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Outline

GARCH in an hour or less.
Realized GARCH Model
Multivariate Realized GARCH
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Heteroskedasticity

You may know about “controlling” for Heteroskedasticity
In regression model, Yt = X ′tβ + εt , the least squares estimator

β̂ − β =

[
n∑

t=1

XtX
′
t

]−1 n∑

t=1

Xtεt ,

LLN
1
n

n∑

t=1

XtX
′
t

p→ EXtX
′
t ,

and CLT
1√
n

n∑

t=1

Xtεt
d→ N(0,

[
E(XtX

′
tε

2
t )
]
).
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Heteroskedasticity

By Slutsky

√
n(β̂ − β) =

[
1
n

n∑

t=1

XtX
′
t

]−1
1√
n

n∑

t=1

Xtεt
d→ N(0,Σβ),

with
Σβ =

[
EXtX

′
t

]−1 [E(XtX
′
tε

2
t )
] [
EXtX

′
t

]−1
.

Classical assumption (Homoskedasticity)

E(XtX
′
tε

2
t ) = E(XtX

′
t)E(ε2t ),

so that
Σβ = σ2

ε

[
EXtX

′
t

]−1
.
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Heteroskedasticity

Computing standard errors based on

Σ̂β =

(
1
n

∑
XtX

′
t

)−1 1
n

∑
XtX

′
t ε̂

2
t

(
1
n

∑
XtX

′
t

)−1

,

Is accounting for the possibility that

E(XtX
′
tε

2
t ) 6= E(XtX

′
t)E(ε2t ),

or equivalently, that

var(εt |Xt) = E(ε2t |Xt),

might depend on Xt .
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Conditional Expectation

A conditional mean
E(Y |X ),

implies
E(Y |X ) = g(X ),

for some function g .
So we could attempt to model the heteroskedasticy

E(ε2t |Xt) = g(Xt),

with a suitable specification for g (instead of “accounting” for it).
ARCH/GARCH models seek to model this variation.
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Time Series

Let {Xt} be a time series, and let Ft be a filtration, to which Xt is
adapted, i.e.Xt ∈ Ft , Xt is Ft-measurable.
Time series models typically specifies distributional features of

Xt |Ft−1.
E.g. AR(p)

E(Xt |Ft−1) = µ+ ϕ1Xt−1 + · · ·+ ϕpXt−p

ARMA

E(Xt |Ft−1) = µ+ ϕ1Xt−1 + · · ·+ ϕpXt−p − θ1εt−1 − · · · − θqεt−q,

with Ft = σ(Xt ,Xt−1, . . . , εt , εt−1, . . .).
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GARCH Modeling

Three components

µt = E(rt |Ft−1),

ht = var(rt |Ft−1)

zt =
rt − µt√

ht
∼ F ,

for some distribution.
Key is ht . Modeled with a GARCH equation

ht = g(Ft−1)

Often µt = µ (constant) and zt ∼ iidN(0, 1).
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Engle’s Autoregressive Conditional Heteroskedasticity

If
E(ε2t |rt−1),

depends on rt−1... let try to build a model.
Conditional variance of εt :

ht ≡ E(ε2t |rt−1),

ARCH(1) Model
ht = ω + αr2

t−1.

First applied to macroeconomic time series (UK inflation).
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Generalized ARCH

Bollerslev (1986). GARCH(1,1)

ht = ω + αr2
t−1 + βht−1.

GARCH(p,q)

ht = ω + α1r
2
t−1 + · · ·+ αqr

2
t−q + β1ht−1 + · · ·+ βpht−p.

How about estimation?
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Time-Series MLE

Likelihood for time series models.
Key objective is the (log-) density for the observed data, i.e.
fθ(r1, . . . , rT ).
Decompose into conditional densities:

fθ(r1, . . . , rT ) =
fθ(r1, . . . , rT )

fθ(r1, . . . , rT−1)

fθ(r1, . . . , rT−1)

fθ(r1, . . . , rT−2)
· · · fθ(r1),

fθ(r1, . . . , rt)

fθ(r1, . . . , rt−1)
= fθ(rt |r1, . . . , rt−1) = fθ(rt |Ft−1).

Peter Reinhard Hansen (UNC) Realized GARCH Big Data, Aarhus 2016 13 / 103



Towards Estimating GARCH

Return equation
rt = µ+

√
htzt ,

where
zt ∼ iidN(0, 1).

