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Introduction

In the previous lecture, the concept of realized variance was introduced

in so-called stochastic volatility models, where the efficient price process

(observed with or without noise) has continuous sample paths.

Today, we extend the concepts to models with jumps, which makes it

possible for the price process to exhibit discontinuous changes.

We review the associated theory of high-frequency estimation in this con-

text, including estimation and inference about the quadratic variation and

integrated variance. To the extent possible, we illustrate the concepts on

either simulated or real data.
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Motivation:

Financial asset prices often move in a way that is hard to reconcile with

Brownian motion. If unexpected news arrives in the market, for instance,

prices can change a lot in a few seconds. Indeed, the Efficient Market

Hypothesis suggests that any new information should be absorbed in the

price instantaneously. Jumps are thus natural and appealing ingredients to

model such discrete events.

Moreover, if the log-price Xt is assumed to be a Lévy process, then the

only such process with continuous paths is the Brownian motion (possibly

with a drift). Thus, at least according to this notion, we can argue that

models without jumps are “exceptions” to the rule that asset prices jump.

How often and by how much is debatable.
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Figure 1: Jump in Kraft Foods (KFT) at 5-minute frequency.
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Figure 2: Jump in Kraft Foods (KFT) at tick frequency.
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The X process:

We assume that

Xt = X0 +
∫ t

0
asds+

∫ t
0
σsdWs +

Nt∑
s=1

∆Xs, t ≥ 0, (1)

where

Xt: log-price at time t,

at: drift term,

σt: volatility process (σt > 0),

Wt: standard Brownian motion,
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Nt: counting process,

∆Xs: jump size.

So, Nt represents the total number of jumps in X that have occurred up

to time t and ∆Xs denotes the corresponding, individual jump sizes.

We assume Nt is a finite-activity process (i.e., there is a finite number of

jumps on finite time intervals, almost surely)...

... but most of what we talk about can be extended directly to infinite-

activity, but finite-variation, jump processes.
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Figure 3: Sample path of efficient log-price Xt.
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Figure 4: Sample path of diffusive variance.
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Figure 5: Sample path of jump process.
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Quadratic variation

We define the quadratic variation (QV):

[X]t = p-lim
N→∞

N∑
i=1

(Xti −Xti−1)2, (2)

for any sequence of partitions 0 = t0 < t1 < . . . < tN = t with max(ti −
ti−1)→ 0 as N →∞ (e.g., Protter, 2004).

It can be shown that the QV process is always well-defined, if X is a

semimartingale (which any arbitrage-free price process must be, e.g., Back

(1991); Delbaen and Schachermayer (1994)).
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It is this fundamental result from stochastic calculus that has motivated

the increasing use of high-freuquency data to estimate financial volatility.

If X has the form (1):

[X]t =
∫ t

0
σ2
sds+

∑
0≤s≤t

|∆Xs|2, (3)

where ∆Xs = Xs −Xs−.

The QV is thus equal to the integrated variance (IV) plus the sum of the

squared jumps (JV). The model thus introduces an extra layer of risk via

the jump component—compared to the previous lecture.

In fact, (3) is true for any semimartingale, irrespective of how crazy the

jump process is (and it can be very wild indeed).
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The data

Throughout the rest of this lecture, we restrict attention to the unit in-

terval by setting t = 1. We then assume that the process is observed at

equidistant time points ti = i/N , for i = 0, 1, . . . , N .

We compute the increments of X:

∆N
i X = Xi/N −X(i−1)/N , for i = 1, . . . , N. (4)

Note that as Xt is a log-price, ∆N
i X can be interpreted as a continuously

compounded return between time ti = i/N and ti−1 = (i− 1)/N .
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Figure 6: Efficient log-return ∆N
i X.
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Realized variance

You already encountered the realized variance (RV) in the previous lecture.

