µl − 1

2σ
2
l

)
τ

σl
p
τ


2
.

Following Brigo and Mercurio (2002) the prices of call options for these SPDs are

(37) Ci (m,τ) = exp(−riττ)
G∑

l=1
wi l

{
exp(µlτ)Φ(y1)−mΦ(y2)

}

where y1 =
log

(
m−1

)
+

(
µl+ 1

2σ
2
l

)
τ

σl
p
τ

, y2 =
log

(
m−1

)
+

(
µl− 1

2σ
2
l

)
τ

σl
p
τ

andΦ is the standard normal cdf.
This representation corresponds to a factor model in which the mixture components
are densities associated with a particular state of nature and the loadings are equiva-
lent with probabilities of states.
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T 50 250

N X̂ (d)• Mean Var Med IQR Mean Var Med IQR

10

F PC A1 0.1876 0.0367 0.1300 0.1325 0.0780 0.0025 0.0643 0.0546

F PC A2 0.2238 0.1212 0.1295 0.1466 0.0762 0.0026 0.0630 0.0518

Indi v. 0.2709 0.0900 0.1928 0.1838 0.1105 0.0054 0.0916 0.0708

25

F PC A1 0.0917 0.0066 0.0680 0.0580 0.0404 0.0006 0.0336 0.0223

F PC A2 0.1553 0.0966 0.0878 0.0887 0.0586 0.0016 0.0489 0.0406

Indi v. 0.2691 0.0995 0.1889 0.1848 0.1111 0.0052 0.0916 0.0719

Table 1. Results of the simulation described in Section 3.2 with different values for T and N .

F PC A1 and F PC A2 are superior in sense of MSE over the individual estimation of the derivatives

in each setting. F PC A1 is better than F PC A2 except for N = 10, T = 250. For F PC A1 and

F PC A2 the estimation improves with raising N and T . These results support our asymptotic

results given by Proposition 2.2 and 2.5.

FPCAsimulation

We illustrate the finite sample behavior for G = 3 with µ1 = 0.4, µ2 = 0.7, µ3 = 0.1,
and σ1 = 0.5, σ2 = 0.3, σ3 = 0.3. The loadings are simulated from the positive half-
standard normal distribution, then standardized to sum up to one. One can verify
that the correlation matrix for the loadings is

R =

 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

 ,

which is singular with rank(R) = 2. As a result, the covariance operator of the SPD
curves has L = G −1 nonzero eingenvalues. In this example, using a mixture of three
factors means that only two principal components are necessary to explain the vari-
ance in the true curves.

Without loss of generality, we set riτ = 0, for each day i = i , . . . , N . We construct
a random grid for each observed curve Xi by simulating points ti k = (mi k ,τi k ), k =
1, . . .,T from a uniform distribution with continuous support [0.5,1.8]× [0.2,0.7]. Fi-
nally, we record noisy discrete observations of the call functions with additive error
term i.i.d. εi k ∼ N(0,0.12).

The true SPDs given by equation (36) are used to verify the performance of
X̂ (d)

F PC A1
, X̂ (d)

F PC A2
and of the individually estimated curves X̂ (d)

Indi v., in terms of mean in-

tegrated squared error (MSE), i.e., T −1 ∑T
k=1

{
X (d)(ti k )− X̂ (d)• (ti k )

}2
, for d = (2,0). For

evaluation we generate a common grid of 256 points from a uniform distribution. To
derive the optimal bandwidth in each case we stick to the rule-of-thumb approach
presented in Section 3.1. The bandwidth for the individually smoothed curve i is de-
rived by replacing p̂(ν)

i r in (31) by one and zero otherwise. The performance is recorded
for sample sizes N of 10 and 25 with T observations per day of size 50 and 250. This
procedure is repeated 500 times to get reliable results, mean, variance and the inter
quartile distance based at the MSE of the repetitions are given in Table 1.
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Both FPCA based approaches give better estimates for the derivative of the call
functions than an individually applied local polynomial estimator of the individual
curves. Both the mean and the median of the MSE are smaller which is a result of the
additional average over N for the basis functions as given by Proposition 2.5. How-
ever, the F PC A1 method performs decisively better for small T than the other two
both in terms of mean and standard deviation of the mean squared error. In addition
F PC A1 benefits more from increasing N than F PC A2. With small T for F PC A2 and
individual smoothing the variability of MSE is much bigger than for F PC A1 while the
median of F PC A1 and F PC A2 are comparable. This means individual smoothing and
F PC A2 must behave much worse than F PC A1 in some instances while F PC A1 was
able to stabilize the estimates. To get the same effect using F PC A2 a much bigger T is
needed. A possible explanation for this behavior is given by Proposition 2.2. The rates
of convergence for the estimators of the dual matrix entries rely on T . Thus in finite
sample, when T is small, the estimated loadings might be biased.

3.3 Real Data Example

1. Data description —We use settlement European call option prices written on
the underlying DAX 30 stock index. These prices are computed by EUREX at the close
of each trading day as an average of the intraday transaction prices. The data range
is ten years, between January 2, 2002 and December 3, 2011, and includes 2557 days.
The expiration dates of the options are set on the third Friday of the month. Therefore,
on a particular day, option prices with only a few maturities are available, see Fig-
ure 1. The distance between two consecutive observed maturities is higher for more
distant expiration dates, while the distance between two consecutive strike prices is
relatively constant. Methods that analyze curves jointly are generally better tailored to
this type of data, because they provide better estimates at grid points with only a few
observations available of the individual curves. We include call options with maturity
between one day and one year. The sample contains prices of options with an average
of six maturities and sixty-five strikes per day.

By assuming ’sticky’ coordinates for the daily observations, in accordance with
equation (27), we divide the strike and the call prices within one day by the stock
index forward price to ensure that the observation points are in the same range. Af-
terwards, we apply the estimation methodology described in Section 2 to the rescaled
call prices as a function of moneyness and maturity. Our proxy for the risk-free inter-
est rates are the EURIBOR rates, which are listed daily for several maturities. We apply
a linear interpolation to calculate the rate values for desired maturities.

