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Abstract

This paper introduces a no-arbitrage framework to assess how macroeconomic factors
help explain the risk-premium agents require to bear the risk of �uctuations in stock market
volatility. We develop a model in which return volatility is stochastic and derive no-arbitrage
conditions linking volatility to macroeconomic factors. We estimate the model using data
related to variance swaps, which are contracts with payo¤s indexed to nonparametric measures
of realized volatility. We �nd that volatility risk-premia are strongly countercyclical and that
in turn, they are of substantial help in predicting future economic activity.
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1 Introduction

Understanding the origins of stock market volatility has long been a topic of considerable interest

to both policy makers and market practitioners. Policy makers are interested in the main de-

terminants of volatility and in its spillover e¤ects on real activity. Market practitioners such as

investment bankers are mainly interested in the direct e¤ects time-varying volatility exerts on the

pricing and hedging of plain vanilla options and more exotic derivatives. In both cases, forecast-

ing stock market volatility constitutes a formidable challenge but also a fundamental instrument

to manage the risks faced by these institutions.

Many available models use latent factors to explain the dynamics of stock market volatility.

For example, in the celebrated Heston�s (1993) model, return volatility is exogenously driven

by some unobservable factor correlated with the asset returns. Yet such an unobservable factor

does not bear a direct economic interpretation. Moreover, the model implies, by assumption, that

volatility can not be forecast by macroeconomic factors such as industrial production or in�ation.

This circumstance is counterfactual. Indeed, there is strong evidence that stock market volatility

has a very pronounced business cycle pattern, with volatility being higher during recessions than

during expansions; see, e.g., Schwert (1989a and 1989b) and Brandt and Kang (2004).

In this paper, we develop a no-arbitrage model in which stock market volatility is explicitly

related to a number of macroeconomic and unobservable factors. The distinctive feature of the

model is that return volatility is linked to these factors by no-arbitrage restrictions. The model

is also analytically convenient: under fairly standard conditions on the dynamics of the factors

and risk-aversion corrections, our model is solved in closed-form, and is amenable to empirical

work.

We use the model to quantitatively assess how volatility and volatility-related risk-premia

change in response to business cycle conditions. Our focus on the volatility risk-premium is

related to the seminal work of Britten-Jones and Neuberger (2000), which has more recently

stimulated an increasing interest in the study of the dynamics and determinants of the variance

risk-premium (see, for example, Carr and Wu (2004) and Bakshi and Madan (2006)). The

variance risk-premium is de�ned as the di¤erence between the expectation of future stock market

volatility under the true and the risk-neutral probability. It quanti�es how much a representative

agent is willing to pay to ensure that volatility will not raise above a given threshold. Thus, it is

a very intuitive and general measure of risk-aversion. Previous important work by Bollerslev and

Zhou (2005) and Bollerslev, Gibson and Zhou (2004) has analyzed how this variance risk-premium

is related to a number of macroeconomic factors. The authors regressed semi-parametric measures

of the variance risk-premium on these factors. In this paper, we make a step further and make

the volatility risk-premium be endogenously determined within our no-arbitrage model. The

resulting relation between macroeconomic factors and risk-premia is richer than in the previous
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papers because it accounts for no-arbitrage information. Finally, we use the model to produce

joint forecasts of both economic activity and stock market volatility.

In recent years, there has been an important surge of interest in general equilibrium (GE,

henceforth) models linking aggregate stock market volatility to variations in the key factors

tracking the state of the economy (see, for example, Campbell and Cochrane (1999), Bansal

and Yaron (2004), Mele (2007), and Tauchen (2005)). These GE models are important as they

highlight the main economic mechanisms through which markets, preferences and technology

a¤ect the equilibrium price and, hence, return volatility. At the same time, we do not observe

the emergence of a well accepted paradigm. Rather, a variety of GE models aim to explain the

stylized features of aggregate stock market �uctuations (see, for example, Campbell (2003) and

Mehra and Prescott (2003) for two views on these issues). In this paper, we do not develop a fully

articulated GE model. In our framework, cross-equations restrictions arise through the weaker

requirement of absence of arbitrage opportunities. This makes our approach considerably more

�exible than it would be under a fully articulated GE discipline. In this respect, our approach

is closer in spirit to the �no-arbitrage�vector autoregressions introduced in the term-structure

literature by Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2005). Similarly as in these

papers, we specify an analytically convenient pricing kernel a¤ected by some macroeconomic

factors, but do not directly related these to markets, preferences and technology.

Our model works quite simply. We start with exogenously specifying the joint dynamics of

both macroeconomic and latent factors. Then, we assume that dividends and risk-premia are

essentially a¢ ne functions of the factors, along the lines of Du¤ee (2002). We show that the

resulting no-arbitrage stock price is a¢ ne in the factors. Our model is also related to previous

approaches in the literature. For example, Bekaert and Grenadier (2001) and Ang and Liu (2004)

formulated discrete-time models in which the key pricing factors are exogenously given. Further-

more, Mamaysky (2002) derived a continuous-time model based on an exogenous speci�cation

of the price-dividend ratio. There are important di¤erences between these models and ours.

First, our model is in continuous-time and thus avoids theoretical inconsistencies arising in the

discrete time setting considered by Bekaert and Grenadier (2001). Second, a continuous-time set-

ting is particularly appealing given our objective to estimate volatility and volatility risk-premia

through measures of realized volatility. Third, Ang and Liu (2004) consider a discrete-time set-

ting in which expected returns are exogenous to their model; in our model, expected returns

are endogenous. Finally, our model works di¤erently from Mamaysky�s because it endogenously

determines the price-dividend ratio.

[Give details on our econometric methodology here]

The remainder of the paper is organized as follows. In Section 2 we develop the no-arbitrage

model for stock price, volatility and variance risk-premia. Section 3 contains the estimation

strategy. Section 4 presents our empirical results, and an Appendix provides technical details
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omitted from the main text.

2 The model

2.1 The macroeconomic environment

We assume that a number of factors a¤ect the development of aggregate macroeconomic variables.

We assume these factors form a vector-valued process y (t), solution to a n-dimensional a¢ ne

di¤usion,

dy (t) = � (�� y (t)) dt+�V (y (t)) dW (t) ; (1)

where W (t) is a d-dimensional Brownian motion (n � d), � is a full rank n� d matrix, and V
is a full rank d� d diagonal matrix with elements,

V (y)(ii) =

q
�i + �

>
i y; i = 1; � � �; d;

for some scalars �i and vectors �i. Appendix A reviews su¢ cient conditions that are known to

ensure that Eq. (1) has a strong solution with V (y (t))(ii) > 0 almost surely for all t.

While we do not necessarily observe every single component of y (t), we do observe dis-

cretely sampled paths of macroeconomic variables such as industrial production, unemployment

or in�ation. Let fMj (t)gt=1;2;��� be the discretely sampled path of the macroeconomic variable
Mj (t) where, for example, Mj (t) can be the industrial production index available at time t, and

j = 1; � � �; NM, where NM is the number of observed macroeconomic factors.

