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Abstract

We extend Cochrane and Piazzesi (2005, CP) to international bond markets by

constructing forecasting factors for bond excess returns across different countries.

While the international evidence for predictability is weak using Fama and Bliss

(1987) regressions, we document that local CP factors have significant predictive

power. We also construct a global CP factor and provide evidence that it predicts

bond returns with high R2s across countries. The local and global factors are

jointly significant when included as regressors, which suggests that variation in

bond excess returns are driven by country-specific factors and a common global

factor. Shocks to US bond risk premia seem to be particularly important deter-

minants for international bond premia. Motivated by these results, we estimate

a parsimonious no-arbitrage affine term structure model in which risk premia are

driven by one local and one global CP factor. We find that the local factor acts

like a slope factor and the global factor as an interest rate level factor.
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1 Introduction

The expectation hypothesis of interest rates states that bond risk premia are constant over

time. However, ample evidence suggests that risk premia in bond markets do vary over time.

For example, Fama and Bliss (1987, FB) and Campbell and Shiller (1991, CS) show that US

bond excess returns are predictable using the forward-spot rate differential and the slope of

the yield curve. A steep yield curve has historically predicted lower future long yields and

positive excess returns on long bonds over short bonds. Cochrane and Piazzesi (2005, CP)

establish even stronger evidence for predictability when more information from the yield

curve is incorporated. Using five forward rates as predictors, they document significantly

higher R2 compared to the commonly used FB or CS regressions.

We extend the setup of CP to an international setting and construct local CP factors for

Germany, Switzerland, the UK, and the US for the period January 1976 to December 2007.

The local factors are shown to have significant forecasting power for bond excess returns

while FB regressions show weak or no evidence of predictability for countries outside the

US. Next, we construct a global CP factor and show that it predicts bond returns with

similar or higher explanatory power compared to local CP factors. The local and global CP

factors are jointly significant when included as regressors and increase the explanatory power

even further. Our results suggest that there exists a common global return-forecasting factor

that predicts bond returns across countries and that bond risk premia are driven by both a

country-specific factor and a common global factor. Motivated by this finding, we propose

and estimate a parsimonious no-arbitrage affine term structure model in which risk premia

for each country vary with the local and global CP factor. Shocks to the CP factors and to

the level of interest rates are found to be significantly priced across all four countries. Our

estimation results suggest that international bond risk premia are driven by a local slope

factor and a global interest rate level factor.
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The local CP factors are positively associated with the slope of local yield curves and

with the fourth principal component of local yields and are shown to be positively correlated

over the sample period. Correlations are higher during the second half of the sample period

compared to the first half which indicates an increasing comovement of international bond

risk premia over time. The global CP factor is computed as a GDP-weighted average of the

local CP factors and is positively associated with the level and slope of local term structures.

The global factor is close to perfectly correlated with the US CP factor. The fact that the

global factor predicts bond returns with high R2 for countries outside the US indicates that

shocks to US bond risk premia are important determinants for international bond premia.

Our evidence of predictable bond returns across countries stands in contrast to the exist-

ing literature which finds weak or no evidence of predictability internationally. For example,

Hardouvelis (1994) and Bekaert and Hodrick (2001) find it hard to reject the expectation

hypothesis for countries outside the US. In contrast, we show that both a local and global

CP factor predict returns significantly in countries for which FB regressions finds no or weak

evidence of predictability. Flamini and Veronesi (2008) document similar results using a

common return forecasting factor. In a recent paper, Kessler and Scherer (2009) also con-

struct CP factors across countries and find significant forecasting power. However, the focus

of their paper is different from ours as they are mainly interested in evaluating different trad-

ing strategies. Our finding that bond returns are governed by a country-specific and a global

factor is related to Dahlquist (1995), who find that variations in forward term premia are to

a great extent captured by the shape of domestic and world term structures, and Driessen

et al. (2003), who find that a world interest rate level factor accounts for nearly half of the

variation in bond returns. Furthermore, Perignon et al. (2007) find that US bond returns

share only one common factor with German and Japanese bond returns which they link

to changes in the level of interest rates. Ilmanen (1995) also examines the predictability of

international bond returns and find that global factors predict bond returns across countries.
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Our work is also related to Cochrane and Piazzesi (2008), who estimate an affine model on

US data using the local CP factor plus three latent variables. Only level shocks are assumed

to be priced in their model where risk premia vary with the CP factor. Our estimations

show that not only level shocks are priced but also shocks to the CP factor itself. Koijen et

al. (2009) find that the CP factor is able to price the cross-section of US stock returns.

Several equilibrium models have been put forward to explain the mechanics of time-

varying bond risk premia, linking macroeconomic variables to changing expected excess

returns. For example, Brandt and Wang (2003), Wachter (2006), and Buraschi and Jiltsov

(2007) all build on the habit-formation model of Campbell and Cochrane (1999) and show

that it can generate rejections of the expectation hypothesis. Bansal and Shaliastovich (2008)

and Hasseltoft (2008) build on the long-run risk model of Bansal and Yaron (2004) and

argue that changing bond risk premia are driven by time-varying volatility of consumption

growth. Ludvigson and Ng (2008) provide empirical evidence that macro factors do predict

bond returns. By using common factors from a large set of macro variables, they document

R2s up to 26% when predicting US bond excess returns. They find that including the CP

factor increases the R2s up to over 40% with all coefficients being statistically significant.

Our paper is also related to work on term structure models such as Dai and Singleton (2000),

Duffee (2002), and Dai and Singleton (2002). Diebold et al. (2008) build on Nelson and Siegel

(1987) and document the existence of global yield curve factors which appear to be linked to

global macroeconomic factors such as inflation and real activity. Related is also the literature

on global factors in other asset markets. For example, Harvey (1991), Campbell and Hamao

(1992), and Ferson and Harvey (1993) use global risk factors to predict international stock

returns while Backus et al. (2001) and Lustig et al. (2009) address the forward premium

puzzle using affine models including country-specific and common factors.

Our paper proceeds as follows. In Section 2 we describe the data, present summary

statistics, and provide the key results related to predictability regressions of bond returns.
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In Section 3 we propose an affine term structure model with local and global factors. We

present the results of estimating these models in Section 4, and discuss implications for

yields in terms of yield loadings, impulse response functions, and variance decompositions.