Recall that this estimator is defined as:

RV N =
N∑
i=1

|∆N
i X|

2. (5)

RV N is the sum of the squared increments of X. Note that from (2) –

(3), it follows that RV N is a consistent estimator of [X]1:

RV N
p→ [X]1 as N →∞. (6)

Thus, RV N no longer estimates the IV, but the combined return variation

induced by the diffusive volatility and the jump part.
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If X was a stochastic volatility model (i.e., without the jump part) dXt =

atdt+ σtdWt, then RV N admits a CLT:

√
N

(
RV N −

∫ 1

0
σ2
sds

)
ds→MN

(
0, 2

∫ 1

0
σ4
sds

)
(7)

∫ 1
0 σ

4
sds: Integrated quarciticy (IQ)

When X has a jump component, and assuming that there are no common

jumps in σ and J , this results changes to (e.g., Veraart, 2011):

√
N
(
RV N − [X]1

)
ds→MN

0, 2
∫ 1

0
σ4
sds+ 4

∑
0≤s≤1

σ2
s|∆Xs|2

 , (8)

Note that the estimation error increases—i.e., it is more difficult to esti-

mate the QV—with high volatility and large jumps.
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Jump-robust measurement of IV

This implies that—in the presence of jumps—RV is not informative about

the IV itself. Nonetheless, it may still be interesting to estimate that piece

of the QV. This can be useful, for example, if we are looking to:

→ Split the IV from the JV in order to measure their relative contribution

to QV,

→ Devise a statistical test for the presence of a jump component,

→ Build a time series model for the IV.
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There are two main approaches, which can accomplish this goal:

1. Bi- or multi-power variation

2. Truncation

We cover each approach in turn. Alternative ways of estimating the IV in

the presence of jumps not covered in this class, include the quantile-based

estimators of Christensen, Oomen, and Podolskij (2010) and Andersen,

Dobrev, and Schaumburg (2012).

Recent papers that show how to improve the finite sample jump robustness

of the BV or make it more efficient are also beyond our scope; see Corsi,

Pirino, and Renò (2010) and Mykland, Shephard, and Sheppard (2012).
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Bipower variation

Barndorff-Nielsen and Shephard (2004) proposed the bipower variation

(BV) estimator, which is an intuitive way to separate the diffusive- and

jump-variation components of [X]1. The (1,1)-bipower variation (see be-

low for a more general version) is defined as:

BV N =
N

N − 1

π

2

N∑
i=2

|∆N
i−1X||∆

N
i X|. (9)

In words, BV replaces |∆N
i X|

2 of RV by multiplying together contiguous

high-frequency returns... suitably normalized by π/2.

The factor N/(N − 1) is applied to improve the finite sample properties

of BV N . It corrects for the “loss” of a summand.
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It holds that, if X follows (1), as N →∞:

BV N
p→
∫ 1

0
σ2
sds. (10)

So BV N is a consistent and jump-robust measure of IV, irrespective of

any jumps in X.

Intuition:

Assume there is a jump in ∆N
i X. Then, with a probability going to one,

there is none in ∆N
i−1X. That is, each jump term is—sooner or later—

paired with a “continuous” return. The jump term is Op(1), while the

other is Op(N−1/2) (and so is the product).

As there are only finitely many terms with jumps (in finite time intervals),

all jumps terms are knocked out of the plim.
19



It therefore suffices to look at “no jump” terms. Assume σ is constant and

no drift, so that |∆N
i−1X| = σ|∆N

i−1W | and |∆N
i X| = σ|∆N

i W |. Then,

|∆N
i−1X||∆

N
i X| = σ2|∆N

i−1W ||∆
N
i W |.

E(|
√
N∆N

i W︸ ︷︷ ︸
d
=N(0,1)

|) =
√

2/π explains the normalization.

Taken together:

RV N −BV N p→
∑

0≤s≤1

|∆Xs|2 (11)

i.e., the difference between RV and BV is a consistent estimator of the

sum of the squared jumps
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Figure 7: 5-minute RV – annualized std.
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Figure 8: 5-minute BV – annualized std.