We assume, without loss of generality, that these observed macroeconomic factors are strictly

positive, and that they are related to the state vector process in Eq. (1) by:

log (Mj (t)/Mj (t� 12)) = 'j (y (t)) ; j = 1; � � �; NM; (2)

where the collection of functions
�
'j
	
j
determines how the factors dynamics impinge upon the

evolution of the overall macroeconomic conditions. We now turn to model asset prices.

2.2 Risk-premia and stock market volatility

We assume that asset prices are related to the vector of factors y (t) in Eq. (1), and that some

of these factors a¤ect the development of macroeconomic conditions, through Eq. (2). We

assume that asset prices respond passively to movements in the factors a¤ecting macroeconomic

conditions. In other words, and for analytical convenience, we are ruling out that asset prices can

feed back the real economy, although we acknowledge that �nancial frictions can make �nancial

markets and the macroeconomy intimately related, as in the �nancial accelerator hypothesis

reviewed by Bernanke, Gertler and Gilchrist (1999).
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Formally, we assume that there exists a rational pricing function s (y (t)) such that the real

stock price at time t, s (t) say, is s (t) � s (y (t)). We let this price function be twice continuously
di¤erentiable in y. (Given the assumptions and conditions we give below, this di¤erentiability

condition holds in our model.) By Itô�s lemma, s (t) satis�es,

ds (t)

s (t)
= m (y (t) ; s (t)) dt+

sy (y (t))
>�V (y (t))

s (y (t))
dW (t) ; (3)

where sy (y) = [ @@y1 s (y) ; � � �;
@
@yn
s (y)]> and m is a function we shall determine below by no-

arbitrage conditions. By Eq. (3), the instantaneous return volatility is

� (t)2 �





sy (y (t))>�V (y (t))s (y (t))







2

: (4)

Next, we model the pricing kernel in the economy. The Radon-Nikodym derivative of Q, the

equivalent martingale measure, with respect to P on F(T ) is,

�(T ) � dQ

dP
= exp

�
�
Z T

0
� (t)> dW (t)� 1

2

Z T

0
k� (t)k2 dt

�
;

for some adapted � (t), the risk-premium process. We assume that each component of the risk-

premium process �i (t) satis�es,

�i (t) = �i (y (t)) ; i = 1; � � �; d;

for some function �i. We also assume that the safe asset is elastically supplied such that the

short-term rate r (say) is constant. This assumption can be replaced with a weaker condition

that the short-term rate is an a¢ ne function of the underlying state vector. This assumption

would lead to the same a¢ ne pricing function in Proposition 1 below, but statistical inference

for the resulting model would be hindered. Moreover, interest rate volatility appears to play a

limited role in the main applications we consider in this paper.

Under the equivalent martingale measure, the stock price is solution to,

ds (t)

s (t)
= (r � � (y (t))) dt+ sy (y (t))

>�V (y (t))

s (y (t))
dŴ (t) ; (5)

where � (y) is the instantaneous dividend rate, and Ŵ is a Q-Brownian motion.

2.3 No-arbitrage restrictions

There is obviously no freedom in modeling risk-premia and stochastic volatility separately. Given

a dividend process, volatility is uniquely determined, once we specify the risk-premia. Consider,
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then, the following �essentially a¢ ne� speci�cation for the dynamics of the factors in Eq. (1).

Let V � (y) be a d� d diagonal matrix with elements

V � (y)(ii) =

(
1

V (y)(ii)
if PrfV (y (t))(ii) > 0 all tg = 1

0 otherwise

and set,

� (y) = V (y)�1 + V
� (y)�2y; (6)

for some d-dimensional vector �1 and some d � n matrix �2. The functional form for � is

the same as in the speci�cation suggested by Du¤ee (2002) in the term-structure literature.

If the matrix �2 = 0d�n, then, � collapses to the standard �completely a¢ ne� speci�cation

introduced by Du¢ e and Kan (1996), in which the risk-premia � are tied up to the volatility of

the fundamentals, V (y). While it is reasonable to assume that risk-premia are related to the

volatility of fundamentals, the speci�cation in Eq. (6) is more general, as it allows risk-premia

to be related to the level of the fundamentals, through the additional term �2y.

Finally, we determine the no-arbitrage stock price. Let us assume that for all y, sy (y)
>�V (y)

satis�es some regularity conditions (local martingale ! martingale). Assuming no-bubbles, Eq.

(5) implies that the stock price is,

s (y) = E
�Z 1

0
e�rt� (y (t)) dt

�
; (7)

where E is the expectation taken under the equivalent martingale measure. We are only left with
specifying how the instantaneous dividend process relates to the state vector y. As it turns out,

the previous assumption on the pricing kernel and the assumption that � (�) is a¢ ne in y implies
that the stock price is also a¢ ne in y. Precisely, let

� (y) = �0 + �
>y; (8)

for some scalar �0 and some vector �. We have:

Proposition 1. Let the risk-premia and the instantaneous dividend rate be as in Eqs. (6) and
(8). Then, (i) eq. (7) holds, and (ii) the rational stock function s (y) is linear in the state vector

y, viz

s (y) =
�0 + �

> (D + rIn�n)
�1 c

r
+ �> (D + rIn�n)

�1 y; (9)

where

c = ����
�
�1�1(1) � � � �d�1(d)

�>
;

D = �+�

��
�1(1)�

>
1 � � � �1(d)�

>
d

�>
+ I��2

�
;
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I� is a d � d diagonal matrix with elements I�(ii) = 1 if PrfV (y (t))(ii) > 0 all tg = 1 and 0

otherwise; and, �nally f�1(j)gdj=1 are the components of �1.

Proposition 1 allows us to describe what this model predicts in terms of no-arbitrage re-

strictions between stochastic volatility and risk-premia. In particular, use Eq. (9) to compute

volatility through Eq. (4). We obtain,

� (t)2 =



�> (D + rIn�n)

�1�V (y (t))



2 "�0 + �> (D + rIn�n)

�1 c

r
+ �> (D + rIn�n)

�1 y (t)

#�2
:

(10)

This formula makes clear why our approach is distinct from that in the standard stochastic

volatility literature. In this literature, the asset price and, hence, its volatility, is taken as given,

and volatility and volatility risk-premia are modeled independently of each other. For example,

the celebrated Heston�s (1993) model assumes that the stock price is solution to,8><>:
ds (t)

s (t)
= m (t) dt+ v (t) dW1 (t)

dv (t)2 = �
�
�� v (t)2

�
dt+ �v (t)

�
�dW1 (t) +

p
1� �2dW2 (t)

� (11)

for some adapted process m (t) and some constants �; �; �; �. In this model, the volatility risk-

premium is speci�ed separately from the volatility process. Many empirical studies have followed

the lead of this model (e.g., Chernov and Ghysels (2000)). Moreover, a recent focus in this

empirical literature is to examine how the risk-compensation for stochastic volatility is related

to the business cycle (e.g., Bollerslev, Gibson and Zhou (2005)). While the empirical results in

these papers are very important, the Heston�s model does not predict that there is any relation

between stochastic volatility, volatility risk-premia and the business cycle.

Our model works di¤erently because it places restrictions directly on the asset price process,

through our assumptions about the fundamentals of the economy, i.e. the dividend process in Eq.