GARCH Equation

ht = ω + αr2
t−1 + βht−1 or

ht = ω + α(rt−1 − µ)2 + βht−1

Conditional distribution of returns given past, rt |Ft−1, is N(µ, ht).
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Maximum Likelihood Estimation of GARCH

Conditional density is (recall rt = µ+
√
htzt)

f (rt |Ft−1) =
1√
2πht

exp
{
−1
2

(rt − µ)2

ht

}
=

1√
2πht

exp
{
−1
2
z2
t

}
.

Likelihood function (density for all data)

L(µ, ω, α, β) =
T∏

t=1

1√
2πht

exp
{
−1
2

(rt − µ)2

ht

}

Where ht = ω + αr2
t−1 + βht−1.
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Log-Likelihood for Simple GARCH

So the log-likelihood

log fθ(r1, . . . , rT ) =
T∑

t=1

log fθ(rt |Ft−1)

∝ −1
2

T∑

t=1

(log ht +
(rt − µ)2

ht
).

where ht = ht(θ) depends on the unknown parameters (ω, α, β)′,
through the GARCH equation

ht = ω + αr2
t−1 + βht−1.
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Starting Values

GARCH Equation
ht = ω + αr2

t−1 + βht−1.

Need a starting value for ht .
In practice it is convenient to treat h1 as an unknown parameter,
i.e. maximize log-likelihood wrt.

θ = (h1, µ, ω, α, β)′.
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Likelihood Analysis of GARCH

Same basic principle... but with new twists.
For simplicity, take h1 to be fixed and known and µ = 0.
Log-likelihood is

`(θ) = −1
2

T∑

t=1

(
log ht(θ) +

r2
t

ht(θ)

)
θ = (ω, α, β)′.

Score

∂`

∂θ
=

T∑

t=1

∂`t
∂ht

∂ht
∂θ

= −1
2

T∑

t=1

(
1

ht(θ)
− r2

t

h2
t (θ)

)
∂ht(θ)

∂θ
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Score of GARCH(1,1)

∂`

∂θ
= −1

2

T∑

t=1

(
ht(θ)− r2

t

h2
t (θ)

)
∂ht(θ)

∂θ

Let’s derive
∂ht(θ)

∂θ
,

where θ = (ω, α, β)′.

What is
∂ht
∂ω

=
∂(ω + αr2

t−1 + βht−1)

∂ω
=?
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Score of GARCH(1,1)

∂ht
∂ω

=
∂(ω + αr2

t−1 + βht−1)

∂ω
= 1 + β

∂ht−1

∂ω
.

Similarly
∂ht
∂α

= r2
t−1 + β

∂ht−1

∂α
.
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Score of GARCH(1,1)

∂ht
∂β

=
∂(ω + αr2

t−1 + βht−1)

∂β
= ht−1 + β

∂ht−1

∂β
.

So that

∂ht
∂θ

=




1
r2
t−1
ht−1


+ β

∂ht−1

∂θ
.

With
∂h1

∂θ
=??
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Score of GARCH(1,1)

Recursion. So

∂ht
∂θ

=
t−1∑

j=1

βj−1




1
r2
t−j
ht−j


 .

Scores are



sωt
sαt
sβt


 = −1

2

(
ht(θ)− r2

t

h2
t (θ)

)



1−βt−1

1−β∑t−1
j=1 β

j−1r2
t−j∑t−1

j=1 β
j−1ht−j



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Score MGD?

st(θ) =




sωt
sαt
sβt


 = −1

2

(
ht(θ)− r2

t

h2
t (θ)

)
∂ht
∂θ

.

E[st |Ft−1] = −1
2
E
[(

ht(θ)− r2
t

h2
t (θ)

)
∂ht
∂θ

]
=?
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MLE of GARCH(1,1) with Excel

Maximize

−1
2

T∑

t=1

[
log(2π) + log ht + (rt−µ)2

ht

]
,

with respect to θ, subject to
GARCH equation

ht = ω + αr2
t−1 + βht−1.

Excel Solver can do it
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GARCH ZOO I
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GARCH ZOO II
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Modern Volatility Models use Realized Measures

Conventional GARCH models take information from returns to adjust
the value of the conditional variance σ2

t .