In Section 5 we discuss how the affine model can be linked to structural models and outline

future research in light of our results. We conclude in Section 6.

2 Predictability of bond returns

2.1 Data

Our data set covers monthly zero-coupon interest rates for Germany, Switzerland, United

Kingdom, and United States and spans the time period January 1976 to December 2007.

One-to-five year zero-coupon yields for Germany are collected from Bundesbank, Swiss yields

are derived from forward rates up to December 2003 after which yields from the Swiss

National Bank are used, yields for the UK are retrieved from Bank of England, while yields

for the US are collected from the Fama-Bliss discount bond file in CRSP. The one-month

interbank rate, collected from Datastream, is used as short rate for Germany and Switzerland.

For the UK, the one-month interbank rate is used until February 1997 and then one-month

yields from Bank of England. The Fama one-month yield from CRSP is used for the US.

Quarterly data on GDP, computed using purchasing power parity, is retrieved for each

country from Datastream. As the GDP data are quarterly, the weights applied to the

monthly CP factors are constant within each quarter. Table 1 presents summary statistics

for yields across countries. Yield curves tend to be upward sloping on average while yields

on short-maturity bonds tend to be more volatile than yields on long-maturity bonds. Yield

levels are positively correlated across countries with correlations being higher among yields

on longer-term bonds. Annual bond excess returns on 2-5 year bonds are also positively

correlated across countries as indicated in Table 2.
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2.2 Constructing local and global Cochrane-Piazzesi factors

We construct local CP factors as in Cochrane and Piazzesi (2005) for each country c in our

sample. Define the annual return on a n-period bond in excess of the one-year yield as

rxnc,t+1 = pn−1c,t+1 − pnc,t − y1c,t, where p denotes the log bond price and y denotes the log yield,

computed as ync,t = −pnc,t/n. Define the one-year forward rate between periods n−1 and n as

the differential in log bond prices, fn
c,t = pn−1c,t −pnc,t. A CP factor is constructed by regressing

average excess returns across maturity at each time t on the one-year yield and four forward

rates:

rxc,t+1 = γc,0 + γc,1y
1
c,t + γc,2f

2
c,t + γc,3f

3
c,t + γc,4f

4
c,t + γc,5f

5
c,t + ε̄c,t+1, (1)

where rxc,t+1 =
∑5

n=2 rx
n
c,t+1/4. Let the right hand side variables, including the constant

term, for each country be collected in the vector fc,t and let the corresponding estimated

coefficients be collected in the vector γ̂c. A local CP factor CPc,t is then given by γ̂′cfc,t.
1

We construct a global CP factor defined as the GDP-weighted average of each local CP

factor at time t. That is:

GCPt =
C∑
c=1

wc,tCPc,t, (2)

where wc,t = GDPc,t/
∑C

c=1GDPc,t, and where C = 4. The average weights over the sample

period is 0.70 for US, 0.12 for UK, 0.16 for Germany, and 0.02 for Switzerland. Our size-

weighted global risk factor is hence dominated by the US.2

1Cochrane and Piazzesi (2005) find the γs to form a tent-shaped pattern. We find a similar shape for
the US, using the same data source as CP but for a different sample period. The shapes are different for
the remaining countries. Dai et al. (2004) emphasize that different ways of smoothing yield curves give rise
to different patterns. Yields that are choppy and less smoothed produce patterns that are more similar to
tents. While the US yields that we use are unsmoothed Fama-Bliss yields, yields for the remaining countries
are smoothed by each country’s central bank. Hence, the patterns are different. However, including only the
one-year yield, the three-year forward rate, and the five-year forward rate on the right hand side produces
tent shapes also for smoothed yields without changing the dynamics of the CP factor to any great extent.

2We have considered alternative ways of constructing a global CP factor; for example, we have elaborated
with an equal-weighted factor and a factor given by the first principal component of the covariance matrix of
local CP factors. Our main result that bond risk premia are determined by both a local and a global factor
remains.
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Table 3 presents correlations of the local CP factors as well as the global CP factor.

While the US factor is only weakly positively correlated with the others, the European

factors display higher correlations among each other. Correlations are higher for the second

half of the sample period with correlations in excess of 0.5. This suggests that international

bond risk premia have become more correlated over time. This can also be seen in Figure

1, which plots the four local CP factors. The table also shows that the US factor and the

global factor are almost perfectly correlated, while correlations are lower than 0.5 for the

other countries. Figure 2 plots the global factor together with NBER contractions. The

global factor tends to increase during US recessions, indicating that it is counter cyclical and

closely related to US economic conditions.

2.3 Predictability regressions

We start by running Fama and Bliss (1987) regressions for each country. We regress excess

returns on a n-period bond onto a constant and the forward rate-spot rate differential:

rxnc,t+1 = anc + bnc (fn
c,t − y1c,t) + εnc,t+1, (3)

where anc and bnc are parameters and εnc,t+1 is an error term. Table 4 displays the results.

Consistent with earlier evidence in the literature, we find that a positive forward-spot rate

spread predicts US returns positively with R2s ranging between 5% and 13%. Slope coeffi-

cients for maturities of two to four years are statistically significant at the 1% level, while

the coefficient for the five-year bond is statistically significant at the 10% level. However,

none of the predictability coefficients for UK and Germany are statistically different from

zero while for Switzerland only slope coefficients for the two- and three-year bonds are sig-

nificant at conventional levels. The explanatory power of the regressions are lower than for

the US. This finding goes in line with existing evidence that the expectation hypothesis is
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more difficult to reject for countries outside the US.

Next, we predict bond returns using our constructed local CP factors and run the fol-

lowing regression for each country:

rxnc,t+1 = bnc,CPCPc,t + εnc,t+1. (4)

Table 4 presents also these results. Predictability coefficients are all highly significant across

the four countries. The explanatory power is higher for the US compared to the other

countries. However, the R2 is substantially higher for the CP regressions than for the earlier

FB regressions. For countries in which the FB regressions pointed to no or weak evidence

of predictability, the CP regressions suggest that international bond risk premia are indeed

predictable. This is likely due to the fact that CP regressions make use of more information

from the yield curve, compared to the FB regressions.