(8) and the risk-premia in Eq. (6). In our model, it is the asset price process that determines,

endogenously, the volatility dynamics. For this reason, the model predicts that return volatility

embeds information about risk-corrections that agents require to invest in the stock market, as

Eq. (10) makes clear. We shall make use of this observation in the empirical part of the paper.

We now turn to describe which measure of return volatility measure we shall use to proceed with

such a critical step of the paper.

7



2.4 Arrow-Debreu adjusted volatility

In September 2003, the Chicago Board Option Exchange (CBOE) changed its volatility index

VIX to approximate the variance swap rate of the S&P 500 index return.1 The new index re�ects

recent advances into the option pricing literature. Given an asset price process s (t) that is

continuous in time (as the asset price of our model in Eq. (9)), and all available information F (t)
at time t, de�ne the integrated return volatility on a given interval [t; T ] as,

IVt;T =

Z T

t

�
d

d�
var [ log s (�)jF (u)]

����
�=u

�
du: (12)

The new VIX index relies on the work of Bakshi and Madan (2000), Britten-Jones and Neuberger

(2000), and Carr and Madan (2001), who showed that the risk-neutral probability expectation

of the future integrated volatility is a functional of put and call options written on the asset:

E [IVt;T jF (t)] = 2
"Z F (t)

0

P (t; T;K)

u (t; T )

1

K2
dK +

Z 1

F (t)

C (t; T;K)

u (t; T )

1

K2
dK

#
; (13)

where F (t) = u (t; T ) s (t) is the forward price, C (t; T;K) and P (t; T;K) are the prices as of

time t of a call and a put option expiring at T and struck at K, and u (t; T ) is the price as of

time t of a pure discount bond expiring at T .

Eq. (13) is helpful because it delivers a nonparametric method to compute the risk-neutral

expectation of integrated volatility. Our model predicts that the risk-neutral expectation of

integrated volatility is:

E [IVt;T jF (t)] =
Z T

t
E[� (t)2 j F (t)]du;

where F (t) is the �ltration generated by the multidimensional Brownian motion in Eq. (1), and
� (t)2 is given in Eq. (10). It is a fundamental objective of this paper to estimate our model so

that it predicts a theoretical pattern of the VIX indexe that matches that computed through Eq.

(13).

Note that as a by product, we will be able to trace how the volatility risk-premium V R,

de�ned as,

V R (t) = E [IVt;T jF (t)]� E [IVt;T jF (t)] ; (14)

changes with changes in the factors y (t) in Eq. (1).

2.5 The leading model

We formulate a few speci�c assumptions to make the model amenable to empirical work. First,

we assume that two macroeconomic aggregates, in�ation and industrial production growth, are
1 If the interest rate is zero, then, in the absence of arbitrage opportunities, the variance swap rate is simply the

expectation of future integrated return volatility under the risk-neutral probability, as de�ned in Eq. (12) below.
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the only observable factors (say y1 and y2) a¤ecting the stock market development. We de�ne

these factors as follows:

log (Mj (t)/Mj (t� 12)) = log yj (t) ; j = 1; 2;

where M1 (t) is the consumer price index as of month t and M2 (t) is the industrial production

as of month t. (Data for such macroeconomic aggregates are typically available at a monthly

frequency.) Hence, in terms of Eq. (2), the functions 'j (y) = log yj .

Second, we assume that a third unobservable factor y3 a¤ects the stock price, but not the two

macroeconomic aggregates M1 and M2. Third, we consider a model in which the two macroeco-

nomic factors y1 and y2 do not a¤ect the unobservable factor y3, although we allow for simulta-

neous feedback e¤ects between in�ation and industrial production growth. Therefore, we set, in

Eq. (1),

� =

264 �1 ��1 0

��2 �2 0

0 0 �3

375 ;
where �1 and �2 are the speed of adjustment of in�ation and industrial production growth towards

their long-run means �1 and �2, in the absence of feedbacks, and ��1 and ��2 are the feedback

parameters. Moreover, we take � = I3�3 and the vectors �i so as to make yj solution to,

dyj (t) =
�
�j
�
�j � yj (t)

�
+ ��j

�
��j � �yj (t)

��
dt+

q
�j + �jyj (t)dWj (t) ; j = 1; 2; 3; (15)

where, for brevity, we have set ��1 � �2, �y1 (t) � y2 (t), ��2 � �1, �y2 (t) = y1 (t), ��3 � ��3 � �y3 (t) �
0 and, �nally, �j � �jj . We assume that PrfV (y (t))(ii) > 0 all tg = 1, which it does under the
conditions reviewed in Appendix A.

We assume that the risk-premium process � satis�es the �essentially a¢ ne�speci�cation in

Eq. (6), where we take the matrix �2 to be diagonal with diagonal elements equal to �2(j) � �2(jj),
j = 1; 2; 3. The implication is that the total risk-premia process de�ned as,

� (y) � �V (y)� (y) =

0B@ �1�1(1) +
�
�1�1(1) + �2(1)

�
y1

�2�1(2) +
�
�2�1(2) + �2(2)

�
y2

�3�1(3) +
�
�3�1(3) + �2(3)

�
y3

1CA (16)

depends on the factor yj not only through the channel of the volatility of these factors (i.e.

through the parameters �jj), but also through the additional risk-premia parameters �2(j).

Finally, the instantaneous dividend process � (t) in (8) satis�es,

� (y) = �0 + �1y1 + �2y2 + �3y3: (17)

Under these conditions, the asset price in Proposition 1 is given by,

s (y) = s0 +

3X
j=1

sjyj ; (18)
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where

s0 =
1

r

24�0 + 3X
j=1

sj
�
�j�j + ��j��j � �j�1(j)

�35 ; (19)

sj =
�j
�
r + �j � ��j + �j�1(j) + �2(j)

�Q2
h=1

�
r + �h + �h�1(h) + �2(h)

�
� ��1��2

�
1� I(j=3)

� ; j = 1; 2; 3; (20)

and where ��j and ��j as as in Eq. (15) and, �nally, I(j=3) equals 1 if j = 3 and zero otherwise.
Note, then, an important feature of the model. The parameters �(1)i and �(2)i and �i cannot

be identi�ed. Intuitively, the parameters �(1)i and �(2)i determine how sensitive the total risk-

premium in Eq. (16) is to changes in the state process y. Instead, the parameters �i determine

how sensitive the dividend process in Eq. (17) is to changes in y. Two price processes might

be made observationally equivalent through judicious choices of the risk-compensation required

to bear the asset or the payo¤ process promised by this asset (the dividend). The next section

explains how to exploit the Arrow-Debreu adjusted volatility introduced in Section 2.4 to identify

these parameters.

3 Statistical inference

Let � =
��
�1(j); �2(j)

�
j=1;2;3

�
and � =

�
�0;
�
�j ; �j ; �j ; �j ; �j

�
j=1;2;3

; (��j)j=1;2

�
. Our estimation

strategy relies on a two-step procedure, which we call Concentrated Simulated General Method

of Moments (C-SGMM, in the sequel). In the �rst step, we treat � as a vector of unidenti�ed
nuisance parameters, and estimate � by maximum likelihood, for any given value of �. In

the second step, we use the Arrow-Debreu adjusted volatility in Section 2.4 and calibrate � to

reconcile the model�s predictions with the data.