High-Frequency data. Today we have high-frequency data
(thousands of observation per day per stock)

HF data yields far more accurate measures of volatility than, say,
squared return.
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GARCH Is Updating Slowly: A Thought Experiment

Suppose a sudden change in the true latent volatility

√
var(rt |Ft−1) =

{
20% t ≤ T

40% t > T .

GARCH(1,1)

ht = ω + βht−1 + αr2
t−1

= ω + β(ω + βht−2 + αr2
t−2) + αr2

t−1
...

= 1−βt

1−β ω + βth0 + α
t−1∑

j=0

βj r2
t−j−1.
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GARCH Is Updating Slowly: A Thought Experiment

Typical GARCH estimates α + β = 1 (e.g. α = 0.05 and β = 0.95)
and ω = 0. Implies

ht = α

∞∑

j=0

βj r2
t−j−1.

So in our thought experiment

E(hT+h) = α

∞∑

j=0

βjE(r2
T+h−j) = α

h−1∑

j=0

βj(0.4)2 + α

∞∑

j=h

βj(0.2)2.

How long does it take for ht to reach the true variance?
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GARCH is Slow
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GARCH Model with Realized Measure

ht = ω + αr2
t−1 + βht−1 + γxt−1,

where xt is a realized measure of volatility.

Realized Variance
Realized Kernel
MC estimator
.... etc.
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GARCH-X Model

Engle (2002), and many others

ht = ω + αr2
t−1 + βht−1 + γxt−1.

xt is a realized measure of volatility (e.g. RV)
Huge improvement in the empirical fit.
Typically

γ̂ ' 0.5.
α̂ ' 0. (ARCH parameter becomes insignificant)
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GARCH with Realized Measure is Fast
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Volatility prediction implied by options prices.
Lots of time variation, sometimes rapid changes.
Figure displays the implied volatility-prediction for the next month.
We should expect even greater variation in daily volatility.
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Completing the GARCH-X
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GARCH-X is Incomplete

Data (rt , xt), but model only specifies rt |rt−1,xt−1, . . .

Simple case

rt =
√
htzt .

ht = ω + αr2
t−1 + βht−1 + γxt−1.

Need a Model for xt .
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Realized GARCH
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Realized GARCH: Simple Case

GARCH-X structure

rt =
√
htzt

ht = ω + αr2
t−1 + βht−1 + γxt−1

Measurement Equation completes the model

xt = ξ + ϕht + Errort .

xt is noisy measurement of QVt

QVt is ht + volatility shock.
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Measurement Equation

Measurement Equation

xt = ξ + ϕht + τ(zt) + ut ,

where the leverage function is

τ(z) = τ1z + τ2(z2 − 1)

Captures the joint dependence between

return shocks, zt
volatility shocks, τ(zt) + ut .

τ(z) is called a Leverage Function
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Logarithmic Specification

Logarithmic specification is preferred

log ht = ω + β log ht−1 + γ log xt−1.

log xt = ξ + ϕ log ht + τ(zt) + ut .

Drawback of conventional LogGARCH (zero returns) is not relevant
here, because xt is positive.
Can be rewritten in a form that is similar to EGARCH
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Key Features of Realized GARCH

Empirical Features

Easy to estimate.
Captures return-volatility dependence (leverage effect).
Properties of multiperiod returns (skewness and kurtosis)
Outperforms conventional GARCH

Theoretical Features (elegant mathematical structure)

Parsimonious
Tractable analysis (quasi maximum likelihood).
Induced simple ARMA structure for both x and h

Natural extension of conventional GARCH
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Squared Return is a Noisy Signal of Volatility

Peter Reinhard Hansen (UNC) Realized GARCH Big Data, Aarhus 2016 46 / 103



Estimation and Inference
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QMLE

Gaussian specification adopted:

zt ∼ iidN(0, 1) ut ∼ iidN(0, σ2
u).

The quasi-log likelihood function is

`(r , x ; θ) = −1
2

n∑

t=1

[log(ht) + r2
t /ht + log(σ2

u) + u2
t /σ

2
u].

Partial log-likelihood

`(r ; θ) = −1
2

n∑

t=1

[log(ht) + r2
t /ht ].

Can be compared to Conventional GARCH.
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Empirical Analysis
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Data

Dow Jones Industrial Average stocks and SPY (ETF).