2010 2011 2012 2013 2014
0

10

20

30

40

50

60

70

80

90

time

an
nu

ali
ze

d 
vo

lat
ilit

y

22



Jump proportion

This allows to measure the contribution of jumps to [X]1. In particular,

the jump variation (JV) can be found as:

JV = 1−
∫ 1
0 σ

2
sds

[X]1
, (12)

i.e., the proportion induced by discrete price changes.

The empirical counterpart:

ˆJV = 1−
BV N

RV N
, (13)

This result has been widely exploited in empirical work to study the role of

the jump component (e.g., Table 1 in Christensen, Oomen, and Podolskij,

2014, for an overview of the literature).
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Figure 9: Jump proportion from 5-minute data.
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Jump testing

We can extend the above to construct a statistical test for the presence

of jumps. In particular, under the null hypothesis that X is continuous, it

follows from Barndorff-Nielsen and Shephard (2006) that:

√
N

RV N − ∫ 1
0 σ

2
sds

BV N −
∫ 1
0 σ

2
sds

 ds→MN

(
0,
∫ 1

0
σ4
sds×

[
2 2

2 2.6

])
(14)

This implies that if there are no jumps in X, so that [X]1 =
∫ 1
0 σ

2
sds,

BV N is asymptotically less efficient than RV N (RV N is the MLE in the

parametric version Xt = σWt of the problem, so it is hard to beat).

i.e., robustness has a cost (was that expected?).
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Applying the delta rule and the properties of stable convergence in law, we

achieve the following t-statistic (under the null):

TN =

√
N(RV N −BV N)√

0.6
∫ 1
0 σ

4
sds

d→ N(0, 1). (15)

Tables with critical values from the standard normal can be used to assess

the statistical significance of the deviation from the null, against a right-

tailed, one-sided alternative...

... because, conditional on the presence of jumps in X, RV N − BV N =∑
0≤s≤1 |∆Xs|2 > 0, so TN → ∞. The test thus has unit power and is

consistent, asymptotically.

Barndorff-Nielsen and Shephard (2006) propose other transformations of

the bivariate CLT, which exhibit better finite sample properties.
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Multi-power variation

To implement the jump test, the IQ has to be estimated in a jump-

robust fashion (else the power is severely impaired). It appears that we

can handle this problem with a jump-robust estimator, say, of the form∑N
i=2 |∆

N
i−1X|

2|∆N
i X|

2... but this turns out not to work.

To do it right, we adopt the class of multipower variation:

MPV N(r) =
N

N − I
1∏
i µri

N
∑
ri/2−1

N∑
i=I

I∏
j=1

|∆N
i+j−1X|

ri (16)

where r = (r1, . . . , rI) with ri > 0 is an index of powers, while µx =

E(|N(0, 1)|x) = π−1/22x/2Γ((x+ 1)/2) and Γ is the Gamma function.

Thus, multipower variation generalizes the bipower estimator to arbitrary

lag lengths and general powers. N/(N − I) is a finite sample term.
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Note that:

→ The (1,1)-bipower variation in (9) has I = 2 and ri = 1.

→ An alternative estimator in this class, which is analyzed below, is

the tripower variation (TV). It takes I = 3 and ri = 2/3.

Set r+ = max ri. Then, if r+ < 2:

MPV N(r)
p→
∫ 1

0
σ
∑
ri

s ds. (17)

On the other hand, if r+ = 2, the estimator is not jump-robust and

converges in probability to some complicated mixture of diffusive volatility

and the jump part (e.g., Barndorff-Nielsen and Shephard, 2004)
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This shows why the BV “adaption” above cannot estimate IQ robustly. To

do that, we need to include at least one more lag.

Two examples often used in practice:

→ Tripower quarticity (TQ): I = 3 and ri = 4/3.

→ Quadpower quarticity (QQ): I = 4 and ri = 1.

29



Figure 10: Jump t-statistic 5-minute data (via quadpower quarticity).