3.1 Estimation of �, for given �

Let yt = (y1;t; y2;t; y3;t) denote the skeleton of y(t) in Eq. (2), sampled at t = 1; � � �; T , and set
xt = (y1;t; y2;t). Although the conditional density of xt+1 given xt is unknown in closed-form,2

we may rely on a variety of approaches to approximate this density. For example, we might rely

on the work of Du¢ e, Pan and Singleton (2000) and Singleton (2001) to accomplish this task. In

this paper, we use Aït-Sahalia [????] small time expansions to obtain parameter estimates for
the observable variables, i.e. estimates of �O =

��
�j ; �j ; �j ; �j

�
j=1;2

; (��j)j=1;2

�
. The maximum

likelihood estimator �̂O;T is,

�̂O;T = argmax
�2�

lT (�O)

2Unless ��i = 0 and, either �i = 0 or �i = 0, for i = 1; 2; 3.
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where,

lT (�O) =
1

T

TX
t=1

lt (xt+1jxt;�O) ; lt (xt+1jxt;�O) = log'K (xt+1jxt;�O) ; (21)

and 'K (xtjxt�1;�O) is the conditional density obtained through the Aït-Sahalia�s expansion up
to the K-th term.

To estimate the parameters
�
�0; (�j) j=1;2;3 ; �3; �3; �3; �3

�
related to the unobservable processes

� (y) (the dividend) and y3 (the third unobservable factor), we proceed as follows. First, we

note by Eqs. (19)-(20), once we are given some �, it is observationally equivalent to estimate

�U =
�
s0; (sj) j=1;2;3 ; �3; �3; �3; �3

�
or
�
�0; (�j) j=1;2;3 ; �3; �3; �3; �3

�
. We estimate �U, by cre-

ating moment conditions. We want to calibrate �U in such a way that the model predicts patterns

of ex-post returns and ex-post return volatility that match their empirical counterparts, described

in the empirical section. For any given �, de�ne,

FT;J(�U (�) ;�) =
1

J

JX
j=1

fj(�U (�) ;�)�
1

T

TX
t=1

ft;

where f is a vector of moment conditions. Accordingly, we de�ne, for any �, the probability limit

plim �̂U;T (�) [to be de�ned yet]= �
y
U (�), where

�yU (�) = argmax�2�
E [FT;J(�U (�) ;�)�FT;J(�U (�) ;�)] :

We need the following assumptions:

Assumptions:
A1: Er�

�
lT (�

y
U(�) ;�)

�
> Er� (lT (�U (�) ;�)) for all � 6= �y; for all �

A2: E
�
�r2�()???

�
uniformly positive de�nite in � � �

A3: E
h
(r�l??????))4+�

i
i
< 1; i = 1; � � �; k, for some � > 0, where � 2 � with � being a

compact subset of Rk:

We have:

Lemma 1 Let A(1)-A(3) hold. Then,

(i)

sup
�2�

����̂U;T (�)� �yU (�)��� = oP (1):
(ii) Pointwise in �; p

T
�
�̂U;T (�)� �yU (�)

�
d! N(0; ???) ;

11



where

B(�yO(�))
�1 = �E

�
r��lT (�yO;�)

�
and A(�yO (�)) = lim

T!1
var
�p
Tr�lT (�yO;�)

�
:

Note that we compute �̂T (�) =
�
�̂O;T ; �̂U;T (�)

�
through numerical approximations, as both

the log-likelihood function and the objective functions in the SMM are not known in closed form.

Accordingly, we do not dispose of a closed-form estimator of the asymptotic covariance matrix.

Below, we shall see how to use bootstrap methods to overcome this issue.

3.2 Identifying the risk premium parameters

Given the risk premium parameters, the estimator for � uses data on the two observable factors

and the stock price to deliver estimates of all the parameters related to the dynamics of the three

factors and the dividend process. We show how to use data on volatility contracts to identify and

estimate the risk premium parameters, given the previous estimate of �. We aim to construct

parametric and nonparametric measures of the conditional expectation of integrated volatility,

under the risk neutral probability measure, i.e. E [IVt;t+1j F (t)]. We identify � by minimizing
a set of moment conditions based on the di¤erence between the model-implied and model-free

estimator of the risk neutral conditional expectation of integrated volatility.

Our �rst step involves deriving the model-implied estimator of E [IVt;t+1j F (t)]. For this
purpose, we need to simulate the price process under the risk-neutral measure. As the stock price

is a deterministic a¢ ne function of the three factors, we need to simulate the factor dynamics

under the risk neutral measure. Given our assumption that � = I3�3, this is given by

dy (t) = [� (�� y (t))� V (y (t))� (y (t))] dt+ V (y (t)) dŴ (t) ; (22)

which we simulate through a Milstein scheme, i.e. for each simulation i = 1; � � �; N , and for
k = ��1� , we simulate y (t) by drawing y(i)k� = [y

(i)
1;k�; y

(i)
2;k�; y

(i)
3;k�], where y

(i)
`;k� = y

(i)
`;k� (�), and for

` = 1; 2; 3,

y
(i)
`;(k+1)� = y

(i)
`;k� +

h
�(�� y(i)k� )� V (y

(i)
k� )�(y

(i)
k� )
i
`
� +

q
�` + �`y

(i)
`;k��

(i)
`;(k+1)�

� 1
2





 @@�
q
�` + �`y

(i)
i;k�





2 + 12




 @@�

q
�` + �`y

(i)
`;k�





2 ��(i)`;(k+1)��2 ; (23)

where � is NID with variance �, and assuming without loss of generality that ��1 is an integer.

For each simulation i, we compute,

log s
(i)
k;� � log

 
s0 +

3X
`=1

s`y
(i)
`;k�

!
: (24)
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The processes in (23) and (24) are simulated for each value of �, with parameter � �xed at

�̂T (�). We �x J sets of initial values for the vector of factors, i.e. yj(0), j = 1; � � �; J . For each
j, we simulate (22) and (24) using � and �̂T (�), and for each � we simulate S paths of length

one.3 For each initial value yj (0), � 2 �, and for each simulation replication i, we thus obtain
log s

(i)
k� (�̂T (�) ;�;y

j(0)), for k = 1; � � �; ��1. For each j = 1; � � �; J , de�ne,

RV1;S

�
�̂T (�) ;�;y

j (0)
�

=
1

S

SX
i=1

0@��1�1X
k=1

h
log s

(i)
(k+1)�

�
�̂T (�) ;�;y

j (0)
�
� log s(i)k�

�
�̂T (�) ;�;y

j (0)
�i21A :

For each j, as S !1; � ! 0 and S� ! ��1, for some positive constant � <1,

RV1;S

�
�y (�) ;�;yj(0)

�
� E

h
IV1

�
�y (�) ;�

����y(0) = yj(0)i = OP (S�1=2);
and for S=T ! 0;

RV1;S

�
�̂T (�) ;�;y

j(0)
�
�RV1;S((�y (�) ;�;yj(0))) = OP (T�1=2):

Note that RV1;S((�̂T (�) ;�;yj(0))) is an estimator of E
�
IV1

�
�y (�) ;�

���y(0) = yj(0)�, i.e. it is
a model-implied estimator of the expected integrated volatility, under the risk-neutral measure,

conditional on y(0) = yj(0).

