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1 Introduction

The documentation and study of jumps (discontinuities) in asset prices is
important for many financial decisions, and this has led to a burgeoning
literature that tests for jumps and characterizes their properties. The jump
test developed by Barndorff-Nielsen and Shephard (2006) test (henceforth the
BN-S test) plays a leading role in this literature, but since this test is designed
for a single asset while financial considerations usually involve many assets,
there is a need for tests that can detect simultaneous jumps in many assets
(co-jump tests) as well. Progress on this front includes the development of
tests for co-jumps in a pair of asset returns (Barndorff-Nielsen and Shephard
(2003), Gobbi and Mancini (2007) and Jacod and Todorov (2009)), as well
as a co-jump test developed by Bollerslev, Law and Tauchen (2008) that is
applicable to a large panel of high-frequency returns. The intuition behind
this last test (henceforth called the BLT test) is that idiosyncratic noise in
individual returns can hide the presence of a synchronous component, so
that a test based on the cross products of returns in a panel can avoid this
problem while still being sensitive to systematic movements across all stocks.
The BLT (2008) co-jump test relies on a measure of covariation in the

panel that is constructed using the average pair-wise cross product of re-
turns. However, a return-based estimator does not necessarily provide the
best estimator of this covariation. Its simplicity facilitates very straight-
forward construction of the test statistic, but the literature on covariance
estimation emphasizes efficiency-bias considerations in high frequency set-
tings, and efficient estimation is particularly desirable when conducting tests
within multivariate contexts. There are now many ways of measuring co-
variation in high frequency settings, and they vary with respect to their
computational difficulty, bias and efficiency. Of particular interest here is
the work in Bannouh, van Dijk and Martens (2009) that promotes the use
of range based estimators of covariance. Their Monte Carlo illustrates that
when there are no market frictions, realized co-range estimators can have
variances that are up to five times smaller than returns based realized co-
variance estimators, and that simple bias corrections can be very effective
when microstructure noise is present and trading is not synchronous. Thus
the use of intraday ranges instead of intraday returns can offer large efficiency
gains without substantially increasing the computational burden. The large
efficiency gains arise from the fact that the range can be very informative,
since it is constructed by looking at the entire price process in the sampled
time interval.
This paper proposes a new test for co-jumps in panels of high frequency

data that follows the intuition behind the BLT test, but uses intraday first-
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high-low-last (FHLL) price values to capture cross-variation. FHLL price
values were first used by Garman and Klass (1980) in the context of estim-
ating daily volatility. These authors suggested using the minimum variance
linear combination of the daily ranges and daily returns to estimate daily
volatility, so that the information in returns is augmented by the additional
information contained in the range. They showed that the asymptotic vari-
ance of this new estimator is 7.4 times smaller than the squared daily return
and 1.5 times smaller than the squared daily range for daily volatility es-
timation. Our use of first-high-low-last (FHLL) price values in the intraday
context offers the same efficiency gains, but like range based estimators, it
involves the need for bias correction because of the effects of microstructure
biases in high frequency settings. We use the correction proposed by Ban-
nouh et al (2009) for this purpose, because it is simple, easy to implement,
and it appears to account for the net effect of the many biases that occur in
the high frequency context.
Our proposed test statistic is easy to calculate because it neither relies on

estimating the entire covariance structure of returns in the panel, nor on any
explicit calculations of bivariate products of prices/returns (that might not
necessarily be observed at exactly the same time for different assets). In fact,
our test statistic can be calculated using existing univariate methodology,
because the average pair-wise cross product term in an n-asset context can
also be written in terms of the variance of the equally weighted portfolio and
each of the n individual asset variances (see Brandt and Diebold (2006), and
BLT (2008)). Like the BLT statistic, our test statistic can not only identify
jump days, but it can also explicitly pinpoint co-jump times. Given the
relative efficiency gains of FHLL estimators, we expect that co-jump tests
based on FHLL prices will be more powerful than the BLT (2008) returns
based co-jump test.
Our test is based on a multivariate extension of an FHLL estimator for

the covariance between two returns, and since an FHLL covariance estimator
is novel in itself, we conduct Monte Carlo simulations to assess and compare
it (and an associated bias-corrected version) with corresponding range and
return based covariance estimators. We simulate frictionless environments,
situations in which bid-ask bounce influences price, and situations in which
trades are infrequent and not synchronous, and we vary the intraday sampling
frequencies as well. As expected the (uncorrected) FHLL estimator is more
biased than its range and return based counterparts, but it is more efficient.
Once bias corrections are employed, the RMSE of the FHLL estimators are
lower than the (bias corrected) range and returns estimators, and often sub-
stantially so. Having established the superior properties of FHLL estimation,
we then use it to construct our co-jump test for the panel, and demonstrate
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via simulations that it has higher power than analogously constructed co-
jump tests based on realized range and realized variance. Finally, we study
an empirical example based on a high-frequency panel of forty stocks on the
Chinese mainland stock market. We use this data because our previous re-
search (Liao (2008)) has found that the jumps in individual stocks of this
emerging market are more frequent than those in developed financial mar-
kets. We find evidence of several co-jumps per month, and note that about
half of these can be linked to announcements about changes in monetary
policy or stock market regulations.
The rest of the paper is organized as follows. Section 2 introduces our

FHLL price based covariance estimator and analyzes its properties. Section
3 uses this new estimator to develop our FHLL price based co-jump test.
Section 4 conducts a Monte Carlo simulation to study the finite sample per-
formance of our new co-jump test, and compares its power properties with
those of the existing return-based co-jump test. Section 5 presents our main
empirical findings in a panel of stocks from the Chinese mainland stock mar-
ket. Section 6 concludes.

2 First-High-Low-Last Price Based Estimat-
ors

We let ps denote the log price of an asset, and assume that it evolves as a
standard continuous time diffusion process

dps = μ(s)ds+ σ(s)dWs,

where μ(s) and σ(s) denote the drift and local volatility respectively, andWs

is a standard Brownian motion.
We assume that high-frequency data are available for each day t which

runs from time t − 1 to t, and that we have prices relating to M intraday
periods denoted by {tj} for j = 1, . . . ,M , where tj ∈ [t−1, t]. In addition, we
have m+ 1 equally spaced price observations recorded within each intraday
time interval [tj−1,tj] (i.e. at t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj).1

The four extreme price values within each intraday time interval [tj−1,tj] are:
ptj−1: the first (log) price observed during the time interval [tj−1,tj];
ptj : the last (log) price observed during the time interval [tj−1,tj];
htj−1: the highest (log) price observed during the time interval [tj−1,tj],

which is max{t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj};
1M is the number of the intraday periods over a trading day, and each of these M

intraday periods is divided into m subintervals.
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ltj−1: the lowest (log) price observed during the time interval [tj−1,tj],
which is min{t(j−1)+(0/m), t(j−1)+(1/m),....t(j−1)+(m/m) = tj}.

2.1 First-High-Low-Last Price Based Variance Estim-
ator

The most popular approach to estimate the integrated variance
R t
t−1 σ

2(s)ds
of the above standard continuous time diffusion process is to use “Realized
Volatility”, which is constructed using the sum of squared interval returns
via

RVt =
MX
j=1

r2tj =
MX
j=1

(ptj − ptj−1)
2, (1)

where the return rtj of each time subinterval is calculated as the difference
between the last price and the first price of that interval. Andersen et al
(2001) and Barndorff-Nielsen and Shephard (2004) have proved that realized
variance is a consistent estimator for the integrated variation over [t − 1, t]
in the absence of microstructure noise, and that the asymptotic variance of
realized volatility is 2

R t
t−1 σ

4(s)ds.
The range of an asset’s price is defined to be the difference between the

highest price and the lowest price during a fixed time interval. The use
of the high-low price range in volatility estimation dates back to Parkinson
(1980). Recently Christensen and Podolskij (2007) and Martens and Dijk
(2007) have re-considered the use of price range in a high frequency data
context to estimate the integrated variation in a standard continuous time
diffusion model of (the logarithm of) an asset’s price as