2. Estimation results — We report the results for the loadings estimated by spec-
tral decomposition of dual covariance matrix for option price functions, and the es-
timates of the second partial derivative of the functional principal components. The
first eigenvalue of the dual covariance matrix M̂ (0) for the call option surfaces has a
dominant explanatory power. The order of magnitude of the following eigenvalues
decreases by a factor of ten for every few additional components. To detect the rela-
tive contribution of consecutive components, we construct the ratio of two adjacent
estimated eigenvalues in descending order, see Ahn and Horenstein (2013). The first
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two terms are dominating the sequence and there are spikes at the fourth and sev-
enth component ratio. PC (0) criterion suggests at least seven components, see values
of k∗ for Lmax ≥ 7 in Table 2. IC (0) criterion, which does not depend on the truncation
parameter Lmax , suggests seven components.

r , Lmax 1 2 3 4 5 6 7 8 9 10

λ̂r,T ×106 133.29 18.90 2.69 1.62 0.49 0.34 0.26 0.09 0.08 0.05

λ̂r,T /λ̂r+1,T 7.05 7.01 1.66 3.28 1.44 1.31 2.83 1.18 1.70 1.35

k∗(PC (0)) - - - - - - 7 8 9 9

k∗(IC (0)) - - - - - - 7 - - -

Table 2. Estimated eigenvalues and eigenvalue ratios. Number of factors by PC (0) criterion

FPCArealdata

A closer look at the dynamics of the loadings δ̂2,T shows an unusual behavior be-
tween mid-February 2007 through mid-June 2008. This interval spans the financial
crisis and extends until the end of the recession in the Euro Area, according to the
Center for Economic and Policy Research (CEPR) recession indicator. The loadings are
extremely volatile and display a particular time regularity of jumps. We identify these
jumps with the Mondays following an expiration date (options expire at a monthly
frequency, always on a Friday). Figure 1 highlights the dynamics of δ̂2,T on and follow-
ing an expiration day. After roughly two weeks, the loadings revert to a ’normal’ level.
During this period, for small maturities, there are only few observations available for
call prices with strikes larger than the current stock index. In addition, the absence
of a call string with close enough time to maturity on the following trading Monday,
introduces bias in the estimated smooth call surface for grid values outside the obser-
vation points range. The shape of the second estimated component γ̂(d)

2,T , displayed in
Figure 1, suggests that it is related to variations of the short end of the SPD term struc-
ture. A similar behavior of the loadings are observed for a few other components we
investigated: δ̂4,T , δ̂5,T and δ̂6,T . Their variances remain important even if we exclude
the interval with large jumps from the sample. The corresponding components have
similar shape features to the three components we discuss below. We argue that they
impact the option prices and SPDs when jumps in the underlying occur, and that they
related to the asymmetric behavior of the option prices along the maturity direction.

The estimated components γ̂(d)
1,T , γ̂(d)

3,T and γ̂(d)
7,T together with their loadings are dis-

played in Figure 2. They describe three types of asymmetry present in the dynamics of
the SPDs. The first component, is similar in shape to the empirical mean of the SPD. It
has a long left tail, specific to the negatively skewed densities and a peak located at a
value of moneyness slightly above one. For positive levels of the loadings, this compo-
nent increases the mass of SPD around the mode and decreases the values in the tails.
We find that this component is related to the time-varying volatility of the index re-
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Figure 1. The effect of expiration date on the level of estimated loadings δ̂2,T

FPCAexpiration

turns. The next component, γ̂(d)
3,T has a ’valley-hill’ pattern, which shifts mass around

the central region of the density. A positive shock in the direction of this components
increases the negative skewness, and a large negative shock can reverse the sign of
the SPD skewness. This component is interpreted as a skewness factor. The last com-
ponent, γ̂(d)

7,T takes negative values in the left tail and displays a prominent positive
valued peak at the right of the mode of the empirical SPD mean. This component rep-
resents a tail factor, and we show that its loading can be interpreted as the volatility of
volatility index.

The functional principal components of the reduced model
∑

r∈{1,3,7} δ̂r,T γ̂
(d)
r,T re-

semble closely the three components displayed in Figure 2. Further analysis shows
that when including any additional component to the reduced representation, the
shape of the orthogonal basis changes to some extent. The loadings of all orthogo-
nalized components become ’contaminated’ with jumps. Moreover, all the loadings
estimated by decomposing M̂ (d), for d = (2,0)> feature the jump-behavior outlined
above, between mid-February 2007 and mid-September 2008. For those reasons, M̂ (0)

decomposition enables a better interpretation of the components, by separating the
continuous and discontinuous sources of variation in the SPDs.

We show next that the first estimated component γ̂(d)
1,T is related to the expected

variance under a risk neutral measure Q, which admits the density q . Under this mea-
sure, the prices are martingales. Equations (6) and (26) yield

(38)
EQ

i

(
si+τ/Fi

)
exp(riττ)

=
∫ ∞

0
mq̃(m,τ)dm +

∞∑
r=1

δi r

∫ ∞

0
mγ(d)

r (m,τ)dm = 1,

18

https://github.com/QuantLet/FPCA/tree/master/FPCAexpiration


1.51.25

Moneyness

10.750.5
0

0.25
0.5

Maturity

0.75

200

0

-200
1

.̂
(d

)
1
;T

2002 2004 2006 2008 2010 2012

/̂ 1
;T

-0.06

-0.04

-0.02

0

0.02

0.04

1.51.25

Moneyness

10.750.5
0

0.25
0.5

Maturity

0.75

1000

0

-1000
1

.̂
(d

)
7
;T

2002 2004 2006 2008 2010 2012

/̂ 7
;T

#10-3

-2

-1

0

1

2

1.51.25

Moneyness

10.750.5
0

0.25
0.5

Maturity

0.75

-100

0

100

1

.̂
(d

)
3
;T

2002 2004 2006 2008 2010 2012
/̂ 3

;T
-0.015

-0.01

-0.005

0

0.005

0.01

Figure 2. Estimated components γ̂(d)
1,T , γ̂(d)

3,T and γ̂(d)
7,T and their loadings obtained by the

decomposition of the dual covariance matrix M̂ (0)

FPCAcomponents

where q̃ is the population mean. The computation of the second moment gives

(39)
VarQ

i

(
si+τ/si

)
exp(riττ)2 =

∫ ∞

0
m2q̃(m,τ)dm +

∞∑
r=1

δi r

∫ ∞

0
m2γ(d)

r (m,τ)dm −1.