Next, we turn to the model-free estimator of E [IVt;t+1j F (t)] introduced in Section 2.4 (see
Eq. (13)). In practice, we only observe a discrete number of strike prices. Therefore, we have to

go through a numerical approximation to Eq. (13),

\E [IVt;t+1jF (t)] =
2

N

24 NX
i:Ki�F (t)

P (t; t+ 1;Ki)

u (t; t+ 1)

1

K2
i

+
NX

i:Ki>F (t)

C (t; t+ 1;Ki)

u (t; t+ 1)

1

K2
i

35 ; (25)

for t = 1; � � �; T .4 Finally, de�ne

GT;S;J;N (�̂T (�) ;�) =
1

J

JX
j=1

gj;S(�̂T (�) ;�)�
1

T

TX
t=1

gt;N

where (1=J)
PJ
j=1 gj;S(�̂T (�) ;�) is a vector containing q, q � 3, moment conditions constructed

using RV1;S((�̂T (�) ;�;yj(0))); and (1=T )
PT
t=1 gt;N is a vector containing q moment conditions

constructed using \E [IVt;t+1j F (t)] in Eq. (25).
3 In practice we disregard a su¢ ciently high number of draws. However, for notational simplicity, we proceed as

if we were to use yj(0) as the initial value.
4Jiang and Tian (2005) have demonstrated that the approximation of a Riemann integral of OTM put and call

option prices with a Riemann sum works very well in practice.
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Note that, as we are averaging over the conditioning variables, we are indeed matching uncon-

ditional moments of model-implied integrated volatility to their sample counterparts, obtained

with model-free volatility, where moments are computed under the risk neutral probability mea-

sure. For example, we can compare mean, variance and �rst and kth autocovariance of model

implied and model free integrated volatility, under the risk neutral probability measure. As

shown below, � can be estimated by minimizing the distance between moment conditions based

on parametric and nonparametric estimator.

3.3 A �rst step estimator of �

We now estimate � using Simulated-GMM (SGMM). De�ne,

�̂T;S;J;N = argmin
�2�

GT;S;J;N (�̂T (�) ;�)
>W�1

T;NGT;S;J;N (�̂T (�) ;�) � argmin�2�
ZT;S;J;N (�) ;

whereW�1
T;N is a weighting function constructed using E [IVt;t+1j F (t)]. De�ne, also,

ZyT;S;J;N (�) = GT;S;J;N (�
y (�) ;�)>W�1

T;NGT;S;J;N (�
y (�) ;�)

and

�y = argmin
�
Zy1 (�) ; where Z

y
1 (�) = plimT;S;J;N!1Z

y
T;S;J;N (�) ;

The di¢ culty lies in the fact that the moment conditions depends on estimated parameters,

i.e. on �̂T (�) ; where the latter is a square-root consistent estimator. Therefore, the limiting

distribution will re�ect the contribution of parameter estimation error. In particular, the as-

ymptotic covariance of
p
TGT;S;J;N (�̂T

�
�y
�
;�y) will re�ect the contribution of the asymptotic

covariance of
p
T (�̂T (�)� �y (�)), which is not known in closed form.

Consider the following conditions.

Assumptions:
A4: Zy1 (�) � Z�1

�
�0
�
for all � 6= �0:

A5: W�1
T;N �W

�1
1 = oP (1).

We have:

Lemma 2 Let A1-A5 hold. If ��1=S ! �; � > 0; N=T !1; S=T !1; and J=T !1; then,
p
TGT;S;J;N

�
�̂T (�

y);�y
�

d! N(0;V );

where

V = lim
T!1

var
h
Ay
�y

p
T
�
�̂T (�

y)� �y(�y)
�i
+ lim
T;S;J;N!1

var
hp
TGT;S;J;N

�
�y(�y);�y

�i
+ lim
T;S;J;N!1

cov
hp
TGT;S;J;N

�
�y(�y);�y

�
, Ay

�y

p
T
�
�̂T (�

y)� �y(�y)
�i
; (26)
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and Ay
�y
= plimT;S;J;N!1r�GT;S;J;N

�
�y
�
�y
�
;�y
�
.

It is immediate to see that the limiting distribution of
p
TGT;S;J;N (�̂T

�
�y
�
;�y) re�ects

the contribution of the asymptotic covariance of
p
T (�̂T (�) � �y (�)), which is not known in

closed form. For this reason, W T;N cannot be an optimal weighting matrix. In fact, W1 =

plimT;N!1W T;N is the inverse of the long-run variance of
p
TGT;S;J;N

�
�y
�
�y
�
;�y
�
which di¤ers

from the long-run variance of
p
TGT;S;J;N (�̂T

�
�y
�
;�y). As a consequence, �̂T;S;J;N cannot be an

e¢ cient estimator. In fact,

Theorem 3 Let A1-A5 hold. If ��1=S ! �; � > 0; N=T !1; S=T !1; and J=T !1; then,

p
T
�
�̂T;S;J;N � �y

�
d! N

�
0;
�
Ay>
�y
W�1

1 A
y
�y

��1
Ay>
�y
W�1

1 VW
�1
1 A

y>
�y

�
Ay>
�y
W�1

1 A
y
�y

��1�
;

where Ay
�y
= plimT;S;J;N!1r�GT;S;J;N

�
�y
�
�y
�
;�y
�
; and V is as in Lemma 2.

3.4 Bootstrap Optimal Weighting Matrix

To obtain an e¢ cient estimator, we need to use a weighting matrix which converges in probability

to V �1. The critical issue, however, is that there is no available estimator of V , as

var
h
Ay
�y

p
T
�
�̂T (�

y)� �y(�y)
�i

is not known in closed-form. We outline a bootstrap procedure for constructing an optimal

weighting matrix.

Within the class of a¢ ne models, IVt is a strong mixing process, and so E [IVt;t+1j Ft] is also
strong mixing, provided Ft represents a �nite history of information. To capture the correlation
structure in the conditional expectation of integrated volatility, we need to rely on a block boot-

strap procedure. Furthermore, in order to capture the contribution of the covariance term in (26),

we need to jointly resample blocks of the likelihood function and of the conditional expectation

of integrated volatility.5

Resample b blocks of length l, lb = T , of wt(�;�) = (lt(�;�); gt(�;�)) so that

w�1(�;�); � � �; w�l (�;�); w�l+1(�;�); � � �; w�T (�;�)

is equal to

wI1+1(�;�); � � �; wI1+l(�;�); wI2(�;�); � � �; wIb+l(�;�);
5Note that if the a¢ ne di¤usion is indeed correctly speci�ed for the factor dynamics and if the no arbitrage

condition hold, then lt(�; �) is i.i.d. for all � and �:
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where Ii; i = 1; � � �; b are discrete i.i.d. uniform on 0; 1; � � �; T � l � 1. De�ne,

�̂
�
T (�̂T;S;J;N ) = argmax

�2�

1

T

TX
t=1

l�t (�; �̂T;S;J;N );

and

G�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
=
1

T

TX
t=1

0@ 1
J

JX
j=1

gj;S

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
� g�t;N

1A :
Note that we have not resampled gj;S (� (�) ;�); in fact for S=T ! 1 and J=T ! 1; the
simulation error is negligible, and

p
T

0@ 1
J

JX
j=1

gj;S (� (�) ;�)� E (gj;S (� (�) ;�))

1A = oP (1):

Nevertheless, in order to properly capture the contribution of parameter estimation error, the

model based moment conditions are evaluated at the bootstrap parameters. Also, de�ne

�GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
=
1

T

TX
t=1

0@ 1
J

JX
j=1

gj;S

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
� gt;N

1A ;
and note that it denotes the mean of the boostrap moment conditions, which is of order OP (T�1=2)

in the overidenti�ed case.6 Therefore, in the overidenti�ed case, recentering is necessary even for

�rst order validity.