RRV M,m
t =

1

γ2,m

MX
j=1

s2ptj =
1

γ2,m

MX
j=1

(htj−1 − ltj−1)
2, (2)

where γ2,m = E[s2w,m] and sw,m is the range of a standard Brownian motion
over a unit time interval [0, 1], when we observe m increments of the under-
lying continuous time process in each sampling interval tj. The parameter
γ2,m is monotonically increasing in m with γ2,1 = 1, and γ2,m → 4 ln 2 as
m→∞.
Intuitively, the range reveals more information than the return over the

same time interval because the highs and lows of asset prices are formed
from the entire price evolution path. Parkinson (1980) provided mathem-
atical derivations to show that the daily squared price range is about five
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times more efficient than the daily squared return for estimating daily volat-
ility. Simulations in Martens and van Dijk (2007) demonstrated that in a
frictionless market without microstructure noise, realized range has a lower
mean-squared error than realized volatility. This was corroborated by the
asymptotic properties derived by Christensen and Podolskij (2007). They
deduced the following central limit theorem for realized range, finding that

√
M(RRV M,m

t −
Z t

t−1
σ2(s)ds) −→MN(0,

γ4,m − γ22,m
γ22,m

Z t

t−1
σ4(s)ds),

where MN(., .) denotes a mixed Gaussian distribution, γr,m = E[srw,m] and

lim
m→∞

γ4,m−γ22,m
γ22,m

≈ 0.4073. They used this theorem to show that RRV M,m
t is

an unbiased and more efficient estimator of integrated variance than realized
volatility. If m = 1, RRV M,m

t is actually equal to realized volatility RVt

and
γ4,m−γ22,m

γ22,m
= 2, but when m → ∞ and the entire sample path of the

price process is available, RRV M,m
t becomes about five times more efficient

than RVt. In practice, inference is typically drawn from discrete data and
true ranges are not actually observed. Thus, the efficiency of the RRV M,m

t

estimator relative to RVt depends on how many observations in each intraday
period are available for the construction of the high-low price range measures.
The above two estimators are generated by either the intraday first and

last prices or the intraday highest and lowest prices, and it is useful to com-
bine these four types of prices together to further improve estimation effi-
ciency. Garman and Klass (1980) did this in a daily data context, by utilizing
daily open, high, low and close prices to derive a minimum variance unbiased
estimator for daily volatility given by

σ̂2t = 0.511(logHt − logLt)
2 − 0.383(logCt − logCt−1)

2

−0.019((logHt − logCt)logHt + (logLt − logCt)logLt),

where Ht, Lt, and Ct are respectively the highest, lowest and close prices
during day t. They recommended a simpler version of this estimator for
practical use, which is

σ̂2t = 0.5(logHt − logLt)
2 − (2log(2)− 1)(logCt − logCt−1)

2,

and this latter estimator achieves similar efficiency but eliminates the small
cross-product terms. Their calculations showed that the variance of this
estimator is 0.27σ4, which is 7.4 times more efficient for daily volatility es-
timation than the daily squared return (whose variance is 2σ4 ), and 1.5
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times more efficient than daily squared range (whose variance is 0.41σ4).
Simulations by Rogers and Satchell (1991) showed that this estimator (and
a modified version of it) performed quite well in a setting that corresponded
with typical daily data.
We can replace intraday returns or intraday ranges in high frequency

realized variance or realized range estimators with the intraday versions of
“Garman and Klass estimators” to construct a first-high-low-last (FHLL)
price based estimator for integrated variance given by

FHLLVt =
MX
j=1

(0.5(htj − ltj)
2 − (2log(2)− 1)(ptj − ptj−1)

2). (3)

This estimator is essentially a linear combination of RRVt and RVt with
weights of (2ln2) and (1−2ln(2)) respectively.2 Assuming no microstructure
noise and that the entire price path can be observed (m → ∞), one can
derive a central limit theorem for this FHLL variance estimator with respect
to M , which is

√
M(FHLLVt −

Z t

t−1
σ2(s)ds) −→MN(0, 0.27

Z t

t−1
σ4(s)ds).

The derivation details are provided in Appendix 1. This shows that the FHLL
price based estimator is a consistent estimator for integrated variance, but it
is more efficient than either realized variance or realized range. Simulations
conducted by Martens and van Dijk (2007) illustrate these efficiency gains.

2.2 First-High-Low-Last Price Based Covariance Es-
timator

The fact that the FHLL estimator for integrated variance is more efficient
than its realized volatility and realized range counterparts suggests that the
use of the first, high, low and last values of asset prices might be advantageous
in other settings as well. We now apply this idea to covariance estimation.
Assuming that there are two assets i and l for simplicity, and a portfolio

of them with weights wi and wl = 1− wi, Brandt and Diebold (2006) noted
that the daily covariance between asset i and asset l can be obtained from

Cov(ri,t, rl,t) =
1

2wiwl
(V ar[rp,t]− w2i V ar[ri,t]− w2l V ar[rl,t]),

2Note that this is an affine combination (weight coefficients add up to 1), but it is not
a convex combination because the weight coefficient of RV is negative.
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where V ar[rp,t] is the daily variance of the portfolio returns, and V ar[ri,t]
and V ar[rl,t] are the daily variances of assets i and l respectively. Using
the realized variance defined in (1) to estimate the three daily variances on
the right-hand side of the above equation, realized covariance (see Barndorff-
Nielsen and Shephard (2004) ) can be calculated using

RCVt =
MX
j=1

ri,tjrl,tj =
1

2wiwl
(RVp,t − w2iRVi,t − w2lRVl,t) (4)

where RVp,t is the realized variance of the portfolio, RVi,t and RVl,t are the
realized variances of asset i and asset l, and ri,tj and rl,tj are the intraday
returns of asset i and asset l. Using the realized range defined in (2) to es-
timate the three daily variances on the right-hand side of the above equation,
realized co-range (see Bannouh, Dijk and Martens (2009)) can be obtained
as

RCRt =
1

2wiwl
(RRVp,t − w2iRRVi,t − w2lRRVl,t), (5)

where RRVp,t is the realized range of the portfolio, and RRVi,t and RRVl,t
are the realized ranges of asset i and asset l. The Monte Carlo work in
Bannouh et al (2009) demonstrates that the realized range is robust to market
microstructure noise arising from bid-ask bounce, infrequent trading and not
synchronous trading, yet it is also highly efficient, delivering up to fivefold
efficiency gains relative to realized covariance. Comparison of the theoretical
properties of realized covariance and realized co-range is a subject of on-going
research.
The first-high-low-last (FHLL) price based covariance estimator can be

generated in an analogous fashion to (4) and (5), by using the FHLL variance
estimator defined in (3) to estimate the three daily variances in the covariance
equation to obtain

FHLLCV t =
1

2wiwl
(FHLLVp,t−w2iFHLLVi,t−w2l FHLLVl,t). (6)

Given the superiority of the FHLL variance estimator over the return-based
and range-based competitors, we expect this FHLL covariance estimator to
be more efficient than the realized covariance and realized co-range estimat-
ors.

2.3 Comparison of the Properties of Covariance Es-
timators

In this section, we use Monte Carlo simulations to investigate the perform-
ance of our FHLL covariance estimator given a variety of underlying asset
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price process specifications. Throughout, we compare the FHLL estimator
with the realized covariance estimator and the realized range estimator in
these controlled environments.

2.3.1 Constant Volatility without Microstructure Noise

As a baseline case for further analysis, we firstly study the properties of these
estimators for a bivariate Brownian motion process with constant volatility.
We simulate prices for two correlated assets for 4-hour trading days.3 For
each trading day t, the initial prices for both assets are set equal to one and
subsequent log prices for assets are simulated using

dp∗1,(t−1)+h/K = σ1dW1,(t−1)+h/K, h = 1, 2, ...,K

dp∗2,(t−1)+h/K = σ2(ρdW1,(t−1)+h/K +
p
1− ρ2dW2,(t−1)+h/K), h = 1, 2, ...,K

where p∗i,(t−1)+h/K is the log price of asset i at the hth point in the time interval
[t−1, t], K is the number of time increments over the day, σi is the standard
deviation of asset i, W1 and W2 are two Brownian motion processes, and ρ
represents the contemporaneous correlation of the two assets’ prices. We set
σ1 = 0.2, σ2 = 0.4 and ρ = 0.5, resulting in a constant covariance between
the two asset returns which is equal to 0.04 for each day t. We employ
the Euler discretization scheme to generate realizations of the above two
Brownian motions and record new price observations for the two assets every
second, so that h counts seconds and K = 14400 (4× 60× 60). Each of our
experiments is based on 5000 simulated days. For the time being our price
observations are equidistant and occur synchronously for the two assets.4

To show the potential merits of using intraday first-high-low-last price for
measuring the co-movement of two assets, we compute and compare the bias
and root mean squared error (RMSE) of various covariance estimators at
different intraday sampling frequencies.
To do this, we divide the trading day t into 4−minute intervals, which

is referred to as the 4 − minute frequency below. Since we have a four
hour trading day, this divides each day into M = 240/4 intraday sampling
periods. For example, if we sample at a five minute frequency and 4 = 5,
then we haveM = 48 intraday sampling periods per day. In our experiment,
we vary the sampling frequency, using 1, 5, 10, 15, 30, 60, and 240 minute

3We choose to simulate four hour trading days to reflect the trading hours in the
Chinese mainland stock market, from which our empirical data are collected.