2011 2012 2013
−3

−2

−1

0

1

2

3

4

5

6

time

$t
$−

sta
tis

tic

30



Figure 11: Kernel density estimate of t-statistic.

−3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

f(x
)

 

 
N(0,1)

31



Jump-robust inference about IV

The above stochastic convergence of multipower variation can be extended

to a central limit theorem, if r+ < 1:

√
N

(
MPV N(r)−

∫ 1

0
σ
∑
ri

s ds

)
ds→MN

(
0, cµr

∫ 1

0
σ

2
∑
ri

s ds

)
, (18)

where cµr is a known (but complicated) function of µri.

This implies that we cannot draw inference about the IV (e.g., construct a

(1−α)% confidence interval) with BV N . Indeed, the limiting distribution

of BV N is not even mixed Gaussian (e.g., Vetter, 2010).
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A substitute is tripower variation (TV):

TV N =
N

N − 2

1

µ3
2/3

N∑
i=3

|∆N
i−2X|

2/3|∆N
i−1X|

2/3|∆N
i X|

2/3, (19)

Then, in model (1),

√
N

(
TV N −

∫ 1

0
σ2
sds

)
ds→MN

(
0, 3.06

∫ 1

0
σ4
sds

)
. (20)

A two-sided (1− α)% CI for the IV can then be computed by:

TV N ± qα/2

√
3.06 ˆIQ

N
, (21)

where qα/2 is the 1−α/2 quantile of the standard normal distribution and

ˆIQ is a consistent estimator of IQ.
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Figure 12: IV point estimate and 95% CI.
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Truncation

An alternative procedure, which can handle the influence of jumps, is to fil-

ter returns that are abnormally large compared to what was to be expected,

if they were truly drawn from a diffusion process.

The threshold RV:

TRV N =
N∑
i=1

|∆N
i X|

21{|∆N
i X|<τN}

, (22)

1: indicator function τN : positive real-valued function.

The strategy in words: inspect the magnitude of the increment. If it is

“too large” (i.e., exceeds τN) kill it, otherwise include it in the sum.
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Idea was proposed by, e.g., Äıt-Sahalia and Jacod (2009a,b); Mancini

(2004, 2009). With an appropriate selection of τN , all the jumps returns

can be annihilated, while the diffusive returns are preserved.

To achieve this, τN needs to fulfill:

lim
N→∞

τN = 0 and lim
N→∞

logN

NτN
= 0, (23)

That is, τN should vanish at a rate, which is slower than the modulus of

continuity of Brownian motion. This ensures that, as N →∞, τN shrinks

at a lower pace than the diffusive terms, so that the filtering does not

impact those terms that are not influenced by the jump component.
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Common approach:

τN = q1−α/2 ∗ σ̂ ∗N
−$, 0 < $ < 0.5, (24)

where q1−α/2 is a quantile from the standard normal distribution and σ̂ is

an estimator of the local standard deviation (e.g.,
√
BV N).

σ̂ : scale parameter.

q1−α : number of std.’s.

$ : rate parameter.

Note that, as such, this requires one to “pre-estimate” volatility before

setting a truncation level, leading to an iterative procedure.
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Asymptotic distribution of TRV:

√
N

(
TRV N −

∫ 1

0
σ2
sds

)
ds→MN

(
0, 2

∫ 1

0
σ4
sds

)
(25)

Truncation estimator of IQ:

TRQN =
N

3

N∑
i=1

|∆N
i X|

41{|∆N
i X|<τN}

p→
∫ 1

0
σ4
sds, (26)

i.e., a realized (multi-)power variation estimator with truncation on top.
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The TRV is asymptotically efficient (in the Cramer-Rao lower bound sense).

The intuition is that, because τN decays slowly enough, it doesn’t do any-

thing asymptotically, if the process never jumps.

This CREATES a problem for jump testing, because the asymptotic distri-

bution
√
N(RV N − TRV N) is degenerate. Podolskij and Ziggel (2010)

propose a wild bootstrap procedure to deal with this problem.