To put the explanatory power of the local CP factors further in context, we contrast

the results with the ones using the first three principal components of yield levels to predict

returns. It is common in the term-structure literature to summarize the information in

yields using these components as they explain virtually all of the variation in yields. See, for

example, Litterman and Scheinkman (1991). The first three components are often labeled

level, slope, and curvature. We do a principal component analysis of yield levels for each

country.3 We then run the following regression for each country:

rxnc,t+1 = anc + bnc,LevelLevelc,t + bnc,SlopeSlopec,t + bnc,CurvatureCurvaturec,t + εnc,t+1. (5)

The results from these regressions are presented in Table 5. Judging from the statistical

3The principal component (PC) analysis is done through an eigenvalue decomposition of the variance-
covariance matrix of demeaned yield levels. The first PC accounts for 97.9–98.9% of the yield variance across
countries, the second accounts for 1.0–1.9% of the variance, while the third only accounts for 0.02–0.12% of
the variance.
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significance of the coefficients, the slope and curvature factors seem important for predicting

returns. Furthermore, the explanatory power is higher than for the FB regressions for all

countries. However, the R2 are all lower compared to using the local CP factors with the

exception of Switzerland, where the explanatory power of the two regressions are similar.

To sum up the results so far, the local CP factors all predict bond returns with signif-

icantly higher R2 than the commonly used FB regressions and they seem to contain more

information than the first three principal components, with the possible exception of Switzer-

land.

Based on our earlier discussion of international bond risk premia being positively corre-

lated, we investigate whether there exists a common global factor that predicts returns for

each country. Using our constructed global CP factor, GCP, we predict excess returns by

running the following regression:

rxnc,t+1 = bnc,GCPGCPt + εnc,t+1. (6)

Table 6 presents the results. Interestingly, the R2 is higher for the European countries

compared to using the local CP factors. The explanatory power is, however, less for the

US. Since the global factor is highly correlated with the US factor, our results suggests that

shocks to US bond risk premia have great predictive power for bond returns outside the US.

The lower R2 for the US signifies that incorporating information from other countries is less

important for predicting US bond returns.4

Having established that both a local and global CP factor predict returns significantly

with high R2 we include the local and global factors jointly and run the following regression:

rxnc,t+1 = bnc,CPCPc,t + bnc,GCPGCPt + εnc,t+1. (7)

4Running the predictability regression using the US factor confirms the importance of US risk premia for
predicting international bond risk premia.
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These results are also presented in Table 6. The results for US suffer from multicollinearity

which makes the individual regression coefficients insignificant. However, p-values from Wald

tests suggest that the coefficients are jointly significant. Both coefficients are individually

and jointly significant for the other three countries. The R2 are also higher compared to

the individual regressions. The joint significance of the coefficients suggests that bond risk

premia are driven by both global and local factors.

3 An affine model with local and global factors

Motivated by our finding that international bond risk premia seem to be driven by a common

global factor as well as a country-specific factor, we explore in this section how CP factors

drive expected excess returns. We are interested in finding out how shocks affect yields

and whether there are differences across countries. We do so by estimating a parsimonious

no-arbitrage term structure model for each country. The model consists of three factors for

countries outside the US: The local CP factor, the global CP factor, plus the first principal

component of yields which is related to the level of yields. The fact that the US factor and

the global factor are close to perfectly correlated renders inference problems, so we instead

choose to estimate a two factor model for the US consisting of the global CP factor and the

first principal component of yields. The level component is orthogonalized with respect to the

CP factors by regressing yields of maturities one-five year on a constant and the CP factors.

The level factor is then the first principal component of the residuals.5 Following the results

from our predictive regressions, we assume that risk premia are only driven by the local and

global CP factors. The level factors lower pricing errors and serve as country-specific interest

rate factors that are not priced. Including more factors such as slope and curvature factors

5That is, the principal components are computed using yields of maturities one-to-five years as to match
the maturities used in the predictability regressions. Yields on one-month bonds are merely used in the
affine model to pin down the short end of the term structure.
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naturally leads to lower pricing errors, as discussed in Section 4.2 on robustness. However,

including incremental factors do not change our main results so we choose instead parsimony.

3.1 Setup of the model

The model is described for one country with K state variables. For simplicity, we suppress

the country subscript c. Assume that the vector of state variables follows:

Xt = µ+ ρXt−1 + ηt, (8)

where ηt ∼ N(0,Σ), and X,µ, and η are K × 1 vectors, and ρ and Σ are K ×K matrices.

The state vector contains CPc,t, GCPt, and Levelc,t for countries outside the US, and GCPt

and Levelc,t for the US. Assume that the one-month yield follows:

rt = δ0 + δ
′

1Xt, (9)

where δ0 is a scalar and δ1 is a K×1 vector. The discount factor is specified as an exponential

affine function of the three factors:

Mt+1 = exp

(
−δ0 − δ

′

1Xt − λ
′

tηt+1 −
1

2
λ

′

tΣλt

)
, (10)

where λt are the time-varying market prices of risk. The process for λt is assumed to be

affine: λt = λ0 + λ1Xt, where λ0 is a K × 1 vector and λ1 is a K ×K matrix. The price of

an asset satisfies standard no-arbitrage conditions, such that bond prices can be computed

as: P n+1
t = Et(Mt+1P

n
t+1). Bond prices become exponential affine functions of the state

variables: P n
t = exp(An + B

′
nXt), where An is a scalar and Bn is a K × 1 vector. A and B
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satisfy:

An+1 = An +B
′

nµ
∗ +

1

2
B

′

nΣBn − δ0, (11)

B
′

n+1 = B
′

nρ
∗ − δ′1, (12)

where A0 = B0 = 0 and µ∗ = µ−Σλ0 and ρ∗ = ρ−Σλ1 are the mean vector and transition

matrix under the risk neutral measure. The continuously compounded yield ynt is given by:

ynt = − ln(P n
t )/n = −An/n−B

′
nXt/n. Model yields are subject to constant second moments

since the state vector is assumed to be homoscedastic. This is counterfactual to data but

simplifies our analysis. Expected log excess return on a n-period bond over the short rate is

given by:

Et(rx
n
t+1) = −Covt(mt+1, rx

n
t+1)−

1

2
V art(rx

n
t+1), (13)

where rxnt+1 = pn−1t+1 − pnt − y1t denotes the log excess return, p denotes the log bond price, m

denotes the log discount factor, and where the variance term is a Jensen’s inequality term.