4True and observed prices are denoted by p∗i,. and pi,.respectively. In the next section
we set the probability of actually observing the price to be pobs = 1/τ, and use s to denote
the bid-ask spread. For the time being, τ = 1 and s = 0.
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intervals, and results are reported in Table 1 panel A. The underlying price
process p∗i,(t−1)+h/K in our simulations is assumed to be a pure Brownian mo-
tion with constant volatility, but since it is actually discrete (h can only takes
integer values), we see an "infrequent trading" effect, which leads to a down-
ward bias for all estimators when the sampling intervals are relatively short.
We explore the effects of infrequent trading in more detail below. However,
the RMSE of the FHLL covariance estimator is always lower than that of
realized co-range, and substantially lower than that of realized covariance
at the same sampling frequency. Meanwhile, the efficiency improves for all
estimators as 4 decreases and M increases. Figure 1 shows the kernel dens-
ity graphs of the three covariance estimators at 5-minutes, 10-minutes and
15-minutes sampling frequencies, which further demonstrate that our FHLL
estimator is more efficient than the other two, since the kernel density graph
of FHLL estimator is narrower than those of the other two estimators.

2.3.2 Stochastic Volatility without Microstructure Noise

The volatility for the two asset prices was assumed to be constant over time in
last subsection. In this subsection, we extend the underlying price processes
to a system with stochastic volatility, which is closer to reality. The (log)
prices now evolve as

dp∗1,(t−1)+h/K = σ1,(t−1)+h/KdW1,(t−1)+h/K, h = 1, 2, ..., K

dlnσ21,(t−1)+h/K = θ1(ω1−lnσ21,(t−1)+h/K)dt+η1dW2,t−1+h/K , h = 1, 2, ...,K

dp∗2,(t−1)+h/K = σ2,(t−1)+h/KdW3,(t−1)+h/K, h = 1, 2, ..., K

dlnσ22,(t−1)+h/K = θ2(ω2−lnσ22,(t−1)+h/K)dt+η2dW4,(t−1)+h/K , h = 1, 2, ...,K

where the volatility is a stochastic process, which follows a mean revert-
ing Orstein-Uhlenbeck process with parameters θ1 and θ2 as the adjustment
speeds, ω1 and ω2 as the means of the (log) volatilities, and η1 and η2 as
the volatilities of the (log) volatilities. W1 and W2 are standard Brownian
motions with a correlation of ρ1, and W3 and W4 are standard Brownian
motions with a correlation of ρ2. ρ1 and ρ2 represent the “leverage effect”,
which reflect the instantaneous correlations between the return process and
the corresponding volatility process of each asset. Meanwhile, the W1 and
W3 processes are also correlated with a correlation coefficient of ρ3. The price
processes of the two assets are simulated via the Euler scheme which we used
in the last subsection. The initial prices for the two assets are set to be one,
the initial values of the two assets’ volatilities are set to equal to the mean of
the volatilities, and the rest of the simulations are based on the configuration
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(θ1, θ2, ω1, ω2, η1, η2,ρ1, ρ2, ρ3) = (2, 2, 0.04
14400

, 0.16
14400

, 0.4
120

, 0.8
120

, −0.6, −0.4, 0.5).5
We simulate 5000 days of (log) prices (1 price per second, for K = 14400) as
before, and then compute and compare the bias and root mean squared error
(RMSE)6 of our various estimators of daily covariance. The data generating
process ensures that the daily mean of the covariance between the two assets
is 0.04, but it now varies every second.
Table 1 panel B reports the results. Relative to the results in the last

subsection, the main difference is that all estimators are now slightly less
efficient. From Section 2.1, the asymptotic variance of all three variance
estimators is given by α

R t
t−1 σ

4
sds, where α reflects the relative efficiencies

of the different estimators, and this holds true regardless of whether σs is
constant or time varying. Thus, the ranking of the variance (and hence
covariance) estimators in terms of efficiency is unaltered once we have time-
variation in volatility. Relative to the constant volatility case, time-variation
in asset price volatility tends to increase σ4 and hence increase the asymptotic
variances of all variance (and covariance) estimators and decrease efficiency,
but the FHLL covariance estimator is still more efficient than the other two
estimators, at any sampling frequency.

2.3.3 Stochastic Volatility with Microstructure Noise

We did not include microstructure noise in the previous experiments, but in
this section we compare the three estimators when they are contaminated
by the effects of the bid-ask bounce, infrequent trading and not synchronous
trading. We compare our FHLL covariance estimator with the realized co-
range and realized covariance estimators, both with and without corrections
for estimation bias resulting from the presence of microstructure noise.
Following Bannouh et al (2009), we consider the effects of bid-ask bounce

by assuming that bid and ask prices occur with equal probability. Hence,
the actually observed price pi,(t−1)+h/K is equal to p∗i,(t−1)+h/K + s/2 (ask) or
p∗i,(t−1)+h/K − s/2 (bid), where s is the bid-ask spread and p∗i,(t−1)+h/K is the
true price obtained from subsection 2.3.2. Infrequent trading is simulated by
filtering the price sample path p∗i,(t−1)+h/K simulated from subsection 2.3.2,
so that the price of each asset is observed on average only every τ seconds.
Since price observations for the two assets occur independently, we observe

5We set ω1, ω2 and ρ equal to the variances σ21 and σ22 of the two assets’ prices, and
the correlation ρ between the two assets’ prices that we used in last subsection. We set
the rest of the parameters according to the simulation study in Aït-Sahalia, Fan and Xiu
(2010).

6Since the covariance is time-varying in this scenario, the bias reported in Table 1 is
actually the mean of the covariance estimation bias.
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prices at different times
We use the simulations in Table 1 Panel B as a benchmark and change

the values of s and τ in our simulations to consider three pairs in which
s = 0.075 and τ = 1, s = 0 and τ = 15, and s = 0.075 and τ = 15. The
first two pairs of settings are used to examine the separate effects of bid-ask
bounce and infrequent trading, while the last setting is used to investigate
their joint effects on all the covariance estimators.
It is well known that when continuous underlying price processes are ob-

served only at discrete time points, the intraday range suffers from a down-
ward bias. This is because the observed maximum and minimum prices over
a given intraday interval underestimate and overestimate the true maximum
and minimum, respectively. Meanwhile, the intraday range also tends to be
upward biased due to the presence of bid-ask bounce. For example, when
the sampling frequency is relatively high and the intraday time interval is
relatively small, the observed high price in a given intraday interval is an
ask price and the observed low price is a bid price with probability close to
one. The squared intraday range therefore overestimates the true variance
of that intraday interval by an amount equal to the squared bid-ask spread
s2. Although univariate intraday returns are not effected much by infrequent
trading and bid-ask spread, an important concern in a multivariate setting is
the presence of not synchronous trading. As different assets trade at differ-
ent times, estimates of their covariance are biased toward zero. This is the
so-called “ Epps effect”, which becomes worse with an increase of sampling
frequency.
We correct this bias by assuming that the observed log price pt is equal

to the underlying log price p∗t plus an additive noise term, and then employ
an additive bias-correction method discussed in Bannouh et al (2009). These
authors define bias-corrected variance estimators as