Basically, it can be shown that the limiting distribution of

p
T
h
G�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�i
is the same as the limiting distribution of

p
TGT;S;J;N

�
�̂T (�

y);�y
�
, conditional on the sample

and for all sample but a set of measure approaching zero. It is well known that convergence

in distribution does not necessarily imply convergence of moments, however if the (2 + �)-th

moments of the bootstrap statistic is �nite, then

var�
hp
TG�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�i
;

as T; S; J;N !1, will approach

lim
T;S;J;N!1

var
hp
TGT;S;J;N

�
�̂T (�

y);�y
�i
:

6 In the exactly identi�ed case, �GT;S;J;N (�̂T (�̂T;S;J;N ); �̂T;S;J;N ) is instead OP (l=T ), and so recentering is not

necessary for the �rst order validity of the bootstrap.
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Hence, it is su¢ cient to construct B bootstrap statistics, with B large enough, and compute their

sample variance (see e.g. Goncalves and White, 2005, for the least squares case). Thus,

V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
=
T

B

BX
i=1

��
G�T;S;J;N;i

�
�̂
�
T;i(�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��>
�
G�T;S;J;N;i

�
�̂
�
T;i(�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��i
;

and as B !1; V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
approaches

var�
hp
TG�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�i
:

Theorem 4 Let A1-A5 hold. If S=J !1; ��1=S !1; J=T !1; N=T !1 and l=T 1=2 ! 0;

then as T !1 and B !1;

P
�
! : P �

����V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
� V

��� > "��! 0;

where P � is the probability law governing the bootstrap and V is as in Lemma 2.

Therefore, the optimal weighting matrix is given by V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1
.

3.5 An e¢ cient Concentrated SGMM estimator

By using V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1
as weighting matrix we can obtain an e¢ cient estima-

tor. De�ne,

~�T;S;J;N = argmin
�2�

GT;S;J;N

�
�̂T (�) ;�

�>
V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1
GT;S;J;N

�
�̂T (�) ;�

�
:

We have:

Lemma 5 Let A1-A5 hold. If ��1=S ! �; � > 0; N=T ! 1; S=T ! 1; l=T 1=2 ! 0 and

J=T !1; then as B !1;

p
T
�
~�T;S;J;N � �y

�
d! N

�
0;
�
Ay>
�y
V Ay

�y

��1�
;

where Ay
�y
= plimT;S;J;N!1r�GT;S;J;N

�
�y
�
�y
�
;�y
�
; and V is as in Lemma 2.
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Though from Theorem 3 we know how to consistently estimate V ; still we do not have a closed

form expression for Ay0
�y
; and so a ready-to-use estimator is not available. We can overcome this

problem computing bootstrap critical values for
p
T
�
~�T;S;J;N � �y

�
: De�ne,

~�
�
T;S;J;N

=argmin
�2�

��
G�T;S;J;N

�
�̂
�
T (�) ;�

�
� �GT;S;J;N

�
�̂T (~�T;S;J;N ); ~�T;S;J;N

��>
V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1 �
G�T;S;J;N (�̂

�
T (�) ;�)� �GT;S;J;N

�
�̂T (~�T;S;J;N ); ~�T;S;J;N

���
:

We have,

Theorem 6 Let A1-A5 hold. If S=J ! 1; ��1=S ! 1; J=T ! 1; N=T ! 1; l=T 1=2 ! 0

and l=T 1=2 ! 0; then as T !1 and B !1;

P

�
! : sup

x2R

���P � hpT �~��T;S;J;N � ~�T;S;J;N� � xi� P hpT ��~�T;S;J;N � �y�� � xi��� > "�! 0;

where P � is the probability law governing the bootstrap.

4 Empirical analysis

Our sample data include the consumer price index and the index of industrial production for the

US, observed monthly from January 1950 to December 2006, for a total of T = 672 observations.

We take these two series to compute the two macroeconomic factors, in�ation and the growth

rate for the industrial production, both at a yearly level,

y1;t = In�ationt�12!t = CPIt=CPIt�12 and y2;t = Growtht�12!t = IPt=IPt�12;

where CPIt is the consumer price index and IPt is the industrial production index, as of month

t. Figure 1 depicts the two series y1;t and y2;t, along with the NBER recession events.

To form moment conditions, we compute the log-price variations as Rt = log (st=st�12) and,

following Mele (2007) and Fornari and Mele (2007), price volatility as,

Volt =
p
6� � 1

12

12X
i=1

��Rmt+1�i�� ;
where Rmt is the monthly log-price variation, de�ned as R

m
t = log (st=st�1).

Consider, then, the following regressions,

Rt = a
R + bR1;12y1;t�12 + b

R
2;12y2;t�12 + �

R
t ;
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and,

Volt = a
V +

X
i2f6;12;18;24;36;48g

�iVolt�i +
X

i2f12;24;36;48g
bV1;iy1;t�i +

X
i2f12;24;36;48g

bV2;iy2;t�i + �
V
t ;

where �Rt and �
V
t are residual terms. De�ne �S to be the mean of the real stock price, s, and VS

to be the mean of return volatility, Vol. The parameter vector we want to match is

 =
�
aR; bR1;12; b

R
2;12; a

V ; (�i)i2f6;12;18;24;36;48g ;
�
bV1;i
�
i2f12;24;36;48g ;

�
bV2;i
�
i2f12;24;36;48g ; �S ; VS

�
:

Finally, we �x the parameter s0 to,

s0 = �S � s1�y1 � s2�y2 � s3�3:

Table 1 reports the moment conditions. Tables 2 and 3 report parameter estimates. Figure 2

depicts the dynamics of the log-price changes and the volatility of those.

5 Conclusion
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Appendix

A. Proofs for Section 2

Existence of a strong solution to (1). Consider the following conditions: For all i,

(i) For all y : V (y)(ii) = 0, �
>
i (��y + ��) > 1

2�
>
i ��

>�i

(ii) For all j, if
�
�>i �

�
j
6= 0, then V ii = V jj .

Then, by Du¢ e and Kan (1996) (unnumbered theorem, p. 388), there is a unique strong solution

to (1) for which V (y (t))(ii) > 0 for all t almost surely.