We consider the empirical version of Equation (39), for τ = 1 month. Instead of com-
puting the integrals, based on our estimates of q̃ and γ(d), we assume them to be un-
known coefficients in a linear regression, in which the empirical loadings are used as
explanatory variables of the real-data proxy for the standardized variance. In the nu-
merator, we use the squared VDAX index multiplied by τ. This index is computed by
Deutsche Börse AG from the prices of call and put options and reflects market expecta-
tion under the risk neutral measure of the 30 day ahead square root implied variance
for the DAX 30 log-returns, which is then annualized. Duan and Yeh (2010) show that
squared volatility index is a good approximation of the expected risk-neutral volatility
when the jumps are small. While the volatility index refers to the standard deviation
of the log-returns under the risk neutral measure, it can still be used in the regression
because the transformation q(logm,τ) = mq(m,τ) maintains the linear-relationship
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between the dependent and explanatory variables. We find that the most important
component in the regression is δ̂1,T (adjusted R-squared in the univariate regression
is 93.97%). When including δ̂3,T as an additional regressor, it increases the adjusted
R-squared to 94.06%, while δ̂7,T has a negative marginal contribution to the goodness
of fit of multivariate regression.

No skewness index is readily available, and we take a simple measure instead, Pear-
son’s skewness coefficient. In terms of equations (38) and (39), for a fixed maturity τ,
it is equal to

(40)
1−arg max

m

{
q(m,τ)

}
√

VarQ
i

(
si+τ/si

)
/exp(riττ)

.

Since the first component γ̂(d)
1,T is unimodal (as it is also γ̂(d)

2,T ), the SPD mode is mostly

affected by the loadings of the third component γ̂(d)
3,T (and to some extend by those of

the seventh component γ̂(d)
7,T ).

3. Dynamic analysis of the loadings — In this section, we investigate the dynam-
ics of the loadings in the reduced model. The partial autocorrelation function of all
three time series display a salient spike at the first lag. This suggests that an autore-
gressive or perhaps an integrated model of order one might be appropriate to rep-
resent their dynamics. Their serial autocorrelations decay slowly, similarly to the in-
tegrated processes that feature a stochastic trend. Unit root and stationarity test re-
sults (not reported here) are ambiguous. When the null hypothesis assumes the ex-
istence of a unit root (augmented Dickey-Fuller unit-root test, Phillips-Perron test,
variance-ratio test for random walk) the tests reject the null, while stationary tests
that have the unit root hypothesis as an alternative (KPSS test, Leybourne-McCabe
stationarity test) favor the alternative. Based on these results, we further investigate
if the loadings are fractionally integrated of order α ∈ (0, 1), which is typical to long-
memory processes. We employ Lo (1991)’s modified R/S̃ (range over standard devia-
tion) rescaled statistic ṼN , for a time series sample of N observations. The denomina-
tor of the statistic is computed as the square root of Newey and West (1987) estima-
tor of the long run variance of the time series. For a maximum lag q = [N 1/4] = 9,
we obtain ṼN ,1(9) = 5.1582, ṼN ,3(9) = 4.5248 and ṼN ,7(9) = 4.9893, with 95% con-
fidence interval (0,809, 1,862). The tests reject the hypothesis that loadings have
short-memory. We also apply Geweke and Porter-Hudak (1983) log-periodogram re-
gression model to estimate the Hurst exponent. The estimates are HGPH

1 = 1.3736,
HGPH

3 = 1.1761 and HGPH
7 = 1.1433 for the cutoff [N 1/2] = 50. The 95% confidence

interval (0.2981, 0.7019) for the the GPH estimator is calculated using a bootstrap-
ping procedure proposed by Weron (2002). These estimates imply an order of integra-
tion α̂GPH

r = HGPH
r − 0.5, r = 1,3,7. It is known that in the presence of large autore-

gressive or moving average terms, α̂GPH
r is biased upwards. In general, these models

are nontrivial to estimate by other methods. Furthermore, fractionally integrated pro-
cesses lack a clear economic interpretation. Therefore, instead of including a large
number of autoregressive terms we use a parsimonious AR(1) model with time vary-
ing coefficients to approximate the long memory process. This is appropriate also for
α ∈ (1/2, 1), when the loadings are not stationary, see Comte and Renault (1998).
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Figure 3. Time varying autoregressive coefficients, standard deviations of the error, pairwise

error correlations from fitting a univariate AR(1) model to each loading; and time varying standard

deviation of the VDAX volatility index estimated daily with a moving window of 250 observations

FPCAloadings

We consider the following law of motion for the loadings

(41) δ̂i r,T = br δ̂i−1r,T +ei r , Var(ei r ) =σ2
er ,

where br is the autoregressive coefficient, r = 1, 3, 7. We reestimate equation (41) daily
on a moving window of 250 observation using OLS. This adaptive estimation proce-
dure helps detect the possible sources of non-stationarity in the estimated loadings,
by allowing the autoregressive coefficient and the error variance to vary over time.

The upper left panel of Figure 3 displays the estimated autoregressive coefficients.
δ̂1,T is very persistent (b̂1 is close to one) for most of the time, except 2004. Interest-
ingly, b̂3 is relatively small between 2003-2006 and increases significantly thereafter,
suggesting a possible regime shift. b̂7 is relatively high and its variation seems sensi-
tive to the changes in the other two parameters.