V EM
C,t = V EM

t +
1

Q
(

QX
q=1

V E1
t−q −

QX
q=1

V EM
t−q),

where V E1
t is the daily squared return or daily squared range or daily “Gar-

man and Klass estimator”, and V EM
t is the realized variance, realized range

or our FHLL variance estimator based on M intraday sampling intervals.
The number of trading days Q used to compute the correction is a critical
choice to make. The RMSE of all the estimators decline as Q increases and
we set Q = 150, beyond which the RMSEs for the corrected version of all
the estimators more or less stabilize.
We set s = 0 and τ = 15 to obtain Table 2 panel A, which shows the

effects of infrequent (and hence nonsynchronous) trading on all three covari-
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ance estimators. As expected, all three non-corrected covariance estimators
are downward biased, but realized covariance is downward biased much less
than the realized co-range and FHLL covariance estimators. The RMSE
first decreases for all the estimators when increasing the sampling frequency
and decreasing the length of the sampling interval, but it increases again
for higher frequencies because the bias associated with microstructure noise
outweighs the increase in information from the higher sampling frequency.
Without the bias correction, our FHLL estimator has larger RMSE than the
other two estimators at most sampling frequencies. This is not surprising
because the FHLL estimator is a linear combination of realized covariance
and realized co-range, which is contaminated more by the microstructure
noise than the other two estimators. However, the correction scheme elim-
inates the bias to a large extent and reduces the RMSE of our FHLL es-
timator substantially. More importantly, the bias-corrected FHLL estimator
FHLLCVC,t has the smallest RMSE at all sampling frequencies.
Table 2 panel B demonstrates the influence of bid-ask bounce on the three

covariance estimators by setting s = 0.075 and τ = 1. We set τ = 1 in this
panel, so that results can be compared with those in Table 1 Panel B. Our
FHLL covariance estimator and the realized co-range suffer from a strong
upward bias in this scenario, which becomes worse with increased sampling
frequency, but realized covariance is not affected much by the bid-ask spread.
The bias correction reduces the RMSE of the first-high-low-last price based
covariance estimator considerably, such that FHLLCVC,t is more accurate
than RCVC,t and RCRC,t for all sampling frequencies.
When bid-ask spread and not synchronous trading are jointly present, as

in the set-up of Table 2 panel C, we find that our FHLL covariance estimator
and the realized co-range still have an upward bias, but it is much smaller
than that in the case of bid-ask spread only. This finding is consistent with
the discussion in Bannouh, van Dijk and Martens (2009), who suggest that
the upward bias due to the presence of bid-ask bounce has been partially
offset by the downward bias due to not synchronous trading. As observed in
the last two panels, the bias in all estimators has been largely removed by
the correction adjustment. Meanwhile, the bias corrected FHLL estimator
FHLLCVC,t has the minimum RMSE at all sampling frequencies.

3 The Co-jump Test

In this section, we review the return-based co-jump test proposed by Bollerslev
et al (2008), and use FHLL prices to develop a first-high-low-last (FHLL)
prices based co-jump test statistic.
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3.1 Co-jumps in Portfolio Theory

Portfolio theory implies that idiosyncratic jumps can be diversified away in
a large portfolio, and only the common jumps remain. In this section we
sketch the derivation provided in Bollerslev et al (2008), that highlights the
role of co-jumps in portfolios. This derivation is based on an equiweighted
portfolio, but all of the arguments presented below hold with equal force for
any well-diversified portfolio.
Bollerslev et al (2008) started with the consideration of a collection of n

stock price processes {pi,s}ni=1evolving in continuous time. Each pi,s evolves
as

dpi,s = μi(s)dt+ σi(s)dWi(s) + dLi(s),

where μi(s) and σi(s) refer to the drift and local volatility,Wi(s) is a standard
Brownian motion, and Li(s) is a pure jump process. In practice, the price
process is only available at discrete time points. Let M + 1 denote the
number of equidistant price observations each day, which is determined by
the sampling frequency. Then, the jth within-day return of the ith log-price
process on day t is defined by

ri,tj = pi,(t−1)+ j
M
− pi,(t−1)+ j−1

M
, i = 1, 2, ....n, j = 1, 2, ....M.

The jth within-day return on day t of an equiweighted portfolio of n
stocks can be calculated by

rEQW,tj =
1

n

nX
i=1

ri,tj .

The daily realized variance for this equiweighted portfolio then satisfies

RVEQW,t =
MX
j=1

(
1

n

nX
i=1

ri,tj)
2 =

1

n2

nX
i=1

MX
j=1

r2i,tj +
1

n2

nX
i=1

nX
l=1,l 6=i

MX
j=1

ri,tjrl,tj

M →∞−−−−−→
1

n2

nX
i=1

Z t

t−1
σ2i (s)ds +

1

n2

nX
i=1

Ni,tX
k=1

κ2i,t,k

+
1

n2

nX
i=1

nX
l=1,l 6=i

Z t

t−1
σi(s)σl(s))ds +

1

n2

nX
i=1

nX
l=1,l 6=i

N∗
(i,l),tX
k=1

κi,t,kκl,t,k,

where Ni,t is the number of jumps occurring in the ith stock on day t, and
N∗
(i,l),t is the number of simultaneous co-jumps occurring across any two stocks

(the ith stock and the lth stock) on day t. It is clear that when M goes to
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infinity, the realized variance of this portfolio provides a consistent estim-
ator for the quadratic variation of the equiweighted portfolio’s price process
in continuous time. This variation is mostly the quadratic variation of the
equally weighted portfolio of the n stocks, that is 1

n2

Pn
i=1

R t
t−1 σ

2
i (s)ds +

1
n2

Pn
i=1

PNi,t

k=1 κ
2
i,t,k which can be estimated by 1

n2

Pn
i=1

PM
j=1 r

2
i,tj
, and the

quadratic covariation of the prices of the n stocks in the portfolio, that is
1
n2

Pn
i=1

Pn
l=1,l 6=i

R t
t−1 σi(s)σl(s))ds+

1
n2

Pn
i=1

Pn
l=1,l 6=i

PN∗
(i,l),t

k=1 κi,t,kκl,t,k, which

can be estimated using 1
n2

Pn
i=1

Pn
l=1,l 6=i

PM
j=1 ri,tjrl,tj .

As the above equation shows, both the overall quadratic variation of a
collection of n stock price processes {pi,s}ni=1and their quadratic covariation
consist of the continuous integrated part plus the sum of the jumps. In
order to separately measure the two components, realized bipower variation
(see Barndorff-Nielsen and Shephard (2004)) is employed to measure the
continuous integrated variance of the equiweighted portfolio’s price process
as

BVEQW,t = μ−21 (
M

M − 1)
MX
j=2

|1
n

nX
i=1

ri,tj−1| · |
1

n

nX
i=1

ri,tj |

M →∞−−−−−→
1

n2

nX
i=1

Z t

t−1
σ2i (s)ds+

1

n2

nX
i=1

nX
l=1,l 6=i

Z t

t−1
σi(s)σl(s)ds,

where μ1 =
p
2/π. Thus, the contribution of jumps to the total variation

can be estimated by taking the difference between RVEQW,t and BVEQW,t to
obtain

RVEQW,t −BVEQW,tM →∞−−−−−→
1

n2

nX
i=1

Ni,tX
k=1

κ2i,t,k +
1

n2

nX
i=1

nX
l=1,l 6=i

N∗
(i,l),tX
k=1

κi,t,kκl,t,k,

=
1

n
κ2t +

n− 1
n

N∗tX
k=1

κ.,t,κ..,t,k

where κ2t is the average jump component for each individual stock on day
t, κ.,t,κ..,t, is the average cross-product of co-jumps that occur during that
day and N∗

t is the number of co-jumps occurring during day t. The first of
these terms approaches zero as n goes to infinity, consistent with the idea
that idiosyncratic jumps in a large portfolio are diversified away. The second
of these terms remains, since n−1

n
≈ 1 for large n. Thus we have

RVEQW,t −BVEQW,t ≈
N∗tX
k=1

κ.,t,κ..,tk ≈
N∗tX
k=1

cot,k
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where cot, denotes the average co-jump on day t, and this shows that in a large
portfolio, only co-jumps can cause the price of the portfolio to jump. It is use-
ful to note that these co-jumps originate from the 1

n2

Pn
i=1

Pn
l=1,l 6=i

PM
j=1 ri,tjrl,tj

term in the expression for RVEQW,t, and it was this observation that motiv-
ated Bollerslev et al (2008) to emphasize the cross-product measures associ-
ated with a portfolio when they developed their new co-jump identification
procedure. As shown above, the variances of individual stocks (and their
individual jump components) play a rather minor role, when considering the
variance structure of the entire portfolio.