We apply these conditions to the case in which � = I3�3, �i is a vector of zeros, except

possibly for its i-th element, denoted as �i � �ii, and � is as in Section 2.5. Condition (i)

collapses to,

For all yi : �i + �iyi = 0;

8>>>><>>>>:
��1 [�1 (y1 � �1) + ��1 (y2 � �2)] >

1

2
�21

��2 [�2 (y2 � �2) + ��2 (y1 � �1)] >
1

2
�22

��3 (�3y3 � �3�3) >
1

2
�23

This is, ruling out the trivial case in which �i = 0,8>>>>>><>>>>>>:

�1 (�1 + �1�1) + ��1�1

�
�2
�2
+ �2

�
>
1

2
�21

�2 (�2 + �2�2) + ��2�2

�
�1
�1
+ �1

�
>
1

2
�22

�3 (�3 + �3�3) >
1

2
�23

Proof of Proposition 1. De�ne the Arrow-Debreu adjusted asset price process as, s� (t) �
e�rt� (t) s (t), t > 0. By Itô�s lemma, it satis�es,

ds� (t)

s� (t)

=

"
�r + Lsy (y (t))

s (t)
� sy (y (t))

>
�V (y (t))� (t)

s (t)

#
dt+

"
sy (y (t))

>
�V (y (t))

s (t)
�� (t)>

#
dW (t)

(A1)

where

Ls (y) � sy (y)> � (�� y) +
1

2
tr
n
[�V (y)] [�V (y)]> syy (y)

o
:
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By absence of arbitrage opportunities, for any � <1,

s� (t) = E

�Z �

t
�� (h) dh

����F (t)�+ E[s� (�) j F (t)]; (A2)

where �� (�) is the current Arrow-Debreu value of the dividend to be paid o¤ at time t, viz

�� (t) = e�rt� (t) � (t). Below, we show that the following transversality condition holds,

lim
T!1

E[s� (T ) j F (t)] = 0; (A3)

from which Eq. (7) in the main text follows.

Next, by Eq. (A2),

0 =
d

d�
E[s� (�) j F (t)]

����
�=t

+ �� (t) : (A4)

Below, we show that

E[s� (�) j F (t)] = s� (t) +
Z �

t

"
�r + Ls (y (h))

s (h)
� sy (y (h))

>�V (y (h))� (h)

s (h)

#
s� (h) dh: (A5)

Therefore, by the assumptions on �, Eq. (A4) can be rearranged to yield the following partial

di¤erential equation,

For all y, sy (y)
> (c�Dy) + 1

2
tr
n
[�V (y)] [�V (y)]> syy (y)

o
+ � (y)� rs (y) = 0; (A6)

where c and D are de�ned in the proposition.

Let us assume that the price function is a¢ ne in y,

s (y) = 
 + �>y; (A7)

for some scalar 
 and some vector �. By plugging this guess back into Eq. (A6) we obtain,

For all y, �>c+ �0 � r
 �
h
�> (D + rIn�n)� �>

i
y = 0:

That is,

�>c+ �0 � r
 = 0 and
h
�> (D + rIn�n)� �>

i
= 01�n:

The solution to this system is,


 =
�0 + �

>c

r
and �> = �> (D + rIn�n)

�1 :

We are left to show that Eq. (A3) and (A5) hold true.
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As regards Eq. (A3), we have

lim
T!1

E[s� (T ) j F (t)] = lim
T!1

E[e�r(T�t)� (T ) s (y (T )) j F (t)]

= 
e�r(T�t) lim
T!1

E[� (T ) j F (t)] + lim
T!1

e�r(T�t)E[� (T )�>y (T ) j F (t)]

= � (t) lim
T!1

e�r(T�t)E[�>y (T ) j F (t)];

where the second line follows by Eq. (A7), and the third line holds because E[� (T ) j F (t)] = 1,
and by a change of measure (we need some more rigorous work on this). De�ne Q (t) = �>y (t).

Under the risk-neutral probability

dQ (t) = �> (c�Dy (t)) dt+ �>�V (y (t)) dŴ (t)

In progress.

To show that Eq. (A5) holds, we need to show that the di¤usion part of s� in Eq. (A1) is a

martingale, not only a local martingale, which it does whenever for all T ,

E

24Z T

t






sy (y (�))>�V (y (�))s (�)
�� (�)>







2

d�

35 <1:
This is:

E

"Z T

t





�>�V (y (�))
 + �>y (�)
�� (�)>





2 d�
#
<1:

In progress. �

B. Proofs for Section 3

Proof of Lemma A1: (i) By the uniform law of large numbers,

sup
�2�

sup
�2�

jlT (�;�)� E (lT (�;�))j = oP (1):

Given A1, the desired outcome follows from Lemma A1 in Andrews (1993).

(ii) Via a mean value expansion around �� (�) ;

0 = r�lT (�̂T (�)) = r�lT (�y (�)) +r2�lT
�
��T (�)

� �
�̂T (�)� �y (�)

�
with ��T (�) 2

�
�̂T (�) ;�

� (�)
�
; and so

p
T
�
�̂T (�)� �y (�)

�
= B(�y (�))�1r�lT (�y (�)) + oP (1)
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where the oP (1) holds uniformly in �; given that sup���2���
�
r2�lT (� (�))�B (�� (�))

�
=

oP (1). Given that the a¢ ne model considered is stationary ergodic, and so geometrically strong

mixing, the statement follows by the central limit theorem.

Proof of Lemma A2:

p
TGT;S;J;N (�̂T (�

y);�y) =
p
TGT;S;J;N (�

y(�y);�y)

+r�GT;S;J;N (��T (�y);�y)
p
T
�
�̂T (�

y)� �y(�y)
�

=
p
TGT;S;J;N (�

y(�y);�y) +Ay
�y

p
T
�
�̂T (�

y)� �y(�y)
�
+ oP (1);

given that, by Lemma A1,

r�GT;S;J;N
�
��T (�

y);�y
�
= r�GT;S;J;N

�
�y(�y);�y

�
+ oP (1)

and plimT;S;J;N!1r�GT;S;J
�
�y
�
�y
�
;�y
�
= Ay

�y
: The result then follows from central limit the-

orem.

Proof of Theorem 3: Via a mean value expansion around ��;

0 =
p
Tr�ẐT;S;J;N (�̂T;S;J;N )

= r�GT;S;J;N
�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�>
W�1

T;N

p
TGT;S;J;N

�
�̂T (�

y);�y
�

+r�GT;S;J;N
�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�>
W�1

T;Nr�GT;S;J;N
�
�̂T
�
��T;S;J;N

�
; ��T;S;J;N

�
�
p
T
�
�̂T;S;J;N � �y

�
:

Thus,

p
T
�
�̂T;S;J;N � �y

�
= �

�
r�GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�>
W�1

T;Nr�GT;S;J;N
�
�̂T (��T;S;J;N ); ��T;S;J;N

���1
�r�GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�>
W�1

T;NGT;S;J

�
�̂T (�

y);�y
�

Given Theorem 1 and Lemma A1,

plimT;S;J!1r�GT;S;J
�
�̂T (�̂T;S;J); �̂T;S;J;N

�>
= Ay

�y
:

The statement then follows from Lemma A2.