In addition, we compute the time-varying correlations between the error terms in
each loading equation. These correspond to the non-diagonal entries of the empirical
error covariance matrix for a vector autoregressive model of order one VAR(1) fitted
to the loadings, with diagonal autoregressive coefficient matrix. The two lower panels
of Figure 3 illustrate the results. The error correlation of the skewness with the volatil-
ity and the tail factor loadings move closely together, suggesting a strong relationship
between the volatility and the tail factors. We focus on cor r (ê1, ê3), which describes
the dynamic relationship between the changes in SDP volatility and skewness. Most
of the time, the plotted correlation is negative, meaning that positive changes in the
SPD variance are associated on average with increases in the negative skewness. The
negative correlation between an asset return and its changes of volatility is generally
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known as the leverage effect. The correlation reverses sign and becomes positive be-
tween 2007-2009. This means that when volatility increases, there is a change in the
concentration mass in the left side of the density, in the area of medium-ranged nega-
tive returns. We identify this behavior with the implied volatility skew puzzle, as doc-
umented by Constantinides and Lian (2015). The authors rationalize this behavior
through the reduction in put option supply from credit-constrained market makers
together with an increase in the demand for OTM puts required for hedging purposed,
see net buying pressure in Bollen and Whaley (2004), Gârleanu et al. (2009).

Typically, the error correlation cor r (ê1, ê7) is negative. Its magnitude decreases and
reaches values close to zero in 2009. In the lower right panel of Figure 3, we also plot
the 250-observation standard deviation σ̂IV of the VDAX implied volatility index. The
two time-series are strongly correlated (the correlation coefficient is 90.78% ). This
suggests that the tail component can be interpreted as the volatility of volatility risk
factor. Similar interpretations were proposed in Du and Kapadia (2012), Huang and
Shaliastovich (2014) or Park (2015), who use different measures of the volatility-of-
volatility implied by VIX (the implied volatility index of the S&P 500) as a tail risk in-
dicator. The tail factor takes highest positive values during the financial crisis, consis-
tent with fat tail and high risk hypothesis.

To verify the stability of the results reported, we repeat the regression analysis by
including a constant in equation (41). The root mean square error does not decrease
significantly. We also estimate the model by including the lagged values of the other
two loadings as additional explanatory variables. Some of the estimated autoregres-
sive coefficients take value above one. Independently of these modeling choices, the
estimated error covariances are very similar to those shown in Figure 3. These suggest
that changes in the correlation sign for the levels is due to the error term correlation
structure and not to changes in the lagged cross-term interactions.

Several stylized facts emerge from the moving window estimation of autoregres-
sive models for the loadings that summarize the dynamics of SPDs. When volatility
is small, the innovations to the volatility, skewness and volatility of volatility loading
equations are very strongly correlated. When volatility increases, the correlation struc-
ture changes. In particular, the leverage parameter changes sign during the financial
crises. By including volatility of volatility as an additional factor, see also Huang and
Shaliastovich (2014), our study distinguishes between the volatility induced skewness
through the leverage effect and by the volatility of volatility induced skewness, see
also Feunou and Tédongap (2012). These findings may have important consequences
for the formulation of stochastic volatility models for option pricing. The empirical
evidence suggests that the option markets include sources of variation that may not
be present in the underlying’s dynamics, such as frictions between option demand for
hedging purposes and credit constrains for refinancing. It may be possible to formu-
late a model in which the changes in error correlations modify endogenously, possibly
by controlling for the credit availability on the market.

4 Conclusions

In this paper, we describe two methods for representing derivatives of multivariate
curves using FPCA techniques. First, spectral decomposition is applied to the dual
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covariance matrix of derivatives. Secondly, the dual covariance of the original curves
is considered, and derivatives are obtained by differentiation of the functional prin-
cipal components of the covariance operator. Thus, the second approach expresses
the dynamics of derivatives in terms of uncorrelated loadings but the basis functions
are no longer orthonormal. We demonstrate that when an underlying factor model is
assumed, estimating curve derivatives from observed discrete and noisy data using a
low-dimensional representation, the second method performs better both asymptot-
ically and in finite sample.

In the empirical study, we show that the second method provides accurate results
for understanding the time variability of implied SPDs. We apply this analysis to DAX
30 index option data observed at daily frequency. Three main factors are identified,
which could be linked to the diffusion processes of the stochastic volatility models.
The first factor is strongly connected to the risk-neutral variance, conditional upon
that no jumps occur. The second factor is related to the time varying conditional skew-
ness induced by the leverage effect. We find that this component of negative skewness
declines during the financial crises, possibly as a result of the credit crunch. Time-
varying volatility of volatility constitutes an additional risk channel, which manifests
as negative tail risk. Further factors are related to the term structure and jump compo-
nent risk.
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5 Appendix

5.1 Assumptions summary

Assumption 5.1 The curves Yi , i = 1, . . ., N are observed at a random grid ti 1, . . ., ti Ti ,

ti j ∈ [0,1]g having a common bounded and continuously differentiable density f with

support supp( f ) = [0,1]g and the integrand u ∈ supp( f ) and inf
u

f (u) > 0.

Assumption 5.2 E(εi k ) = 0, Var(εi k ) = σ2
iε > 0 and εi k are independent of Xi , and

E
[
ε4

i k

]
<∞,∀i ,k.

Assumption 5.3 Let KB (u) = 1
b1×...×bg

K (u ◦b). K is a product kernel based on symmet-

ric univariate kernels. B is a diagonal matrix with b = (b1, . . .,bg )> at the diagonal.

The kernel K is bounded and has compact support on [−1,1]g such that for u ∈ Rg∫
uuT K (u)du = µ(K )I where µ(K ) 6= 0 is a scalar and I is the g × g identity matrix.

Conditions 2 and 3 from Masry (1996) are fulfilled.