Recognizing that the covariance term can be written as:

− Covt(mt+1, rx
n
t+1) = Covt(ηt+1, p

n−1
t+1 )λt (14)

= B
′

n−1Σλt,

and that the variance term can be written as:

1

2
V art(rx

n
t+1) =

1

2
B

′

n−1ΣBn−1, (15)

the log excess return can be written as:

Et(rx
n
t+1) = B

′

n−1Σλ0 +B
′

n−1Σλ1Xt −
1

2
B

′

n−1ΣBn−1. (16)
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Risk premia vary over time due to the time-varying market price of risk, λt, rather than

through time-varying volatility of the state vector and are equal to zero when λ0 = 0 and

λ1 = 0, ignoring the Jensen’s inequality term. Equation (16) shows that λ1 governs the price

of the market risk that is time-varying. The sign of the time-varying part of the risk premium

depends on the sign of this market price of risk and on the product of yield loadings and the

variance-covariance matrix B′n−1Σ. The usual intuition holds: the risk premium is positive

if a positive shock to the state variables raises the pricing kernel while lowering bond prices

as it implies low excess returns in bad times. As a result, the bond is considered risky by

the investor who accordingly demands a positive risk premium for holding the asset.

3.2 Impulse responses and variance decompositions

Impulse response functions and variance decompositions are useful for analyzing the impact

of economic shocks on yields and to gauge the relative importance of shocks for the variance

of yields. See, for example, Hamilton (1994) for details. Starting with impulse response

functions, write the state dynamics in vector MA(∞) form:

Xt =
∞∑
i=0

Ψiηt−i. (17)

As the state dynamics are given by a VAR(1) process, Ψi = ρi. Shocks are orthogonalized

using a Cholesky decomposition of the variance-covariance matrix Σ, which returns the lower

triangular matrix P where PP
′
= Σ. Define a new shock vector vt as P−1ηt, so that ηt = vtP .

Then E(vt) = 0 and E(vtv
′
t) = IK . Then redefine (17) as :

Xt =
∞∑
i=0

ΨiPvt−i. (18)

13



Impulse responses can now be interpreted as the response of the system to a one standard

deviation shock. Considering that yields are linear functions of the state variables, ynt =

−An/n−B
′
nXt/n, they can be written as:

ynt = −An

n
−
∞∑
i=0

B′n
n

ΨiPvt−i. (19)

Hence, −B′
n

n
ΨiPj is the impulse response for a n-period yield at a horizon of i months given

a one standard deviation shock to state variable j at time zero, were Pj is the j th column

of P .

The variance of yields is decomposed as follows. Using the vector MA(∞) form of the

state dynamics, the error in forecasting the state VAR s periods ahead can be written as:

Xt+s − X̂t+s|t =
s−1∑
i=0

Ψiηt+s−i. (20)

Using (19), the s-period forecast error of the yield on an n-maturity bond can be written as:

ynt+s − ŷnt+s|t = −
s−1∑
i=0

B′n
n

Ψiηt+s−i = −
s−1∑
i=0

B′n
n

ΨiPvt+s−i. (21)

Then the mean squared error, MSE, of the forecast is:

MSE = E[(ynt+s − ŷnt+s|t)(y
n
t+s − ŷnt+s|t)

′] = (22)

=
B′n
n

Σ
Bn

n
+
B′n
n

Ψ1ΣΨ′1
Bn

n
+ ...+

B′n
n

Ψs−1ΣΨ′s−1
Bn

n
,

since V ar(vt) = I. As we are interested in the contribution of shocks to each one of the K

state variables, (22) can be rewritten as:

MSE =
K∑
j=1

[
B′n
n
PjP

′
j

Bn

n
+
B′n
n

Ψ1PjP
′
jΨ
′
1

Bn

n
+ ...+

B′n
n

Ψs−1PjP
′
jΨ
′
s−1

Bn

n

]
, (23)

14



using the fact that V ar(vj,t) = 1 and where vj,t denotes the jth element in the v vector and

where pj denotes the jth column in matrix P . The relative contribution of a shock to the jth

state variable for the variance of an n-period yield and for a horizon of s months is therefore:

B′
n

n
PjP

′
j
Bn

n
+ B′

n

n
Ψ1PjP

′
jΨ
′
1
Bn

n
+ ...+ B′

n

n
Ψs−1PjP

′
jΨ
′
s−1

Bn

n

MSE
. (24)

4 Estimation

We estimate in a first step the risk-neutral dynamics of the state variables directly from

observed yields. We then estimate the market prices of risk in λ1 in a second step such

that the model matches the slope coefficients of the in-sample predictability regressions that

includes the local and global CP factors jointly.

The risk-neutral dynamics of the state variables is estimated by matching model-implied

yields with observed yields. All state variables are demeaned prior to estimation, that is

µ = 0. The condition µ∗ = −Σλ0 is imposed in the estimation to make sure that the model

reproduces state variables with a sample mean of zero. We use an estimate of Σ from an

OLS estimation of the state dynamics in Equation (8). We estimate λ0, ρ
∗, δ0, and δ1 with

the generalized method of moments (GMM) framework of Hansen (1982), using the identity

matrix as weighting matrix. The sample counterpart of the following moment condition is

used:

E (νt ⊗ zt) = 0, (25)

where νt is a vector of yield errors with a typical element given by yn,datat − yn,model
t , where

we consider bonds with maturities one month, and one to five years. Vector zt contains a

constant and the state variables. For countries outside the US, zt = [1, CPc,t, GCPt, Levelc,t],

while zt = [1, GCPt, Levelc,t] for the US. In total there are 16 parameters to estimate for

countries outside the US, consisting of δ0, the three elements in δ1, the three elements in λ0,
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and the nine elements in ρ∗. The number of moment conditions are 24 since νt has dimension

6 × 1. For the US, there are nine parameters to estimate and 18 moment conditions. The

risk-neutral dynamics of the state variables are restricted to be stationary throughout the

estimations by requiring the eigenvalues of ρ∗ to lie inside the unit circle.

Parameters in λ1 are estimated in a second step which provides an understanding of how

shocks to each factor are priced. Based on results from our predictive regressions, we restrict

λ1 so that risk premia in the model only are driven by the local and global CP factors. We

therefore set the column in λ1 that refers to level shocks equal to zero. We also impose

restrictions such that each CP factor only price shocks to itself, in addition to level shocks.