Corsi, Pirino, and Renò (2010) propose to combine the force of bipower

variation with truncation in order to do inference about the JV.
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Microstructure noise

In practice, assets are not traded in a frictionless market. Prices are affected

by market imperfections, such as bid-ask spreads, price discreteness, etc.

(e.g., Black, 1986; Niederhoffer and Osborne, 1966; Roll, 1984)

The combination of these effects leads to marked differences between real

data and those generated by a jump-diffusion model.

We model this as:

Yi/N = Xi/N + εi/N , (27)

where X is defined as in (1), while εi/N is a i.i.d. noise process (indepen-

dent of X) with finite variance.
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Figure 13: Noisy log-return ∆N
i Y .
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Figure 14: Sample path of noisy log-price Yt.
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Figure 15: Microstructure noise in SPY
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Figure 16: Outliers in SPY
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Noise CREATES spurious return variation by inducing serial correlation in

the observed log-returns, ∆N
i Y . It implies RV N →∞ as N →∞... also

true for BV N (e.g., Hansen and Lunde, 2006; Jiang and Oomen, 2008).

To combat the noise, we use the notion that if we locally smooth Yi/N in

the vicinity of i/N , we retrieve an estimate, say Ȳi/N , which tends to be

closer to Xi/N , because the noise is largely averaged away.

This is called pre-averaging (e.g., Jacod, Li, Mykland, Podolskij, and Vet-

ter, 2009; Podolskij and Vetter, 2009a,b).

Averaging our discrete sample of noisy high-frequency data this way leads

to a new set of increments, say ∆Ȳ Ni , based on pre-averaged prices.
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To implement pre-averaging, we need a window size K = K(N):

K = θ
√
N + o

(
N−1/4

)
, θ > 0. (28)

... and a weight function:

w : R 7→ R (29)

In practice, K = [θ
√
N ] (or d·e) is used. θ is a tuning-parameter, so

anything goes, but θ = 1/3 or θ = 1 has been advocated in several studies

(Christensen, Kinnebrock, and Podolskij, 2010; Hautsch and Podolskij,

2013; Christensen, Oomen, and Podolskij, 2014).

w(x) = min(x, 1− x) (i.e., a triangular kernel) is standard.
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The return series, post pre-averaging:

∆N
i Ȳ =

K∑
j=1

wNj ∆N
i+jY = −

K∑
j=0

(wNj+1 − w
N
j )Yi+j

N
, (30)

for i = 1, . . . , N −K + 2, where wNj = w(j/K).

Equivalent formula (for K even and w as above):

∆N
i Ȳ =

1

K

K/2∑
j=1

Yi+K/2+j
N

−
1

K

K/2∑
j=1

Yi+j
N
. (31)

The sequence (2∆N
i Ȳ )N−K+2

i=1 can be interpreted as a new set of incre-

ments from a price process that is constructed by simple averaging of the

noisy log-price series, (Yi/N)Ni=1, in a neighbourhood of i/N .
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Figure 17: Illustration of pre-averaging
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Note that the pre-averaged returns are computed from an overlapping noisy

return series (a rolling window)...

... an overlapping sample problem.

This CREATES a strong, positive autocorrelation in the series (∆N
i Ȳ )N−K+2

i=1 ,

which we need to account for in the inference procedures (e.g., for the

computation of standard errors).
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Figure 18: ACF of ∆N
i Y — SPY data.
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Figure 19: ACF of ∆N
i Ȳ — SPY data.
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Pre-averaged realized variance and bipower variation

With the above notation in place, we introduce a noise- and outlier-robust

version of the RV and BV:

RV ∗ =
N

N −K + 2

1

KψK

N−K+2∑
i=1

|∆N
i Ȳ |

2 −
ω̂2

θ2ψK
, (32)

BV ∗ =
N

N − 2K + 2

1

KψK

π

2

N−2K+2∑
i=1

|∆N
i Ȳ ||∆

N
i+KȲ | −

ω̂2

θ2ψK
, (33)

where ψK = (1 + 2K−2)/12.