Assumption 5.4 ρ−∑g
l=1 dl and p −∑g

l=1 dl are odd.

Assumption 5.5 |σ̂2
iε−σ2

iε| =OP (T −1/2)

Assumption 5.6 We require that it holds

(42) sup
r∈N

sup
t∈[0,1]g

|ϕ(d)
r (t )| <∞ , sup

r∈N
sup

t∈[0,1]g
|γ(d)

r (t )| <∞

(43)
∞∑

r=1

∞∑
s=1

E
[(
δ(ν)

r i

)2 (
δ(ν)

si

)2
]
<∞ ,

∞∑
q=1

∞∑
s=1

E
[(
δ(ν)

r i

)2
δ(ν)

si δ
(ν)
qi

]
<∞, ν= (0,d)

for all r ∈N.

Assumption 5.7 We require that the eigenvalues are distinguishable such that for any

T and N and fixed r ∈ 1, . . .,L there exists 0 <C1,r <∞, 0 <C2,r ≤C3,r <∞ such that

NC2,r ≤ l (ν)
r ≤ NC3,r

min
s=1,...,N ;s 6=r

|l (ν)
r − l (ν)

s | ≥ NC1,r .
(44)
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5.2 Proof of Lemma 2.1

1. Univariate case (g=1) — In the following proof we use d instead of ν. As
noted by Ruppert and Wand (1994) equation (16) can be stated up to a vanish-
ing constant using equivalent kernels. Equivalent kernels can be understand as an
asymptotic version of W T

d . Let el be a vector of length ρ with 1 at the l + 1 posi-
tion and zero else. Then W T

d (t ) evaluates the function at point u and is defined as
(T bd+1)−1eT

d ST (u)−1(1, t , . . ., tρ)T K (t ). ST (u) is a ρ ×ρ matrix with entries ST,k (u) =
(T b)−1 ∑T

l=1 K
(

tl−u
b

)
( tl−u

b )k such that

(45) ST (u) =


ST,0(u) ST,1(u) . . . ST,ρ(u)
ST,1(u) ST,2(u) . . . ST,ρ+1

...
...

. . .
...

ST,ρ(u) ST,ρ+1(u) . . . ST,2ρ(u)

 .

Accordingly

E(ST,k (u)) =(T b)−1
∫ 1

0

T∑
l=1

K

(
x −u

b

)(
x −u

b

)k

f (x)d x

=b−1
∫ 1+u

u
K

(
x

b

)(
x

b

)k

f (x)d x =
∫ (1+u)b−1

ub−1
K (t ) t k f (tb)d t .

(46)

Since K (t ) has compact support and is bounded, for a point at the left boundary
with c ≥ 0 u is of the form u = cb and at the right boundary u = 1−cb respectively. We
define Sk,c =

∫ ∞
−c t k K (t )d t and Sk,c =

∫ c
−∞ t k K (t )d t respectively and for interior points

Sk = ∫ ∞
−∞ t k K (t )d t . Further we construct the p ×p Matrix corresponding to (45) with

(47) S(u) =
Sc = (S j+l ,c )0≤ j ,l≤ρ , u is a boundary point

S = (S j+l )0≤ j ,l≤ρ , u is an interior point
.

The equivalent kernel is then defined as K u∗
d ,ρ (t ) = eT

d S(u)−1(1, t , . . ., tρ)T K (t ) and the
estimator can be rewritten as

(48) X̂ (d)
b (u) = d !βd (u) = d !

T f (u)bd+1

T∑
l=1

K u∗
d ,ρ

(
tl −u

b

)
Y (tl ){1+OP (1)}.

The only difference between W T
d and K u∗

d ,ρ is that ST (u) is been replaced by f (u)S(u).

Regarding Masry (1996) we can further state that with a bandwidth fulfilling l og (T )
T b → 0

we have uniformly in u ∈ [0,1] that ST (u)−1 → S(u)−1

f (u) almost surely as T →∞. We will
drop the u∗ index concerning the equivalent kernel from now on.

By construction, the equivalent kernel fulfills that using the Kronecker-Delta δ

(49)
∫

uk K ∗
d ,ρ (u)du = δd ,k 0 ≤ d ,k ≤ ρ.

As mentioned by Fan et al. (1997), the design of the kernel automatically adapts to the
boundary which gives the same order of convergence for the interior and boundary
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points, see Ruppert and Wand (1994). The estimator can be rewritten as∫
d !2

T∑
j=1

T∑
l=1

W T
d

(
t j −u

b

)
W T

d

(
tl −u

b

)
Y (tl )Y (t j )du

=
∫

d !2

T 2 f (u)2b2d+2

T∑
l=1

T∑
j=1

K ∗
d ,ρ

(
t j −u

b

)
K ∗

d ,ρ

(
tl −u

b

)
Y (tl )Y (t j ){1+OP (1)}du.

(50)

For the expectation we get

E
(
θd ,ρ |t1, . . ., tT

)
=

∫ 1

0
d !2

T∑
j=1

T∑
l=1

W T
d

(
t j −u

b

)
W T

d

(
tl −u

b

)
X (tl )X (t j )du

+d !2
(
σ2
ε− σ̂2

ε

)∫ 1

0

T∑
j=1

W T
d

(
t j −u

b

)2

du

=
{

d !2
∫ 1

0

∫ 1

0

∫ 1

0

f (x) f (y)

b2(d+1) f (z)2
K ∗

d ,ρ

(
x − z

b

)
K ∗

d ,ρ

(
y − z

b

)
X (x)X (y)d xd yd z

+OP

(
1

T 3/2b2d+1

)}
{1+OP (1)}

=
{∫ 1

0
X (d)(z)X (d)(z)d z

+2
d !

(ρ+1)!