3.2 Return-based Co-jump Test

The first step in applying the Bollerslev et al (2008) co-jump test to a panel
of stocks is to obtain cross-product measures for returns that can assess the
comovement in these stocks. In terms of Section 3.1’s notation and assuming
that there are n individual stocks and an equally weighted portfolio as in Sec-
tion 3.1, Bollerslev et al (2008) used a return-based estimator that summed
the cross-products of intraday individual returns, i.e. 2

Pn−1
i=1

Pn
l=i+1 ri,tjrl,tj ,

to measure covariation over the jth intraday interval on day t. Then they
defined a mean cross-product (mcp) test statistic to be

mcptj =
2

n(n− 1)

n−1X
i=1

nX
l=i+1

ri,tjrl,tj , j = 1, 2, . . . ,M,

where M is the number of intraday returns observed over a trading day, i
and l index the n stocks, and n(n−1) is the number of cross-product terms of
n stock returns over the jth intraday interval. The above mcptj test statistic
can be rearranged to obtain

mcptj =
1

n(n− 1)(
1

( 1
n
)2
((
1

n

nX
i=1

ri,tj)
2 −

nX
i=1

(
1

n
)2r2i,tj))

=
n

n− 1((
1

n

nX
i=1

ri,tj)
2 −

nX
i=1

(
1

n
)2r2i,tj).

The first term, ( 1
n

Pn
i=1 ri,tj)

2 can be used to estimate the variance of the
equally weighted portfolio return over the jth intraday interval and r2i,tj can
be used to estimate the variance of the ith asset return over the jth intraday
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interval. Thus, the mcptj test statistic can also be written as

mcptj =
n

n− 1((
1

n

nX
i=1

ri,tj)
2 −

nX
i=1

(
1

n
)2r2i,tj)

=
n

n− 1(
dvar(rEQW,tj)−

1

n2

nX
i=1

dvar(ri,tj)), (7)

which essentially contains the continuous variation and overall jump com-
ponent in the portfolio, since the last term relating to individual assets dis-
appears for large n. Since this test statistic downplays idiosyncratic risk and
is therefore mostly influenced by systematic risk, it should be insensitive to
idiosyncratic jumps in individual stocks, and very sensitive to co-jumps which
occur simultaneously across all stocks.
The contribution of the continuous co-movement of the n stock returns

ensures that the mcp-statistic has a non-zero mean, even in the absence of
co-jumps. Therefore, Bollerslev et al (2008) studentize the mcp statistic to
form a zmcp test statistic given by

zmcp,tj =
mcptj −mcpt

smcp,t
, j = 1, 2, .....M,

where

mcpt =
1

M

MX
j=1

mcptj =
1

M
(

n

n− 1

MX
j=1

(
1

n

nX
i=1

ri,tj)
2 − n

n− 1

MX
j=1

nX
i=1

(
1

n
)2r2i,tj)

=
1

M
[

n

n− 1RVew,t −
1

n(n− 1)

nX
i=1

RVi,t],

smcp,t =

vuut 1

M − 1

MX
j=1

(mcptj −mcpt)2,

and RVew,t and RVi,t are the daily realized volatilities for the portfolio and in-
dividual stocks, obtained by summing all the intraday squared returns within
a day. The calculation of mcpt simply takes the sample mean of all the in-
traday mcp test statistic realizations over the trading day t, and smcp,t is the
corresponding sample standard deviation.
The zmcp co-jump test relies on three assumptions. Firstly, the student-

ization of the mcptj test statistic each day relies on an assumption that the
location and scale of this statistic remains approximately constant over the
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day. This assumption may be at odds with the well-known U-shaped pattern
associated with intraday stock volatility, but Bollerslev et al (2008) claim
that their main conclusions are not influenced by taking this pattern into
account. Secondly, the mcptj realizations are assumed to be serially uncor-
related., making it appropriate to simply standardize each of the within-day
mcp statistics by using the corresponding daily sample standard deviation
smcp,t. We find that this is the case for our mcptj realizations. Lastly, it is
important to note that the sample mean used in the zmcp test statistic in-
corporates the co-jump contribution relating to each day, and although the
contribution of a few jumps on a day might be negligible, the contribution of
several co-jumps is unlikely to be negligible and then relatively large intra-
day mcptj realizations might be masked by the correspondingly large sample
mean mcpt. Therefore, the test relies on an assumption that co-jumps occur
rarely, and in particular that no more than one co-jump occurs during a day.
This assumption found empirical support in Bollerslev et al (2008), and also
in our empirical study on Chinese data (see Section 5).
It is not easy to derive the asymptotic distribution for this test. Hence,

Bollerslev et al (2008) use simulations to obtain the distribution of their test
statistic under the null hypothesis of no co-jumps. They find that the critical
values of this test statistic are insensitive to the level of correlation between
the returns and the number of stocks in the panel, as long as the number
of stocks in the portfolio is large. However, they find that their critical
values are quite sensitive to the number of intraday returns included in each
daily measure. Since this number is determined by the sampling frequency,
it is clear that the ability of this test is largely dependent on how much
information we can extract from the high-frequency data. This motivates us
to construct more powerful co-jump tests by adapting the Bollerslev et al
(2008) test to incorporate more information than that contained in returns.
Accordingly, we propose a range-based co-jump test and a co-jump test based
on first-high-low-last price measures of variance and covariance below.

3.3 First-High-Low-Last Price Based Co-jump Test

A range-based co-jump test statistics can be obtained when we use the real-
ized co-range and intraday squared range instead of the cross-product of in-
traday returns and realized volatility in the zmcp test statistic. We refer to
this as the zmcr test statistic below. Our range-based co-jump test statistic
(zmcr) is defined by

zmcr,tj =
mcrtj −mcrt

smcr,t
, j = 1, 2, .....M, (8)
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where

mcrtj =
n

n− 1(ISRew,tj −
nX
i=1

(
1

n
)2ISRi,tj)),

and ISRew,tj and ISRi,tj are intraday squared ranges of the equally weighted
portfolio and of each individual stock, which measure the intraday variance
of this portfolio and each individual stock on day t, time j. We studentize
the mcrtj statistic using

mcrt =
MX
j=1

mcrtj =
1

M
[

n

n− 1RRVew,t −
1

n(n− 1)

nX
i=1

RRVi,t] and

smcr,t =

vuut 1

M − 1

MX
j=1

(mcrtj −mcrt)2,

where RRVew,t and RRVi,t measure the daily realized ranges of the equally
weighted portfolio and each individual stock, and they are obtained by sum-
ming all the intraday squared ranges over the whole trading day.
Similarly, we also develop a first-high-low-last price based co-jump test,

and do this by using the intraday FHLL average cross-product estimator and
the daily average FHLL cross-product estimator to replace the cross-product
of intraday returns in the Bollerslev et al (2008) zmcp test statistic. Our
FHLL co-jump test statistic (zmfhllc) is defined by

zmfhllc,tj =
mfhllctj −mfhllct

smfhllc,t
, j = 1, 2, .....M, (9)

where

mfhllctj =
n

n− 1(IFHLLCew,tj −
nX
i=1

(
1

n
)2IFHLLCi,tj)),

and IFHLLCew,tj and IFHLLCi,tj are intraday FHLL variance estimators
of the equally weighted portfolio and each individual stock. We studentize
the mfhllctj statistic using

mfhllct =
MX
j=1

mfhllctj =
1

M
[

n

n− 1FHLLCVew,t−
1

n(n− 1)

nX
i=1

FHLLCV i,t] and

smfhllc,t =

vuut 1

M − 1

MX
j=1

(mfhllctj −mfhllct)2,
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where FHLLCV ew,t and FHLLCV i,t are the daily FHLL variance estimat-
ors of the equally weighted portfolio and each individual stock, obtained by
summing all the intraday FHLL variance estimators over the whole trading
day.
Prior to using these new co-jump test statistics, we conduct a set of Monte

Carlo simulations to study their distributions under the null hypothesis of no
co-jumps, and compare their finite sample properties with the return-based
zmcp test statistic.