The construction is almost identical to the no noise setting, apart from the

fact that ∆N
i Y has been replaced by ∆N

i Ȳ .
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The intuition behind the bipower construction is that (∆N
i Ȳ ) is autocor-

related (up to the Kth lag), which is broken by multiplying pre-averaged

returns that are K terms apart.

This leads to a lower, effective sample of size N − 2K + 2.

ω̂2

θ2ψK
is a bias-correction, which compensates for the residual microstruc-

ture noise that remains after pre-averaging. It appears, as we are balancing

the order of the signal (∆N
i X̄) and the noise (∆N

i ε̄)...

... leads to optimal rates of convergence!
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We can reduce the noise further by taking a pre-averaging window of larger

order than O(
√
N). This can potentially wipe out the noise completely (it

also makes the framework more robust to non-i.i.d. noise), but it results

in suboptimal rates of convergence.

Note that the bias-correction drops out when we compute RV ∗ − BV ∗,
so it is of limited importance for jump measurement and testing.

ω̂2 is an estimator of the noise variance ω2 = E(ε2). It can be estimated in

a number of ways [see, e.g., Gatheral and Oomen (2010) for a comparison

of estimators]. Here, we use the estimator proposed by Oomen (2006):

ω̂2 = −
1

N − 1

N∑
i=2

∆N
i−1Y∆N

i Y. (34)
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Asymptotic theory

Assume Y follows Eq. (27) and E(u4) <∞. As N →∞,

RV ∗
p→ [X]1, BV ∗

p→
∫ 1

0
σ2
sds. (35)

Moreover, suppose E(u8) < ∞, and that X is a continuous semimartin-

gale, i.e., X follows Eq. (1) but with Nt ≡ 0 for all t. Then, under suitable

assumptions on σ, as N →∞, it further holds that

N1/4

 RV ∗ −
∫ 1
0 σ

2
sds

BV ∗ −
∫ 1
0 σ

2
sds

 ds→MN(0,Σ∗), (36)

a mixed normal distribution with conditional covariance matrix Σ∗, where

Σ∗ is defined in Podolskij and Vetter (2009b).
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Pre-averaging slows down the rate of convergence. N−1/4 is nonetheless

the fastest rate in noisy diffusion models (Gloter and Jacod, 2001a,b).

In general, Σ∗ has a complicated structure (even with i.i.d., independent

noise), which is 1) typically not known in closed-form and 2) does not

“factorize” as in the noise-free setting. Thus, in contrast to the frictionless

world, turning (36) into a feasible theory (via estimation of Σ∗) is difficult

— at least until recently.

Problem: the estimator of Σ∗ proposed by Podolskij and Vetter (2009b)

was not guaranteed (and often failed) to be positive semi-definite. This

leads to a huge proportion of negative variance estimates of RV ∗−BV ∗,
which makes the standardization for jump testing slightly complex (no

pun intended). Recent work, which addresses this problem: Christensen,

Podolskij, Thamrongrat, and Veliyev (2016); Mykland and Zhang (2016).
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Table 1: Proportion of ill-conditioned covariance matrix estimates, Σ̃∗n.

general noise i.i.d. noise
BM SV BM SV SPY

n = 2,340 23,400 2,340 23,400 2,340 23,400 2,340 23,400 nactual

2-dimensional setting
Panel A: Nonpositive definite

θ = 0.33 0.177 0.094 0.180 0.101 0.178 0.099 0.181 0.111 0.111
1.00 0.340 0.242 0.343 0.251 0.348 0.241 0.347 0.249 0.233

Panel B: Negative variance
θ = 0.33 0.141 0.066 0.149 0.072 0.140 0.070 0.146 0.077 0.064

1.00 0.286 0.199 0.290 0.210 0.292 0.201 0.289 0.206 0.184
Panel C: Condition number ≥ 20

θ = 0.33 0.073 0.053 0.071 0.058 0.069 0.057 0.071 0.062 0.045
1.00 0.080 0.096 0.081 0.101 0.079 0.095 0.081 0.100 0.088

Note. We show the proportion of ill-conditioned covariance matrix estimates, when
the Podolskij and Vetter (2009a) estimator Σ̃∗n of Σ∗ is used. 57



Figure 20: Properties of the standardized RV ∗ −BV ∗.
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Figure 21: IV estimates and standard error.
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Figure 22: Inference : ln
(
RV ∗

)
− ln

(
BV ∗

)
.