∫ 1

0

bρ+1

bd

(∫ 1

0
uρ+1K ∗

d ,ρ (u)du

)
X (ρ+1)(z)X (d)(z)d z

+ d !2

(ρ+1)!2

∫ 1

0

b2ρ+2

b2d

(∫ 1

0
uρ+1K ∗

d ,ρ (u)du

)2

X (ρ+1)(z)X (ρ+1)(z)d z

+OP

(
1

T 3/2b2d+1

)}
{1+OP (1)}

(51)

These results where obtained by substitution with x = z +ub, y = z + vb and using a
ρ + 1 order Taylor expansion of X (z +ub) and X (z + vb) together with (49). We get∫

[0,1]g X (u)2du −E(θd ,ρ |t1, . . ., tT ) =Op

(
bρ+1−d +

(
T 3/2b2d+1

)−1
)
.

First note that using the second mean value integration theorem there exits some
c ∈ (0,1) and we can write∫

f (z)−2K ∗
d ,ρ

(
y − z

b

)
K ∗

d ,ρ

(
x − z

b

)
d z = f (c)−2

∫
K ∗

d ,ρ

(
y − z

b

)
K ∗

d ,ρ

(
x − z

b

)
d z.(52)

We introduce a kernel convolution with

K C
d ,ρ

(
y −x

) def=
∫

K ∗
d ,ρ

(
y − z

)
K ∗

d ,ρ (x − z)d z(53)

and thus using z = u
b

K C
d ,ρ

(
y −x

b

)
=

∫
K ∗

d ,ρ

(
y

b
− z

)
K ∗

d ,ρ

(
x

b
− z

)
d z =

∫
b−1K ∗

d ,ρ

(
y −u

b

)
K ∗

d ,ρ

(
x −u

b

)
du.

(54)
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Note that the integral over K C
d ,ρ is computed over an parallelogram D bounded by the

lines x+y = 2, x+y = 0, x−y = 1, x−y =−1. Using the substitution x = v+u
2 b, y = u−v

2 b

∫ ∫
D

K C
d ,ρ

(
y −x

b

)
d yd x = b

2

∫ 2

0

∫ 1

−1
K C

d ,ρ

(
v +u −u + v

2

)
d vdu = b

∫
K C

d ,ρ (v)d v.(55)

Note that the variance can be decomposed

Var
(
θd ,ρ |t1, . . ., tT

)
(56)

= d !4

T 4(b4d+2) f (c)4

{
T∑

l=1
K C

d ,ρ (0)2 Var(Y (tl )2)

(57)

+2
T∑

l=1

T∑
k 6=l

Var(K C
d ,ρ

(
tl − tk

b

)
Y (tl )Y (tk ))(58)

+4
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

Cov(K C
d ,ρ

(
tk − tl

b

)
Y (tk )Y (tl ),K C

d ,ρ

(
tl − tk ′

b

)
Y (tl )Y (tk ′))(59)

+ 24
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

T∑
l ′ 6=k ′

Cov(K C
d ,ρ

(
tl − tk

b

)
Y (tl )Y (tk ),K C

d ,ρ

(
tl ′ − tk ′

b

)
Y (tl ′)Y (tk ′))

(60)

+OP

(
1

T

)
.(61)

Expression (60) vanishes and (57) given by d !4

T 3(b4d+2) f (c)4

∫
K C

d ,ρ (0)2 Var(Y (y)2) f (y)d y{1+
OP (T −1)} is dominated by (58) because

2d !4

T 4(b4d+2) f (c)4

T∑
l=1

T∑
k 6=l

K C
d ,ρ

(
tl − tk

b

)2

Var(Y (tl )Y (tk ))

= 2d !4

T 4(b4d+2) f (c)4

T∑
l=1

T∑
k 6=l

K C
d ,ρ

(
tl − tk

b

)2 {
E(Y (tl )2Y (tk )2)−E(Y (tl )Y (tk ))2

}
=2d !4

∫
(σ4

ε +2σ2
εX (x)2) f (x)2d x

T 2b4d+1 f (c)4

∫ (
K C

d ,ρ(u)
)2

du +OP

(
1

T 2b4d+1

)
.

(62)

Before looking at expression (59), note that with m ≥ 2d

∫ ∫
d !2

b2d+1
K C

d ,ρ

(
x − y

b

)
X (x)d xd y

= d !2

b2d

∫ ∫ ∫
K ∗

d ,ρ (m)K ∗
d ,ρ (z) X

{
y + (m − z)b

}
d zdmd y

=(−1)d
∫ 1

0
X (2d)(y)d y +OP (1)

(63)

by performing two Taylor expansions with mb first and then −zb.
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We can thus derive for expression (59) that

H(T )
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

Cov(K C
d ,ρ

(
tk − tl

b

)
Y (tk )Y (tl ),K C

d ,ρ

(
tl − tk ′

b

)
Y (tl )Y (tk ′))

=H(T )
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

K C
d ,ρ

(
tk − tl

b

)
K C

d ,ρ

(
tl − tk ′

b

){
E

(
Y (tk )Y (tl )2Y (tk ′)

)
−E

(
Y (tk )Y (tl )

)
E

(
Y (tl )Y (tk ′)

)}
=H(T )

T∑
l=1

T∑
k=1

T∑
k ′=1

K C
d ,ρ

(
tk − tl

b

)
K C

d ,ρ

(
tl − tk ′

b

)
X (tk )σ2

εX (tk ′)

− 2d !4

T 4(b4d+2) f (c)4

T∑
k=1

T∑
k ′=1

K C
d ,ρ

(
tl − tk ′

b

)2

X (tk )σ2
εX (tk ′)

= 4σ2
ε

T f (c)

∫
X (2d)(y)X (2d)(y)d y −OP

(
1

T 2(b4d+1)

)
,

where H(T )
def= 4d !4

T 4(b4d+2) f (c)4 . Thus Var
(
θd ,ρ |t1, . . ., tT

)
=OP

(
1

T 2(b4d+1)

)
.