4 Monte Carlo Simulation

In this section, we conduct a Monte Carlo simulation to explore the ability of
our first-high-low-last price based test to detect co-jumps in a panel of high
frequency data. The three test statistics involved in our analysis include the
return-based co-jump test statistic (zmcp) as defined in (7), the range-based
co-jump test statistic (zmcr) as defined in (8), and the FHLL co-jump test
statistic (zmfhllc) as defined in (9).

4.1 The Null Distribution via Simulation

We firstly conduct a series of Monte Carlo simulations to obtain the null
distributions of our range-based co-jump zmcr test statistic and first-high-
low-last price based zmfhllc test statistic, and then compare them with the
null distributions of the zmcp test statistic of Bollerslev et al (2008). We
use the basic Euler scheme to simulate realizations of a stochastic multivari-
ate 20 × 1 pure diffusion model (without jumps) that has zero drift and a
covariance matrix Σ = CC

0
, and follows the process given by

dps = C 0dW (s).

The variable ps represents a 20× 1 vector process that resembles a vector of
logarithmic prices of 20 assets, and W (s) is a 20 × 1 vector of independent
standard Brownian motions at time s. We use empirical calibration and set
the covariance matrix Σ equal to the unconditional covariance matrix of the
30-seconds intraday returns of 20 stocks from the Chinese mainland stock
market. This market trades for four hours each day, which corresponds to
T = 14400 seconds per day, and we set the sample length so as to corres-
pond to 90 days (about three months) and record price observations that
correspond to once every 30 seconds.7

7Here we assume that there is no microstructure noise, and comment on how micro-
structure noise might affect results later.
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For each trading day [0, T ], we let (th)h�{0,.....,K} be an equispaced time
discretization of the day, with a time step of 4t = 30 seconds, where
K = T/4t = 480, and we generate Z1, Z2,........ZK independently N(0, I)
distributed random vectors in R20. The 20× 1 vector of independent stand-
ard Brownian motions at times 0 = t0 < t1 < .... < tK is then generated by
setting W (0) to be a 20× 1 zero vector and calculating

W (th+1) =W (tj) +
p
4tZh+1, h = 0, ...,K − 1.

The price sample paths for the 20 assets are then simulated by setting p(0)
to be a 20× 1 zero vector and calculating

pth+1 = pth + C 0W (th+1), h = 0, ...,K − 1.

We do this for t = {1, 2, 3, ..., 90}. The top panel of Figure 2 shows 20
simulated price realizations that correspond to a typical day.
We replicate the above procedure 1000 times, and thereby obtain about

43.2 million simulated values under the null hypothesis of no jumps. Then, we
calculate the zmcp test statistics, the zmcr test statistics and the zmfhllc
statistics from these simulated values using different sampling frequencies,
including 5 minutes, 10 minutes and 15 minutes (M = 48, 24, 16).8 The
corresponding number (m) of intraday subintervals used to compute the in-
traday range and intraday first-high-low-last price is then equal to m = 10,
20, and 30. We also compute the intraday range and intraday first-high-
low-last price by using half of the available price observations and one third
of the available price observations within the 5-minute intervals, 10-minute
intervals and 15-minute intervals, that is, m = 5, 10, 15 and m = 3, 6, 10
to study the sensitivity of these test statistics to m.9 It is useful to note
that when m = 1, then the range equals the absolute return, so that the
Bollerslev et al (2008) zmcp test statistic can be regarded as a special case of
the range-based zmcr test statistic. We employ the bias correction discussed
in Section 2.3.3, and then calculate the three co-jump test statistics.
Figure 3 presents the simulated probability densities of the zmcp test

statistics, zmcr test statistics and zmfhllc test statistics. All of these dis-
tributions are obviously non-Gaussian with a strong right skew, regardless of

8K is the number of generated intraday prices for each day, while M is the number of
intraday samples taken over the day.

9Christensen and Podolskij (2007) note that the entire sample path of the asset price
process is unavailable in practice, so that inference is drawn from discrete data and the
true price range is often unobserved. Therefore, the range-based estimator has varying
degrees of efficiency over the return-based estimator depending on how many observations
( it is m in our paper) that are used to construct the high-low range.
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the sampling frequency. The null distributions of the zmfhllc test statistics
have slightly shorter tails and lower peaks than the zmcr test statistics, and
both of them have much shorter tails and lower peaks than the zmcp test
statistics. Meanwhile, the null distributions of the zmfhllc test statistics
have shorter tails and lower peaks as M decreases, or as m increases given
the same M . This also holds for the zmcr test statistics.10 Since large val-
ues of the test statistics discredit the null hypothesis of no co-jumps, we are
mostly interested in the right tails of these distributions.
Table 3 reports the critical values of all the test statistics at the 0.1%,

1% and 5% significance levels. These results suggest that the critical value
is quite sensitive to the sampling frequency (M) and the number of subin-
tervals (m) involved in forming the intraday high-low prices. In particular,
the critical values always rise as the intraday sampling frequency (M) in-
creases, and fall as the number of subintervals (m) used for each calculation
of the high-low price range or first-high-low-last price decreases, with some
exceptions at 5% significance level.

4.2 Power Comparisons

In this section, we compare the performance of the three test statistics in
terms of their power properties. For power comparisons, we add simulated
jump components into the above pure diffusion processes. For idiosyncratic
jumps, we simulate 20 independent Gaussian Poisson processes with intens-
ity λi11 and magnitude N(0, σ2i ),

12 and add them to their corresponding pure
diffusion processes. For the common jumps, we simulate one Gaussian com-
pound Poisson process with intensity λ and magnitude N(0, σ2J), and add it
to the diffusion process after multiplying each of the twenty components by
an estimate of its βi relative to the portfolio. The bottom panel of Figure 2
shows a simulated day in which one co-jump affects all stocks. We calibrate
the common jump intensity λ and the common jump size σJ to empirical
data (i.e. λ = 0.05% and σ = 0.005 in our case), and then change the in-
tensity λ from 0.05% to 1%, and the size of σJ from 0.005 to 0.1 in order to
check the sensitivity of the power of these test statistics to these parameters.
Table 4, Table 5 and Table 6 respectively present power calculations relat-

ing to the zmcp test statistics, the zmcr test statistics and the zmfhllc test
statistics under a nominal significance level of 0.1%, but based on different

10We don’t provide the results of sensitivity analysis toM andm for zmcr test statistics
in Figure 3. They are available upon request.
11Jump intensity λi is defined here as the percentage of price observations that contain

a jump, where λi ∈ [0.005%, 0.01%] in our simulation.
12Here σ2i ∈ [0.0005, 0.001] in our simulation.
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sampling frequencies (M). The number of subintervals (m) used to calculate
price range and first-high-low-last price correspond to the maximum possible
given M , and co-jump intensities and co-jump sizes are varied. As expec-
ted, the tests have greater ability to find co-jumps as M , λ and σ2J increase.
Table 7 and Table 8 report the power of the zmcr test statistics and the
zmfhllc test statistics, which are calculated by keeping the sampling fre-
quency M constant,13 but the number of subintervals (m) used to calculate
the price range or first-high-low-last price vary, as do the co-jump intensit-
ies and the co-jump sizes. The nominal significance level is still 0.1%. As
expected, the tests have greater ability to find co-jumps as m, λ and σ2J
increase. This finding is important, because it shows that the range based
statistics lead to increased power relative to the Bollerslev et al (2008) return-
based zmcp test statistic (for which m = 1). Furthermore, we find that at all
sampling frequencies and all levels of co-jump intensity and co-jump size, the
first-high-low-last price based zmfhllc test statistics lead to further power
improvement compared with the range-based zmcr test statistics.
In our simulation, we assumed that the covariance of our multivariate

asset price process is constant, and that there is no microstructure noise.
As section 2.3 shows, the ranking of the three covariance estimators with
respect to their estimation efficiency is the same under three different set-
tings (constant volatility without microstructure noise, stochastic volatility
without microstructure noise and stochastic volatility with microstructure
noise). Therefore, we expect that the ranking of the three types of tests
in terms of their power properties should be unaltered after introducing
stochastic volatility and microstructure noise.