Proof of Theorem 4: The proof of the Lemma is based on two main steps.
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Step 1: We show that,

P

�
! : sup

x2<

���P � hpT �G�T;S;J;N ��̂�T (�̂T;S;J;N ); �̂T;S;J;N�� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��
� x

i
� P

�
sup

u�v2U�V

p
TGT;S;J;N

�
�̂T (�

y);�y
�
� x

����� > "�! 0

Step 2: We show that,

E�
����pT �G�T;S;J;N ��̂�T (�̂T;S;J;N ); �̂T;S;J;N�� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�����2+�� <1;
where E� denotes the expectation according to the bootstrap probability law, conditional on the

sample.

Given the statement in Steps 1 and 2, by the Corollary to Theorem 25.12 in Billingsley (1986),

it follows that as T !1;

var�
hp
T
�
G�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��i
pr! V ;

where var� denotes the variance according to the bootstrap probability law, conditional on the

sample. As B !1;

V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
pr�! var�

hp
T
�
G�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��i
;

the statement above follows.

Proof of Step 1:

G�T;S;J;N

�
�̂
�
T (�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
= G�T;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
� �GT;S;J;N

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

�
+r�G�T;S;J;N

�
��
�
T (�̂T;S;J;N ); �̂T;S;J;N

�p
T
h
�̂
�
T (�̂T;S;J;N )� �̂T (�̂T;S;J;N )

i
We begin by showing that

P

�
! : sup

x2<
P �
hp
T
�
�̂
�
T (�̂T;S;J;N )� �̂T (�̂T;S;J;N )

�
� x

i
� P

hp
T
�
�̂T (�

y)� �y(�y)
�
� x

i
> "

�
! 0:

By the de�nition of �̂
�
T

�
�̂T;S;J;N

�
;

0 = r�l�T (�̂T ; �̂T;S;J;N ) +r��l�T (��
�
T ; �̂T;S;J;N )

h
�̂
�
T (�̂T;S;J;N )� �̂T (�̂T;S;J;N )

i
;
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where ���T 2
�
�̂
�
T ; �̂T

�
: Thus,

p
T
h
�̂
�
T (�̂T;S;J;N )� �̂T (�̂T;S;J;N )

i
=
h
�r��l�T (��

�
T ; �̂T;S;J;N )

i�1p
Tr�l�T (�̂T ; �̂T;S;J;N )

Now,

E�
hp
Tr�l�T (�̂T ; �̂T;S;J;N )

i
=
p
Tr�lT (�̂T ; �̂T;S;J;N ) +OP

�
lp
T

�
= oP (1)

given that
p
Tr�lT (�̂T ; �̂T;S;J;N ) = 0 by the �rst order conditions, and l=T 1=2 ! 0. Since each

block is independent of the others,

var�
hp
Tr�l�T (�̂T ; �̂T;S;J;N )

i
= var�

"
1p
T

bX
k=1

lTX
i=1

r�l�IK+i(�̂T ; �̂T;S;J;N )
#

= E�

24 1
T

bX
k=1

lTX
i=1

lTX
j=1

r�lIK+i(�̂T ; �̂T;S;J;N )r�lIK+j(�̂T ; �̂T;S;J;N )>
35

=
1

T � lT + 1
1

l

T�lTX
t=0

lTX
i=1

lTX
j=1

r�lt+i(�̂T ; �̂T;S;J;N )r�lt+j(�̂T ; �̂T;S;J;N )> Pr -P

=
1

T

T�lX
t=l

lX
i=�l

r�lt(�̂T ; �̂T;S;J;N )r�l�t+l(�̂T ; �̂T;S;J;N )> Pr -P;

by Theorem 3.5 in Kunsch (1989). Finally,h
�r2�l�T (��

�
T ; �̂T;S;J;N )

i�1
� E

h
�r2�lt(�y;�y)

i
= o�P (1) Pr -P;

where with the notation o�P (1) Pr�P we mean a term approaching zero in the probability law of

the bootstrap, conditionally on the sample and for all sample but a set of measure approaching

zero.

TO BE COMPLETED

Proof of Lemma A3: Straigthforward from Lemma A2 and Theorem 3.

Proof of Theorem 3: For notation brevity, let

G�;cT;S;J;N

�
�̂
�
T (�) ;�

�
= G�T;S;J;N

�
�̂
�
T (�) ;�

�
� �GT;S;J;N

�
�̂T (�);�

�
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Via a mean value expansion around ~�T;S;J;N ;

p
T
�
~�
�
T;S;J;N � ~�T;S;J;N

�
=

�
r�G�;cT;S;J;N

�
�̂
�
T (~�

�
T;S;J;N ); ~�

�
T;S;J;N

�
V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1
�r�G�;cT;S;J;N

�
�̂
�
T (��

�
T;S;J;N ); ��

�
T;S;J;N

�i
�
p
T

�
r�G�;cT;S;J;N

�
�̂
�
T (~�

�
T;S;J;N ); ~�

�
T;S;J;N

�
V T;B

�
�̂T (�̂T;S;J;N ); �̂T;S;J;N

��1
�G�;cT;S;J;N

�
�̂
�
T (~�T;S;J;N ); ~�T;S;J;N

�i
:

Now, by the same argument used in the proof of Theorem 3,
p
TG�;cT;S;J;N

�
�̂
�
T (~�T;S;J;N ); ~�T;S;J;N

�
has the same limiting distribution as

p
TGT;S;J;N

�
�̂T (�

y);�y
�
. Furthermore,

r�G�;cT;S;J;N
�
�̂
�
T (~�

�
T;S;J;N ); ~�

�
T;S;J;N

�
�Ay

�y
= o�P (1) Pr -P;

where

Ay
�y
= plimT;S;J!1r�GT;S;J;N

�
�y(�y);�y

�
:

The statement then follows from Theorem 3.
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Tables

Table 1 �Moment conditions

Data Model

aR 2.3977 2.4373

bR1;12 �1.4412 �1.0090
bR2;12 �0.8335 �1.3512
aV �0.3982 0.0103

�6 1.0136 0.8732

�12 �0.6863 �0.5546
�18 0.5289 0.4313

�24 �0.3225 �0.1561
�36 0.0572 0.0327

�48 �0.0195 0.0169

bV1;12 0.0709 0.1574

bV1;24 �0.1090 �0.0017
bV1;36 0.1769 �0.0292
bV1;48 0.0064 �0.0642
bV2;12 0.0458 �0.0352
bV2;24 0.0967 0.0206

bV2;36 0.1082 �0.0156
bV2;48 0.0356 0.0078

�S 2.8842 2.9002

VS 0.1136 0.1475
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Table 2 �Parameter estimates of the bivariate di¤usion

Estimate

�1 0.0255

�1 1.0379

�1 0.0059

�1 �0.0054
�2 0.5628

�2 1.0388

�2 0.0517

�2 �0.0479
��1 �0.2532
��2 1.1701

Table 3 �Parameter estimates of the stock price process and the unobservable factor

Estimate

s0 0.2356

s1 0.0629

s2 2.4437

s3 0.2196

�3 2.3022

�3 0.2055

�3 0.0493

�3 4.0324�10�4
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Figures

Figure 1 �Industrial production growth (t; t+ 12) and in�ation (t; t+ 12), with
NBER dated recession periods
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Figure 2 �Ex-post returns, ex-post volatility and model predictions
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