This is done for simplicity and relaxing the restrictions does not change our results. This

means that:

λ1 =


λ11 0 0

0 λ22 0

λ31 λ32 0

 , (26)

for countries outside the US while the corresponding matrix for the US is:

λ1 =

 λ11 0

λ21 0

 , (27)

since only the global CP factor is assumed to drive risk premia for the US market. Based

on our regressions, expected excess returns can be written as Et(rx
n
c,t+1) = bnc,CPCPc,t +

bnc,GCPGCPt for n = 2, 3, 4, 5. The estimated slope coefficients are therefore 4 × 1 vectors.

The corresponding expression for model-implied log excess returns are as in Equation (16).6

We have estimated loadings B, the variance-covariance matrix Σ, and λ0 from the first-step

6Since we have demeaned the CP factors for estimation purposes, we are matching the in-sample slope
coefficients obtained using demeaned CP factors. They are very similar to the ones reported in Table 6.
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so the only unknown parameters are the λ1 parameters. We estimate these by matching

estimated expected returns in data with model-implied expected returns. For the US, we

would like the model to match the global CP regression in Table 6. Let the 4 × 1 vector

εt denote the difference Et(rxt+1)
data −Et(rxt+1)

model. We form 16 moments conditions and

estimate four parameters in λ1 for countries outside the US and form 12 moment conditions

and estimate two parameters in λ1 for the US. We estimate the system with GMM using the

identity matrix as weighting matrix. The moment conditions are:

E (εt ⊗ zt) = 0, (28)

where zt = [1, CPc,t, GCPt, Levelc,t] for Germany, Switzerland, and the UK while zt =

[1, GCPt, Levelc,t] for the US. Given the earlier estimated ρ∗, we impose stationarity on the

implied physical dynamics of the state variables by requiring the eigenvalues of ρ = ρ∗+ Σλ1

to lie inside the unit circle.

4.1 Estimation results

The estimation results for each country are reported in Table 7 which consists of parameter

estimates and standard errors. All but one element of the λ1 matrices across countries are

statistically significant which indicates that shocks to all three state variables are priced and

that the local and global CP factor are significant drivers of risk premia. All significant

estimates of λ1 are negative which means that positive shocks to the state variables raise

the pricing kernel. Whether this give rise to positive or negative risk premia depends on

the sign of the yield loadings and on the variance-covariance matrix of the shocks. Figure

3 shows estimated yield loadings across countries. First, yields load positively on the level

factor with loadings on the short end being somewhat higher. Second, the local CP factor

takes the form of a slope factor in all countries which is consistent with local CP factors
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being highly positively correlated with the second principal component in each country.7 In

the UK, however, the slope is less pronounced and the CP factor is more similar to a level

factor. This is in line with the UK factor being highly positively correlated with the first

principal component of yields. The yield loadings of the global factor have similar shapes as

the level factor in each country, which is consistent with the global factor being positively

correlated with the first principal component. The global factor acts as a combination of a

slope and curvature factor in the US which of course is a result of the global factor being

dominated by the US factor.

Pricing errors of the model are reported in Table 8 and are lowest for Switzerland with a

root mean squared error (RMSE) of 0.22% and highest for the UK with a RMSE of 0.50%.

The pricing error for US of 0.36% seems reasonable considering we estimate a two-factor

model. The variation of pricing errors is highest for the one-month yield which is known to

be difficult to model. In the next sub-section, we discuss the effect of including the second

and third principal component as additional factors.

To sum up our estimation results, we find that shocks to all state variables are priced and

that local and global CP factors are significant drivers of risk premia. While the local CP

factors have yield loadings that are similar to slope factors, the global factor is more similar

to a level factor. The predictive power of the local CP factor suggests that a steeper and

more curved term structure imply higher expected excess return while the predictive ability

of the global factor implies that there exists a global level factor that drives international

bond risk premia.

7The correlations between local CP factors and local slope factors are 0.83, 0.88, and 0.40 for Germany,
Switzerland, and the UK respectively. The corresponding correlations between local CP factors and local
level factors are 0.35, 0.32, and 0.57. Correlations in Germany, Switzerland, the UK, and the US between
the global factor and local level and slope factors are 0.36, 0.44, 0.33, and 0.32 for the level factor and 0.30,
0.29, 0.26, and 0.73 for the slope factor.
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4.2 Robustness

We have chosen to use only the first principal component of yields in our affine model.

However, it is common in the literature to also use a slope and curvature factor in addition

to a level factor. Here we discuss how the inclusion of two additional factors affects our

results.8

Including the first three principal components in addition to the global and local CP

factors produces a RMSE for Germany, Switzerland, and the UK of 0.17%, 0.22%, and

0.21% compared to 0.29%, 0.22%, and 0.50% in the original specification. Hence, the pricing

error for both the UK and Germany are reduced while the pricing error for Switzerland is

unchanged. Even though more variables are added and shocks to the slope and curvature

factor also are priced, the GCP and local CP factors still retain their status as level and

slope factors respectively. Adding two more factors to the US specification of GCP plus a

level factor lowers the RMSE to 0.30% which is somewhat lower than the original 0.35%.

The reduction in pricing error is not dramatic since the original specification is close to a

level factor plus a slope factor due to the highly positive correlation of 0.73 between GCP

and the US slope factor. Including a second and third principal component does not change

the slope-like shape of GCP yield loadings for US yields.

Hence, including a second and third principal component lowers pricing errors but it does

not change the main message of the paper: The local CP and global CP factors act as slope

and level factors and are important for pricing shocks, and determining risk premia in the

economy. Motivated by this conclusion, we choose parsimony and focus on affine models

with only two and three factors.

8The numerical robustness results are not reported in tables and figures for brevity but are available in
full form upon request.
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4.3 Impulse responses and variance decompositions

Figure 4 depicts impulse response functions for yields on one-month and five-year bonds,

given a one standard deviation shock to the state variables. In Germany, positive shocks to

the level factor and the local CP factor raise short-maturity yields both in the short and long

run while long-maturity yields also increase except for very long horizons where the effect of

the shocks turns negative. Shocks to the German factor immediately increase the slope of the

yield curve by 44 basis points after which the slope decreases, reaching zero two years after

the initial shock, and then becomes negative. It is evident that the global factor only has a

small impact on long yields while the effect on short yields is larger and negative, leading to

a steepening of the yield curve. The figure shows that the impulse responses do not settle

down after ten years. This is since the ρ matrix for Germany contains an eigenvalue very

close to one, resulting in shocks that lasts for a very long time. For Switzerland, it is evident

that the global factor again has little effect on yields as the impulse responses are close to

zero throughout the horizons. In contrast, positive shocks to the local CP factor lower short

yields while raising long yields initially, indicating that the CP factor acts as a slope factor.