5 Empirical Application

5.1 Data

Our empirical analysis is based on intraday data relating to 40 very actively
traded stocks in the Chinese mainland stock market.14 Twenty of these stocks
are traded on the Shanghai Stock Exchange (SSE) and the remaining twenty
are traded on the Shenzhen Stock Exchange (SZSE). The existing literature
relating to jump detection in this market mostly focuses on the univariate

13Our reported results relate to the 5-minute sampling frequency (M = 48) , but similar
tendencies are observed at other sampling frequencies.
14There are two official stock exchanges in the Chinese mainland market, i.e. the Shang-

hai Stock Exchange (SHSE) and the Shenzhen Stock Exchange (SZSE). These were estab-
lished in December 1990 and July 1991 respectively. All stocks are A-share stocks.
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situation (see Xu and Zhang (2006), Wang, Yao, Fang and Li (2008) and Ma
andWang (2009)), although Liao et al (2010) build factor models of jumps to
account for simultaneous jumps in more than one stock, and Chen at al (2010)
study the microstructure of cross listed A and B shares on the Shanghai
exchange. We apply the return-based co-jump test in Bollerslev et al (2008),
our range-based co-jump test and our first-high-low-last price based co-jump
test to the twenty stocks from the Shanghai Stock Exchange, the twenty
stocks from the Shenzhen Stock Exchange and all forty stocks to analyze
the co-jump patterns in each stock exchange and co-jumps across the two
stock exchanges. The raw transaction prices (together with trading times and
volumes) were obtained from the China Stock Market & Accounting Research
(CSMAR) database provided by the ShenZhen GuoTaiAn Information and
Technology Firm (GTA). Our sample covers the period from July 2nd, 2007
to September 28th, 2007 (three months).
We focus on the active trading period and leave issues associated with

overnight jumps for further research. Due to the fact that it is difficult to
construct the price sample path of a portfolio from the tick-by-tick data
of each individual stock in the case of nonsynchronous trading, we firstly
use 30 seconds as the sampling frequency to obtain equally spaced high fre-
quency data for each individual stock, then average the 30-second prices of
individual stocks to obtain a price sample path for the equally weighted port-
folio.15 Therefore, the baseline data used in the following analysis is equally
spaced high frequency data (observed at thirty second intervals) rather than
irregularly spaced tick-by-tick data. We exclude weekends, public holidays
and periods when there are firm specific suspensions from our sample, and
we avoid market opening effects by only using data from 09:35-11:30 and
13:05-15:00.
Paralleling many previous studies, we attempt to strike a reasonable bal-

ance between efficiency and accuracy by using five-minutes as the sampling
frequency to construct intraday returns, intraday range, daily realized volat-
ility, daily realized range and daily FHLL estimators of volatility. Moreover,
when calculating our intraday zmcp, zmcr, and zmfhllc statistics, we employ
the additive bias-correction method as discussed in section 2.3.3 to correct
for microstructure noise bias in daily realized volatility, daily realized range

15Bannouh et al (2009) accounted for nonsynchronous trading by updating their portfolio
price each time that they observed a new price for one of the constituent assets. They
have only three assets in their portfolio. Their procedure becomes relatively complicated
when the number of the constituent assets is large, so in our case, we simply sample the
raw tick-by-tick data once every 30 seconds to effectively mimic a synchronous trading
scenario in which the portfolio price is updated every 30 seconds. This does not lead to a
large loss of information because our prices rarely change much in 30 seconds.
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and daily FHLL variance estimators. Our sample spans 65 trading days, and
each trading day has 462 intraday (30-seconds) price observations. Hence,
there are M = 46 zmcp, zmcr, and zmfhllc test statistics for each trading
day, and the number of intraday prices that are used to calculate the range
for each five minute interval is m+ 1 = 11.

5.2 Co-jumps in the Chinese Mainland Stock Market

We simulate the null distributions of the co-jump test statistics for each panel
prior to performing the tests. For the tests relating to the twenty stocks
from the Shanghai Stock Exchange, we simulate 1000 realizations of a 20×1
diffusion process with zero drift and a covariance matrix determined by an
unconditional estimate of the covariance matrix of the 30-seconds within-day
returns for the relevant 20 stocks. The length of each realization is set equal
to the sample size (462 per day for 65 days). We use these simulations to
obtain observations on each of the zmcp , zmcr and zmfhllc test statist-
ics. We repeated this for the twenty stocks from Shenzhen Stock Exchange
(which now have a covariance structure calibrated to the Shenzhen stocks)
and then again for the set of all forty stocks (which now involved generating
test statistics based on realizations of a 40 × 1 diffusion with an appropri-
ately calibrated 40 × 40 covariance structure). This scheme generated over
30 million simulated values for each of the three test statistics for each panel
of data under the null of no jumps. Table 9 reports the critical values at the
0.1%, 1% and 5% significance levels.
Next, we investigate if there are co-jumps in the three panels of high

frequency data. Figure 4 presents Q-Q plots of the quantiles of the em-
pirical distributions versus the quantiles of the simulated null distributions.
All the empirical distributions of the three test statistics in three panels of
data are sharply right shifted relative to the null distribution, which reveals
striking evidence for co-jumps in each panel of data. Compared with the
return-based co-jump test statistics (the zmcp statistics), the empirical dis-
tributions of the range-based co-jump test statistics (the zmcr statistics) and
the first-high-low-last price based co-jump test statistics (zmfhllc statistics)
deviate more from their corresponding null distributions in the right tail.
This indicates that range based test statistics and first-high-low-last price
based test statistics might be able to find more co-jumps than return based
test statistics.
The above evidence is reinforced by Figures 5-7, which plot the series of

the three test statistics calculated from each panel of empirical high frequency
data. The horizontal lines represent the 99.9%, 99% and 95% quantiles of
the relevant simulated null distributions, and these can be used as critical
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values. These figures show that several empirically observed test statistics in
each panel of data exceed their relevant critical values, providing evidence of
co-jumps. Compared with the return-based type test statistics (zmcp stat-
istics), the range-based zmcr statistics and the first-high-low-last price based
zmfhllc statistics are statistically significant on more occasions, suggesting
that the latter tests are more powerful.
Tables 10 - 12 report the outcomes of the co-jump tests based on the three

panels of stock data at the 0.1% significance level. These outcomes include
co-jump arrival dates and times. In contrast to our previous research that
has found frequent jumps in some of the individual stocks16, we find relatively
few co-jumps in the panels. The return-based test finds six co-jumps on the
combined panel of forty stocks, the range based test finds the same co-jumps
as well as an additional three co-jumps (9 in total), and the FHLL test finds
all of these co-jumps as well as another six co-jumps (15 in total). Many
of the detected co-jumps in this market occurred near the morning opening
time or the afternoon closing time of trading sessions. Moreover, as noted in
the footnote to Table 12, the timing of some of co-jumps coincided with the
release of news on stock market regulations or monetary policy.

6 Conclusion

This paper explores the use of first-high-low-last (FHLL) prices in a multivari-
ate high frequency setting. We introduce a first-high-low-last price based
covariance estimator and study its properties, and find that after a very
simple bias correction, the FHLL covariance estimator has lower root mean
squared error than counterparts based on realized range and realized vari-
ance. We also use FHLL price data instead of returns data in the Bollerslev
et al (2008) co-jump tests, and find an increase in power. When we apply
our FHLL based co-jump test to a panel of high frequency data relating to
Chinese mainland stock market, we find co-jumps in the stocks from the two
stock market exchanges, and we are able to associate many of these co-jumps
with announcements about changes in monetary policy or stock market reg-
ulations.
Our FHLL estimator of covariance is quite easy to calculate, since it