2. Multivariate case (g > 1) — The same strategy also works in the multivariate
case by using multivariate Taylor series. Using the multi-index notation introduces in
section 2.4 and a = (a1, ..., ag ), al ∈ N+ a multivariate taylor series of degree k < ρ is
given by

X (x −u ◦b) = ∑
0≤|a|≤k

X (a)(x)

a!
(u ◦b)a +OP

(
uk+1 max(b)k+1

)
.(64)

Using the equivalent kernel by Ruppert and Wand (1994) extended to the case and us-
ing Masry (1996) we can further state that with a bandwidth fulfilling log (T )

T b1×...×bg
→ 0

we have uniformly in u ∈ [0,1]g that ST (u)−1 → S(u)−1

f (u) almost surely as T → ∞.
Furthermore, the multivariate equivalent kernel has the properties that with v =
(v1, . . ., vg ), vl ∈N+

∫
uv K ∗

d ,ρ (u)du = δd ,v , |v | ≤ ρ, 0 ≤ di ∀i = 1, . . .g .(65)

Let c be the position of max(b) in b and ρ̃ be a vector of length g which is ρ+1 at
the c − th position and 0 else. Then for the bias

E
(
θd ,ρ |t1, . . ., tT

)
=

{∫
[0,1]g

X (d)(z)X (d)(z)d z

+2
d !

(ρ+1)!

∫
[0,1]g

max(b)ρ+1

bd

(∫
uρ̃K ∗

d ,ρ (u)du

)
X (ρ̃)(z)X (d)(z)d z

+OP

(
max(b)ρ+1

bd
+ 1

T 3/2(b2d b1 × . . .×bg )

) {1+OP (1)}

(66)
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Further note that for the convoluted kernel we get

K C
d ,ρ

(
(y −x)◦b−1

)
=

∫
(b1 × . . .×bg )−1K ∗

d ,ρ

{
(y −u)◦b−1

}
K ∗

d ,ρ

{
(x −u)◦b−1

}
du.

Accordingly, we get for the multivariate equivalent of expression (58) that

2d !4

T 4 f (c)4(b2
1 × . . .×b2

g b4d )

T∑
l=1

T∑
k 6=l

K C
d ,ρ

(
(tl − tk )◦b−1

)2
V ar (Y (tl )Y (tk ))

=2d !4
∫

(σ4
ε +2σ2

εX (x)2) f (x)2d x

T 2 f (c)4b1 × . . .×bg b4d

∫ (
K C

d ,ρ(u)
)2

du{1+OP (1)}

and because we assume that m ≥ 2|d | we get for the multivariate equivalent of expres-
sion (59) that

A(T )
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

Cov(K C
d ,ρ

(
(tk − tl )◦b−1

)
Y (tk )Y (tl ),K C

d ,ρ

(
(tl − tk ′)◦b−1

)
Y (tl )Y (tk ′))

=A(T )
T∑

l=1

T∑
k 6=l

T∑
k ′ 6=k

K C
d ,ρ

(
(tk − tl )◦b−1

)
K C

d ,ρ

(
(tl − tk ′)◦b−1

)
X (tk )σ2X (tk ′)

= 4σ2
ε

T f (c)

∫
X (2d)(y)X (2d)(y)d y +OP

(
1

T 2(b4d b1 × . . .×bg )

)

where A(T )
def= 4d !4

T 4(b4d b2
1×...×b2

g ) f (c)4 .

5.3 Proof of Proposition 2.2

1. Asymptotic results— We first have look at the estimator M̃ (0) for the special case
when a common random grid is present. The only error here comes from approximat-
ing the integral in equation (12) with a sum.

M (0)
i j − M̃ (0)

i j =
∫

[0,1]g
Xi (t )X j (t )d t − 1

T

T∑
l=1

Yi (ti l )Y j (t j l )+ I (i = j )σ̂2
iε

=
∫

[0,1]g
Xi (t )X j (t )d t − 1

T

T∑
l=1

(
Xi (tl )+εi l

)(
X j (tl )+ε j l

)
+ I (i = j )σ̂2

iε

=
∫

[0,1]g
Xi (t )X j (t )d t − 1

T

T∑
l=1

Xi (tl )X j (tl )

− 1

T

T∑
l=1

Xi (tl )ε j l −
1

T

T∑
l=1

X j (tl )εi l −
1

T

Ti∑
l=1

εi lε j l + I (i = j )σ̂2
iε.

(67)

By construction, it hold that E
[
εi lε j l

]
= 0, i 6= j , E

[
εi l

2
]
=σ2

iε and E
[

Yi (tl )ε j l

]
= 0.

All sums for example 1
T

∑T
l=1 Xi (tl )X j (tl ) are the corresponding empirical estimator

for the mean, i.e.,
∫

[0,1]g Xi (t )X j (t )d t = E
[

Xi X j

]
. By the law of large numbers, it con-

verges in probability to the theoretical mean as T →∞. Using the central limit theo-
rem we can further state that

∫
[0,1]g Xi (t )X j (t )d t− 1

T

∑T
l=1 Xi (tl )X j (tl ) is approximately
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normal, which gives an error of order T −1/2 regardless of dimension g . By requiring
that σ̂iε is also T −1/2 consistent we get T −1/2 for all elements.

To understand M̂ (0) we investigate two possible sources of error in the construc-
tion of the estimator. One coming from interpolation and smoothing at a common
grid and the other from approximating the integral with a sum. First note that by the
same arguments as for M̃ (0) the error of the integral approximation is of order T −1/2.
Besides the error for the off diagonal elements is smaller than for the diagonal, thus
the leading error source is given by Lemma 2.1. The same arguments also work to
derive asymptotic results for M̂ (d).