The yield curve steepens initially by 50 basis points after which the slope decreases and

reaches zero less than two years after the initial shock. In the UK, positive shocks to local

and global CP factors have an initial effect on short-maturity yields that is negative but

small while the long-run response of the short yield is virtually the same for the two shocks.

However, shocks to the local CP factor have a stronger effect on long-maturity yields, raising

the five-year yield by 28 basis points initially. As a result, positive innovations to the local

CP factor lead to an initial steepening of the yield curve of 30 basis points after which the

curve gradually flattens. The slope effect due to the local CP factor is only five basis points

two years after the shock and reaches zero three years after the initial shock. In the US, the

global factor acts as a slope factor as it lowers short yields and raises long yields, producing

an initial slope of 56 basis points. The yield curve flattens subsequently with a slope of only
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five basis points after one and a half years. An eigenvalue very close to one for the US ρ

matrix results in impulse response functions that decay very slowly towards zero.

The reason why a shock to the local or global CP factors can have an initial negative effect

on yields even though their yield loadings may be strictly positive is the negative correlation

between shocks to CP factors and the level factor. For Germany, the correlation of shocks

between the level factor and the local and global CP factors are -0.33 and -0.74 respectively.

For Switzerland, the corresponding correlations are -0.14 and -0.83. The correlations for the

UK are -0.67 and -0.43. In the US, the correlation between shocks to GCP and the level

factor is -0.79. The negative correlations also imply that a shock to the GCP factor has less

of an impact on yields than the GCP yield loadings suggest since positive GCP shocks are

accompanied by offsetting negative level shocks.

To sum up, an increase in local CP factors leads to an initial steepening of yield curves

which lasts between one and two years while shocks to the global factor has a muted impact

on yields except for the German one-month yield over very long horizons. The former effect

is consistent with the positive correlation between local CP factors and the corresponding

slope factor for each country. The results are robust to the ordering of the state variables,

which otherwise is known to impact the results (see, for example, Bikbov and Chernov, 2008,

for a discussion).

Table 9 shows results from the variance decomposition, illustrating the contribution of

each shock to the variance of yield forecast errors. In Germany, the local CP factor con-

tributes with 39% and 37% of the short and long-yield variance respectively, for a one-month

horizon. Its impact on long-run variance is similar for long yields but drops down to 12%

for the short yield. The global factor is not important for determining variance in yields as

its largest share of variance is only 6%. In Switzerland, the impact of the local CP factor

increases further as it accounts for over half of the variance of five-year yields and between

30% and 49% of the variance in one-month yields. The GCP factor has virtually zero im-
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pact on the variance of yields, underlining its little importance for determining the dynamics

of yield levels. In the UK, the local CP factor is more important for the variance of long

yields than short yields, accounting for 31% of the variance of long yields over a horizon of

one month. Shocks to the GCP factor have a rather limited impact on the variance. For

example, it accounts for 15% of the long-run variance in one-month yields. In the US, the

global factor accounts for half of the short-term variance in short yields while its impact

on five-year yields is tiny. As is commonly found in the literature, the bulk of the variance

across countries is accounted for by the level factor. Our results are again robust to the

ordering of state variables.

The results suggest that the global factor is not important for the dynamics of yield levels

as it contributes very little to the variance of yields, except for the US where it is important for

the variance of short-maturity yields. In contrast, the local CP factors account for a sizeable

part of the forecast error variance and most notably so for Germany and Switzerland.

5 Where does the CP factor come from?

The ability of the CP factor to predict returns is intriguing and naturally raises the question

of where it is coming from. The literature is still silent on what the CP factor actually

represents. Cochrane and Piazzesi (2005) show that the US factor is correlated with busi-

ness cycles, high in troughs and low in peaks. However, we still do not know exactly what

type of information the CP factor captures. The natural starting point would be to con-

sider the link between macroeconomic conditions and the CP factor. We know from asset

pricing theory that risk premia should be positive on average for assets whose return co-

vary positively with investors’ well being. Furthermore, risk premia have been found to

vary over time in a counter-cyclical fashion (e.g., Fama and French, 1989). Using the intu-

ition from consumption-based models, bond risk premia are positive on average if inflation
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is counter-cyclical since nominal bonds then have low payoffs in bad times. To get time-

variation in risk premia, one option is to consider time-varying macroeconomic volatility.

For example, Bansal and Shaliastovich (2008) and Hasseltoft (2008) build on the long-run

risk model of Bansal and Yaron (2004) and show that time-varying volatility of consump-

tion growth induces time variation in bond risk premia. Using a similar model, Hasseltoft

(2009) shows that also inflation volatility is an important determinant for changes in bond

risk premia. Using the habit-formation model of Campbell and Cochrane (1999), Brandt

and Wang (2003) and Wachter (2006) show that variation in the consumption surplus ratio

induces time variation in bond risk premia. These theoretical models suggest a tight link

between macroeconomic variables and risk premia. This would imply a link between the CP

factor and the macroeconomy.

The reason the predictive power of the CP factor had gone unnoticed until Cochrane

and Piazzesi (2005) is that it is common to focus on the first three principal component of

yields which account for virtually all of the variation in yields. Even though the CP factors

are highly positively correlated with the second principal component, it is also positively

associated with the fourth principal component which explains a negligible part of yield

variations but which has considerable forecasting power. Duffee (2008) discusses how a

factor can have zero effect on current yields but be important for bond risk premia. Since

yields of any maturity can be written as the sum of expected future short yields and a risk

premium, such a factor must have offsetting effects on these two components. Duffee (2008)

estimates a five-factor term structure model and uncovers a factor that has a negligible effect

on current yields but contains substantial information about expected future short yields and

expected excess bond returns. He finds the factor to be negatively associated with survey-

based expected future short yields and positively associated with bond risk premia. The

factor is also found to be negatively associated with industrial production, consistent with

counter-cyclical risk premia. Ludvigson and Ng (2008) document using US data that the CP
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factor contains incremental information beyond macroeconomic variables such as inflation

and real output.