relies only on univariate methodology (i.e. FHLL measures of the variances
of two individual stocks and a portfolio containing those stocks). While the
computational burden of estimation might not be a primary consideration
when working with just two assets, it takes on more importance in a situation
in which a test statistic that simply summarizes co-movement in many assets
16Details are available upon request.
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is required. We have used FHLL measures of variance in our expression for
covariance, and found that it compares favorably with analogous covariance
measures based on simple range and return based estimates of variance, but if
more accuracy or precision were required for a specific purpose, then it would
be straightforward in principle to use other more sophisticated univariate
measures of variance instead. Some examples include the variance estimators
by Zhou (1996) or Zhang et al (2005), as well as methods based on realized
kernels (Barndoff-Nielsen et al, 2008) and pre-averaging techniques (Jacod
et al (2009)). These, and many other variance estimators could be used
not only when estimating the covariance between two assets, but also in
the construction of test statistics analogous to the Bollerslev et al (2008)
test and our test. Our work in this paper has focussed on the potential
benefits of including information about price ranges (in addition to returns)
in covariance estimation and in a test for co-jumps in a large panel, but
further benefits are likely as additional observed information about the price
process and noise structure is employed.
The literature on covariance estimation is growing very rapidly, and it

now includes very detailed examinations of the bias effects of microstructure
noise and asynchronous trading on covariance estimation, as well as ways
of accounting for this. Some recent work on this topic includes Mancino
and Sanfelici (2011) and Zhang (2011)). Griffin and Oomen (2011) study
several covariance estimators and conclude that the choice between them
can depend on the properties of the price process. The bias correction that
we employed in our setting of forty stocks was simple and effective, and
avoided potential difficulties associated with treating different stocks in the
portfolio differently. Nevertheless, we anticipate that further research on
bias corrections in high frequency panels will be useful, and advance current
understanding of the joint effects of many different types of microstructure
noise in truly multivariate contexts.
Thus far we have linked some of the co-jumps that we found to announce-

ments in monetary policy and stock market regulations. We anticipate that
it might also be possible to link some of the other co-jumps to political an-
nouncements or financial events that occurred overseas. We leave further
investigation of possible reasons for co-jumps in China for later work. Mean-
while, the empirical evidence of co-jumps in financial markets suggests that
common factor models of jumps have empirical relevance. This lays open the
possibility that models of co-jumps might have forecasting potential. We are
currently working on this topic (see Liao, Anderson and Vahid (2010)) and
have found encouraging results.
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Appendix 1

Limit Theorem for the FHLL Variance Estimator

Let the log price ps of an asset follow the continuous process

dps = μ(s)ds+ σ(s)dWs,

and suppose that high frequency data as described in Section 2 is available
for each day t. Then the FHLL variance estimator is

FHLLVt =
MX
j=1

(0.5(htj − ltj)
2 − (2log(2)− 1)(ptj − ptj−1)

2).

Theorem 1. As M −→∞, we have

FHLLVt
p−→
Z t

t−1
σ2(s)ds

Proof. According to Barndorff-Nielsen et al (2002) and Christensen et al
(2007), we have that

RVt =
MX
j=1

(ptj − ptj−1)
2 p−→

Z t

t−1
σ2(s)ds, and

RRVt =
1

γ2,m

MX
j=1

(htj − ltj)
2 p−→

Z t

t−1
σ2(s)ds,

where RVt is realized volatility, RRVt is realized range and γ2,m = E[s2w,m] =
4ln2. The FHLL variance estimator can be expressed as

FHLLVt = 0.5× γ2,m ×RRVt − (2log(2)− 1)×RVt.

Therefore,

FHLLVt
p−→ (0.5× 4ln(2)− 2log(2) + 1)

Z t

t−1
σ2(s)ds =

Z t

t−1
σ2(s)ds.

Theorem 2.

√
M(FHLLVt −

Z t

t−1
σ2(s)ds)

d−→MN(0, 0.27

Z t

t−1
σ4(s)ds)
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Proof. Since the FHLL variance estimator is a linear combination of realized
volatility and realized range, the asymptotic variance of FHLL estimator
will be a linear combination of the asymptotic variance of realized volatility,
the asymptotic variance of realized range and the asymptotic covariance of
realized volatility and realized range. We define a process to study the joint
behavior of realized volatility and realized range to be

PM(g, h)t =
MX
j=1

g(4M
j P,4M

j S)h(4M
j+1P,4M

j+1S), (1)

where 4M
j P = ptj − ptj−1 , 4M

j S = htj − ltj ,

g(4M
j P,4M

j S) =

∙
(2log(2)− 1)(4M

j P )2 0
0 0.5(4M

j S)2

¸
and h(4M

j+1P,4M
j+1S) =

∙
1
1

¸
.

Then equation (1) becomes

PM(g, h)t =

" PM
j=1(2log(2)− 1)(4M

j P )2PM
j=1 0.5(4M

j S)2

#
.

We can derive the asymptotic variance-covariance matrix for PM(g, h)t
using Theorem 2 in Barndorff-Nielsen et al (2006). These authors defined a
return-based process given by

Y M(g, h)t =
1

M

MX
i=1

g(
√
M4M

j Y )h(
√
M4M

j+1Y ), (2)

where g and h are two given matrix functions of dimensions d1 × d2 and
d2 × d3, respectively, and 4M

j Y = ptj − ptj−1. They pointed out that most
of the return-based nonparametric volatility measures used in financial eco-
nometrics can be studied within this framework, including realized volatility
and realized bipower variation. They then made some assumptions on the
functions g and h to derive the central limit theorem for Y M(g, h)t

17. Using
their results, if d1 = d2 = 2, d3 = 1, and g is diagonal, then the central limit
theorem for Y M(g, h)t is

√
M(Y M(g, h)t −

Z t

t−1
ρσs(g)ρσs(h)ds −→MN(0,

Z t

t−1
A(σs, g, h)ds),

where
17See Barndorff-Nielsen et al (2006) for more details.
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A(σ, g, h)j,j
0
= ρσ(g

jjgj
0
j
0
)ρσ(h

jhj
0
)+

ρσ(g
jj)ρσ(h

j
0
)ρσ(g

j
0
j
0
hj) + ρσ(g

j
0
j
0
)ρσ(h

j)ρσ(g
jjhj

0
)

−3ρσ(gjj)ρσ(gj
0
j
0
)ρσ(h

j)ρσ(h
j
0
)},

j = 1, 2 and j
0
= 1, 2. MN denotes a mixed Gaussian distribution andR t

t−1A(σ, g, h) denotes an asymptotic variance-covariance matrix.
This theorem can be extended to the range-based nonparametric volatility

measures using equation (2) given above. In our case we have

ρσ(g
11g11) = 3(2log(2)− 1)2σ4j , ρσ(h1) = ρσ(h

1h1) = 1,

ρσ(g
11) = ρσ(g

11h1) = ρσ(g
11h2) = (2log(2)− 1)σ2j ,

ρσ(g
22g22) = (0.5)2λ4σ

4
j = ρσ(h

2) = ρσ(h
2h2) = 1,

and ρσ(g
22) = ρσ(g

22h2) = ρσ(g
22h1) = 0.5λ2σ

2
j .

Further, since

ρσ(g
11g22)=E((4M

j P)
2(4M

j S)
2)=E((4M

j P)
2(htj -ltj)

2)

= E((4M
j P )2h2tj,4j

− 2htj,4j
ltj,4j

(4M
j P )2 + (4M

j P )2l2tj,4j
)

= E((4M
j P )2h2tj,4j

)− 2E(htj,4j
ltj,4j

(4M
j P )2) +E((4M

j P )2l2tj,4j
),

we can combine this with the results thatE((4M
j P )2h2tj,4j

) = E((4M
j P )2l2tj,4j

) =

2σ4j and E(htj,4j
ltj,4j

(4M
j P )2) = −0.43812σ4j (see Garman et al (1980)) to

obtain

ρσ(g
11g22) = (2log(2)−1)×0.5×(2σ4j+2×0.43812σ4j+2σ4j) = 0.94σ4j , ρσ(h2) = ρσ(h

1h2) = 1.

We then have that

A(σ, g, h)1,1 = (2log(2)− 1)2(3σ4j + 2σ4j − 3σ4j) = 0.3σ4j
A(σ, g, h)2,2 = (0.5)2(λ4σ

4
j + 2λ

2
2σ
4
j − 3λ22σ4j) = 0.7825σ4j

and A(σ, g, h)1,2 = (0.94− 0.386× 1.385)σ4j = 0.41σ4j ,
Therefore, the asymptotic variance-covariance matrix of the FHLL estim-

ator isZ t

t−1
(A1,1(σ(s), g, h)−2A1,2(σ(s), g, h)+A2,2(σ(s), g, h))ds = 0.27

Z t

t−1
σ4(s)ds.
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