5.4 Proof of Proposition 2.4

Under the assumptions of Proposition 2.4 together with the requirements of Lemma
2.2 for ν= (0,d) and the setup of Remark 2.3

||M̂ (ν) −M (ν)|| ≤ tr

{(
M̂ (ν) −M (ν)

)> (
M̂ (ν) −M (ν)

)}1/2

=Op

(
N T −1/2

)
.(68)

Given that
∑T

l=1 p(ν)
l r = 0,

∑T
l=1

(
p(ν)

l r

)2 = 1 ∀r and applying Cauchy-Schwarz inequality

gives
∑N

l=1 |p(ν)
l r | =O

(
N 1/2

)
. This together with Lemma A from Kneip and Utikal (2001)

leads to

(69) E
[(

p(ν)
r

)>
(M̂ (ν) −M (ν))p(ν)

r

]2

=Op

(
N

T

)
We are now ready to make a statement about the basis that span the factor space.∣∣∣∣∣∣∣

1√
l (ν)

r

N∑
i=1

p(ν)
i r X (d)

i (t )− 1√
l̂ (ν)

r

N∑
i=1

p̂(ν)
i r X̂ (d)

i ,h (t )

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
1√
l (ν)

r

N∑
i=1

p(ν)
i r

[
X (d)

i (t )− X̂ (d)
i ,h (t )

]∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣

N∑
i=1

 1√
l (ν)

r

p(ν)
i r − 1√

l̂ (ν)
r

p̂(ν)
i r

 X̂ (d)
i ,h (t )

∣∣∣∣∣∣∣∣ .

(70)

The first term is discussed in equation (2.4). Therefore we take a look at the second
term here. As a consequence of Assumption (5.7), Lemma A (a) from Kneip and Utikal
(2001) together with equation (69) gives

l (ν)
r − l̂ (ν)

r = (p(ν)
r )T (M̂ (ν) −M (ν))p(ν)

r )+Op (N T −1) =Op (N 1/2T −1/2 +N T −1),(71)

where

(72)
1√
l̂ (ν)

r

− 1√
l (ν)

r

= l (ν)
r − l̂ (ν)

r√
l̂ (ν)

r

√
l (ν)

r (
√

l̂ (ν)
r +

√
l (ν)

r )
=Op

(
T −1/2N−1 +T −1N−1/2

)
.

Using Lemma A (b) from Kneip and Utikal (2001) we further get

|p̂(ν)
i r −p(ν)

i r | =Op

(
(N T )−1/2

)
and ||p̂(ν)

r −p(ν)
r || =Op

(
T −1/2

)
.(73)

30



Putting all results together for the second term gives∣∣∣∣∣∣∣∣
N∑

i=1

 1√
l (ν)

r

p(ν)
i r − 1√

l̂ (ν)
r

p̂(ν)
i r

 X̂ (d)
i ,h (t )

∣∣∣∣∣∣∣∣=

=

∣∣∣∣∣∣∣∣
N∑

i=1

 1√
l (ν)

r

− 1√
l̂ (ν)

r

 p̂(ν)
i r X̂ (d)

i ,h (t )+ 1√
l (ν)

r

N∑
i=1

(
p̂(ν)

i r −p(ν)
i r

)
X̂ (d)

i ,h (t )

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
 1√

l (ν)
r

− 1√
l̂ (ν)

r


∣∣∣∣∣∣∣∣

N∑
i=1

|p(ν)
i r |

∣∣∣∣(X̂ (d)
i ,h (t )

)∣∣∣∣

+

∣∣∣∣∣∣∣∣
 1√

l (ν)
r

− 1√
l̂ (ν)

r


∣∣∣∣∣∣∣∣ ||p̂

(ν)
r −p(ν)

r ||
∣∣∣X̂ (d)

i ,h (t )
∣∣∣+ 1√

l (ν)
r

||p̂(ν)
r −p(ν)

r ||
∣∣∣X̂ (d)

i ,h (t )
∣∣∣

=Op

(
(N T )−1/2

)∣∣∣X̂ (d)
i ,h (t )−X (d)

i ,h (t )+X (d)
i ,h (t )

∣∣∣
≤Op

(
(N T )−1/2

)
(Bias

(
X̂ (d)

j ,h (t )
)
+

√
Var

(
X̂ (d)

j ,h (t )
)
+

∣∣∣X (d)
i ,h (t )

∣∣∣).

(74)

Using Cauchy-Schwarz and equation (72) we see that first term is of order (N T )−1/2.
For the second term remember that l (ν)

r is of order N together with (73) this also leads
to order (N T )−1/2. Inserting the right hand side, equation (70) becomes

Op

(
max(h)p+1h−d

)
+Op

(
(N T h1 . . .hg h2d )−1/2

)
+Op

(
(N T )−1/2

)
Op

(
max(h)p+1h−d

)
+Op

(
(N T )−1/2

)
Op

(
(T h1 . . .hg h2d )−1/2

)
+Op

(
(N T )−1/2

)
=Op

(
max(h)p+1h−d

)
+Op

(
(N T h1 . . .hg h2d )−1/2

)
.

5.5 Proof of Proposition 2.5

Note that√
l (v)

r −
√

l̂ (v)
r = (l (v)

r − l̂ (v)
r )(

√
l (v)

r +
√

l̂ (v)
r )−1 =Op (T −1/2 +N 1/2T −1),(75)

together with (73) gives

δ̂i r − δ̂i r,T =
√

l (v)
r p(v)

i r −
√

l̂ (v)
r p̂(v)

i r

=
(√

l (v)
r −

√
l̂ (v)

r

)
p(v)

i r −
√

l̂ (v)
r

(
p̂(v)

i r −p(v)
i r

)
=Op (T −1/2 +N 1/2T −1).

(76)

Using Proposition 2.4 it follows that

|Yi (t )− Ŷi (t )| = |
K∑

r=1
δ̂i r γ̂

(v)
r (t )−

K∑
r=1

δ̂i r,T γ̂
(v)
r,T (t )|

=|
K∑

r=1
(δ̂i r − δ̂i r,T )γ̂r + δ̂i r,T (γ̂r − γ̂r,T )|

=Op

(
T −1/2 +N 1/2T −1 +max(h)p+1h−d + (N T h1 × . . .×hg h2d )−1/2

)
.

(77)
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