The mystery of the CP factor remains. We intend to explore, in a global context, where it

is coming from. Results from our affine model suggest that macro variables which affect the

level and slope of the yield curve also drive risk premia. Natural candidates are inflation, real

output, macroeconomic volatility/uncertainty, and monetary policy. We are also interested

in understanding the nature of the global factor. Our results seem to suggest that global

macro variables have predictive power across countries. A model including both local and

global macro variables is likely to match the evidence of predictability. The close relation

between the US factor and the global factor suggest that US macro variables or US monetary

policy has implications for global bond risk premia. We would like to explore also this aspect

in the future.

6 Conclusion

We find that bond excess returns outside the US are predictable using locally constructed

forecasting factors as in Cochrane and Piazzesi (2005). The explanatory power is significantly

higher than when using Fama and Bliss (1987) regressions. We also provide evidence that a

global CP factor, closely related to US bond risk premia, has considerable forecasting power

for international bond returns. Furthermore, the local and global CP factors are jointly

significant, indicating that bond risk premia are driven by both country-specific and global

factors.

Having established the predictive power of international CP factors, we propose and

estimate a parsimonious no-arbitrage term structure model in which risk premia are assumed

to be driven by one local and one global CP factor. The estimation reveals that the local

CP factors act as a slope factor while the global factor is similar to a level factor. Hence,
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risk premia across countries seem to be driven by a local slope factor and a world interest

rate level factor.

It is still considered a mystery where the CP factors are coming from. We hope to

shed further light on the link between the macroeconomy and the CP factors in the future.

Specifically, we think it is worthwhile exploring how macro variables such as inflation, real

output, macroeconomic uncertainty, and monetary policy are related to the CP factors across

countries, while also exploring the link between the global factor and the world economy. Our

results suggest that US macro variables have considerable forecasting power for international

bond risk premia.
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Table 3: Correlations between Local and Global CP Factors

Germany Switzerland UK US Global

1976:01–2007:12

Germany 1.00 0.63 0.25 0.32 0.46

Switzerland 0.63 1.00 0.55 0.27 0.41

UK 0.25 0.55 1.00 0.12 0.27

US 0.32 0.27 0.12 1.00 0.98

Global 0.46 0.41 0.27 0.98 1.00

1976:01–1991:06

Germany 1.00 0.35 -0.15 0.23 0.31

Switzerland 0.35 1.00 0.39 0.12 0.21

UK -0.15 0.39 1.00 -0.10 0.01

US 0.23 0.12 -0.10 1.00 0.99

Global 0.31 0.21 0.01 0.99 1.00

1991:07–2007:12

Germany 1.00 0.82 0.63 0.38 0.53

Switzerland 0.82 1.00 0.75 0.53 0.65

UK 0.63 0.75 1.00 0.64 0.73

US 0.38 0.53 0.64 1.00 0.98

Global 0.53 0.65 0.73 0.98 1.00

The table presents correlations between local CP factors for Germany, Switzer-
land, the UK, and the US, and the global CP factor based on data for the full
sample period (1976:01–2007:12) and two sub-sample periods (1976:01–1991:06
and 1991:07–2007:12).
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Table 4: Fama-Bliss and Cochrane-Piazzesi Regressions

n anc bnc R2 bnc,CP R2

Germany 2 0.35 0.37 0.03 0.42 0.12

(0.33) (0.42) (0.09)

3 0.50 0.61 0.05 0.85 0.15

(0.70) (0.50) (0.17)

4 0.59 0.74 0.05 1.21 0.17

(1.03) (0.57) (0.24)

5 0.69 0.81 0.05 1.52 0.17

(1.32) (0.63) (0.30)

Switzerland 2 0.16 0.61 0.09 0.44 0.16

(0.28) (0.24) (0.12)

3 0.43 0.57 0.04 0.86 0.18

(0.58) (0.34) (0.21)

4 0.66 0.58 0.03 1.23 0.19

(0.88) (0.46) (0.28)

5 0.93 0.54 0.02 1.47 0.18

(1.21) (0.61) (0.34)

UK 2 0.33 0.38 0.03 0.42 0.14

(0.27) (0.27) (0.14)

3 0.61 0.49 0.03 0.85 0.18

(0.46) (0.36) (0.25)

4 0.90 0.47 0.02 1.22 0.19

(0.64) (0.45) (0.37)

5 1.24 0.41 0.01 1.51 0.18

(0.82) (0.50) (0.47)

US 2 0.12 0.87 0.10 0.46 0.29

(0.34) (0.30) (0.06)

3 -0.03 1.18 0.13 0.87 0.32

(0.61) (0.35) (0.11)

4 -0.15 1.33 0.13 1.24 0.34

(0.90) (0.45) (0.16)

5 0.37 0.97 0.05 1.42 0.31

(1.21) (0.57) (0.21)

The table presents results from Fama-Bliss (1987) and Cochrane-
Piazzesi (2005) regressions, corresponding to regression equations
(3) and (4). The sample period is January 1976 to December 2007.
Point estimates with Newey and West (1987) standard errors, ac-
counting for conditional heteroscedasticity and serial correlation
up to twelve lags, in parentheses are reported together with ad-
justed R-squares.

32



Table 5: Level, Slope, and Curvature Regressions

n anc bnc,Level bnc,Slope bnc,Curvature R2

Germany 2 0.51 5.70 70.51 36.22 0.10

(0.23) (4.91) (34.06) (187.21)

3 1.02 10.54 148.99 119.16 0.12

(0.43) (8.51) (64.86) (343.41)

4 1.41 13.05 226.42 242.61 0.13

(0.59) (11.54) (91.19) (466.14)

5 1.73 14.30 299.69 386.75 0.14

(0.74) (14.32) (113.78) (569.16)

Switzerland 2 0.36 4.85 104.12 -278.45 0.18

(0.25) (5.38) (27.25) (93.77)

3 0.80 11.00 199.53 -334.49 0.17

(0.44) (10.50) (45.91) (179.17)

4 1.17 15.11 300.69 -295.05 0.18

(0.59) (14.33) (61.66) (254.32)

5 1.44 20.17 350.13 -266.93 0.17

(0.73) (17.62) (75.21) (321.04)