Panel A: Point estimate Panel B: Confidence interval
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Jump variation in practice

Christensen, Oomen, and Podolskij (2014) apply the toolbox developed

above to examine the importance of the jump component in practice.

They report the controversial finding that the jump variation, as measured

from noisy tick data, is about 1%.

⇒ There are very few (large) jumps, compared to the many small

diffusive shocks driven by the continuous influx of news to the market.

This is an order of magnitude smaller than what has been found in the

extant literature from “low-frequency” noise-free data (often based on 5-

to 15-minute sampling of the price process), where the JV across a huge

strand of papers is about 10% on average (see Table 1 in the paper).
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The (possible) explanation follows.
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Figure 23: Jump variation as a function of N .
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Figure 24: Fukushima earthquake: Jump in USDJPY?
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Figure 25: Fukushima earthquake: Jump in USDJPY?
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Figure 26: Fukushima earthquake: Jump in USDJPY?
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Figure 27: Fukushima earthquake: Jump in USDJPY?
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Figure 28: Jump in Merck?
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Figure 29: Jump in Merck?
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The volatility burst hypothesis

The above suggests that many of the large, significant jumps identified

with low-frequency 5-minute sampling are spurious, and they appear as

much more gradual price changes, when we zoom in the price process.

To paraphrase Äıt-Sahalia and Jacod (2009b), jumps can only be identified

with certainty in the continuous-time limit, i.e. as τ → 0

Xt −Xt−τ =
∫ t
t−τ

σsdWs +
Nt∑

i=Nt−τ

Ji, (37)

otherwise, a burst of (edit: large increase in) volatility can be observation-

ally equivalent to a jump at lower frequency.
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To provide support for the burst of volatility hypothesis, we draw noise-free

prices from a linear Brownian motion:

dXt = σtdWt, for t ∈ [0, 1], (38)

where σt = 3σ∗ for t ∈ [16/32, 17/32] and σt = σ∗ otherwise. σ∗ is fixed

at a level corresponding to 40% in annualized terms.

σt is piecewise constant and increases three-fold over a short interval of

the day (equivalent to 15-minutes for an eight-hour trading session).

The price path is still continuous, so the true JV is zero.

We simulate noisy log-prices as above, Y = X + u, using a realistic level

of i.i.d. noise and then round Y to the nearest cent to induce price dis-

creteness, based on a starting price of $50 in levels.
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Finally, we calculate RV and BV across a range of sampling frequencies and

report the average implied JV over 10,000 independent simulation runs.
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Figure 30: Jump variation from simulation.
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What is going on?

We show that, under suitable conditions:

E

(
BV −

∫ 1

0
σ2
sds

)
= −

1

N
E

(
1

12

∫ 1

0

υ2
s

σ2
s

ds

)
+ o(N−1), (39)

where υ2
s is the (spot) variance of variance (or vol-of-vol).

Thus, BV is downward biased in finite samples, which translates into an

inflated JV measure.

The bias gets more pronounced with a lowering of the sampling frequency

and in periods with a high volatility of volatility.

In a recent paper, Christensen, Oomen, and Renò (2016) provide an alter-

native explanation via local drift explosions (the drift burst hypothesis).
74



REFERENCES REFERENCES

References
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Working paper, Aarhus University.

Christensen, K., M. Podolskij, N. Thamrongrat, and B. Veliyev, 2016, “Inference from
high-frequency data: A subsampling approach,” Journal of Econometrics, (Forthcom-
ing).
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