UK 2 0.40 5.89 47.24 249.49 0.10

(0.25) (3.61) (34.78) (135.69)

3 0.76 12.03 76.52 510.69 0.11

(0.44) (6.71) (63.27) (239.08)

4 1.08 17.89 104.79 656.49 0.11

(0.61) (9.85) (89.48) (338.73)

5 1.40 23.08 135.13 679.22 0.10

(0.77) (12.70) (112.79) (429.02)

US 2 0.58 6.72 115.34 342.28 0.22

(0.26) (4.00) (32.64) (110.37)

3 0.94 9.13 223.22 685.48 0.21

(0.48) (7.62) (63.93) (202.86)

4 1.28 10.64 337.00 950.36 0.23

(0.64) (10.43) (87.76) (277.73)

5 1.34 11.61 420.57 1099.99 0.23

(0.77) (12.69) (106.45) (334.09)

The table presents results from principal-component regressions, corre-
sponding to regression equation (5). The sample period is January 1976
to December 2007. The first three principal components of the yield
covariance matrix are referred to as level, slope, and curvature. Point
estimates with Newey and West (1987) standard errors, accounting for
conditional heteroscedasticity and serial correlation up to twelve lags, in
parentheses are reported together with adjusted R-squares.
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Table 6: Local and Global Cochrane-Piazzesi Regressions

n bnc,CP R2 bnc,GCP R2 bnc,CP bnc,GCP R2 Wald

Germany 2 0.42 0.12 0.46 0.28 0.13 0.39 0.29 [0.00]

(0.09) (0.05) (0.10) (0.06)

3 0.85 0.15 0.86 0.27 0.35 0.67 0.29 [0.00]

(0.17) (0.10) (0.20) (0.11)

4 1.21 0.17 1.19 0.25 0.56 0.88 0.29 [0.00]

(0.24) (0.15) (0.29) (0.17)

5 1.52 0.17 1.46 0.24 0.73 1.06 0.28 [0.00]

(0.30) (0.19) (0.37) (0.21)

Switzerland 2 0.44 0.16 0.41 0.20 0.25 0.28 0.24 [0.00]

(0.12) (0.09) (0.13) (0.10)

3 0.86 0.18 0.81 0.22 0.48 0.56 0.27 [0.00]

(0.21) (0.17) (0.23) (0.19)

4 1.23 0.19 1.14 0.23 0.71 0.78 0.28 [0.00]

(0.28) (0.24) (0.32) (0.27)

5 1.47 0.18 1.40 0.23 0.80 0.99 0.28 [0.00]

(0.34) (0.29) (0.38) (0.34)

UK 2 0.42 0.14 0.40 0.16 0.28 0.28 0.23 [0.00]

(0.14) (0.11) (0.12) (0.10)

3 0.85 0.18 0.78 0.19 0.58 0.53 0.27 [0.00]

(0.25) (0.19) (0.22) (0.16)

4 1.22 0.19 1.14 0.21 0.81 0.80 0.29 [0.00]

(0.37) (0.27) (0.32) (0.22)

5 1.51 0.18 1.49 0.22 0.95 1.09 0.29 [0.00]

(0.47) (0.32) (0.40) (0.27)

US 2 0.46 0.29 0.57 0.29 0.26 0.26 0.29 [0.00]

(0.06) (0.08) (0.35) (0.47)

3 0.87 0.32 1.06 0.30 0.85 0.03 0.32 [0.00]

(0.11) (0.15) (0.61) (0.81)

4 1.24 0.34 1.50 0.32 1.30 -0.08 0.34 [0.00]

(0.16) (0.22) (0.79) (1.04)

5 1.42 0.31 1.72 0.29 1.55 -0.15 0.31 [0.00]

(0.21) (0.27) (1.01) (1.32)

The table presents results from local and global Cochrane-Piazzesi (2005) regressions, corre-
sponding to regression equations (4), (6), and (7). The sample period is January 1976 to
December 2007. Point estimates with Newey and West (1987) standard errors, accounting
for conditional heteroscedasticity and serial correlation up to twelve lags, in parentheses are
reported together with adjusted R-squares. P-values from Wald tests of joint significance are
given in square brackets.
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Table 8: Yield Diagnostics of the Estimated Affine Models

1 month 1 year 2 years 3 years 4 years 5 years RMSE MAD

Germany -0.028 0.007 0.007 -0.003 -0.007 0.006 0.295 0.155

{0.654} {0.224} {0.064} {0.080} {0.100} {0.153}

Switzerland -0.011 -0.008 -0.020 0.001 0.014 0.006 0.222 0.120

{0.481} {0.080} {0.128} {0.033} {0.112} {0.167}

UK 0.002 -0.005 0.006 0.000 -0.003 0.002 0.504 0.310

{1.050} {0.468} {0.135} {0.095} {0.230} {0.361}

US -0.017 0.055 -0.026 -0.034 0.005 0.017 0.362 0.227

{0.732} {0.323} {0.155} {0.080} {0.167} {0.293}

The table presents diagnostics of the estimated affine models with local and global factors (see
Section 4.1) for yields on bonds with maturities of one month, and one to five years. Averages and
standard deviations (in curly brackets) of yield errors, are reported in the first six columns. The
last two columns report a root mean squared error (RMSE) and a mean absolute deviation (MAD)
of yield errors. All statistics are expressed in % per year.

36



Table 9: Variance Decompositions

Variable Horizon 1 month 5 year

Germany Local CP 1 0.39 0.37

120 0.12 0.38

Global CP 1 0.00 0.02

120 0.06 0.03

Level 1 0.61 0.62

120 0.82 0.59

Switzerland Local CP 1 0.30 0.49

120 0.49 0.68

Global CP 1 0.00 0.00

120 0.02 0.00

Level 1 0.70 0.51

120 0.49 0.32

UK Local CP 1 0.00 0.31

120 0.13 0.13

Global CP 1 0.09 0.02

120 0.15 0.09

Level 1 0.91 0.67

120 0.72 0.78

US Global CP 1 0.50 0.02

120 0.12 0.09

Level 1 0.50 0.98

120 0.88 0.91

The table presents variance decompositions of yield forecast errors,
attributed to each state variable at horizons of one month and 120
months for yields on a one-month bond and a five-year bond.
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