2002-01-01 to 2007-12-31 as in-sample data and
2008-01-01 to 2008-08-31 as out-of-sample.

For x , we use the realized kernel (RK) by BHLS (2008)

xt ≈ ht with open-to-close returns
xt<ht (on average) with close-to-close returns
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Linear Model (SPY Open-to-Close)

GARCH Equation

ht = 0.09
(0.05)

+ 0.29
(0.16)

ht−1 + 0.63
(0.18)

xt−1

Measurement Equation

xt = −0.05
(0.09)

+ 1.01
(0.19)

ht +−0.02
(0.02)

zt + 0.06
(0.01)

(z2
t − 1)

︸ ︷︷ ︸
τ(z)

+ ut

Standard deviation of ut : σ̂u = 0.51
(0.05)

.
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Linear Model (SPY Close-to-Close)

GARCH Equation

ht = 0.07
(0.04)

+ 0.29
(0.15)

ht−1 + 0.87
(0.25)

xt−1

Measurement Equation

xt = +0.00
(0.08)

+ 0.74
(0.14)

ht +−0.07
(0.02)

zt + 0.03
(0.01)

(z2
t − 1)

︸ ︷︷ ︸
τ(z)

+ ut

Standard deviation of ut : σ̂u = 0.51
(0.06)

.
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Log-Linear Model (SPY Open-to-Close)

GARCH Equation

log ht = 0.04
(0.02)

+ 0.70
(0.05)

log ht−1 + 0.45
(0.04)

log xt−1 − 0.18
(0.06)

log xt−2

Measurement Equation

log xt = −0.18
(0.05)

+ 1.04
(0.07)

log ht +−0.07
(0.01)

zt + 0.07
(0.01)

(z2
t − 1)

︸ ︷︷ ︸
τ(z)

+ ut

Standard deviation of ut : σ̂u = 0.38
(0.08)

.

Persistence Parameter

π̂ = β̂ + (γ̂1 + γ̂2)ϕ̂ = 0.986
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Log-Linear Model (SPY Close-to-Close)

GARCH Equation

log ht = 0.11
(0.02)

+ 0.72
(0.05)

log ht−1 + 0.48
(0.06)

log xt−1 − 0.21
(0.07)

log xt−2

Measurement Equation

log xt = −0.42
(0.06)

+ 1.00
(0.10)

log ht +−0.11
(0.01)

zt + 0.04
(0.01)

(z2
t − 1)

︸ ︷︷ ︸
τ(z)

+ ut

Standard deviation of ut : σ̂u = 0.38
(0.08)

.

Persistence Parameter

π̂ = β̂ + (γ̂1 + γ̂2)ϕ̂ = 0.987

Peter Reinhard Hansen (UNC) Realized GARCH Big Data, Aarhus 2016 54 / 103



Return and Volatility
Shocks

(Leverage Effect)
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Estimated News Impact Curve
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Log Linear Model (SPY Open-to-Close)

Panel B: Auxiliary Statistics

Model G(1,1) RG(1,1) RG(1,2) RG(2,1) RG(2,2)

π .99 .98 .99 .98 1

ρ -0.18 -0.18 -0.16 -0.19

ρ− -0.33 -0.32 -0.32 -0.35

ρ+ 0.12 0.12 0.13 0.13

` (r) -1752.7 -1712.0 -1710.3 -1711.4 -1712.3

Significant “Leverage Effect”

ρ− = corr{τ(zt) + ut , zt |zt < 0},
ρ+ = corr{τ(zt) + ut , zt |zt > 0}.
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Log Linear Model (SPY Open-to-Close)

Panel B: Auxiliary Statistics

Model G(1,1) RG(1,1) RG(1,2) RG(2,1) RG(2,2)

π .99 .98 .99 .98 1

ρ -0.18 -0.18 -0.16 -0.19

ρ− -0.33 -0.32 -0.32 -0.35

ρ+ 0.12 0.12 0.13 0.13

` (r) -1752.7 -1712.0 -1710.3 -1711.4 -1712.3

Realized GARCH dominates GARCH in terms of partial log-likelihood.
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Log Linear Realized GARCH(1,2) for DJIA Stocks

ω β γ1 γ2 ξ ϕ σu τ1 τ2 π ρ ρ− ρ+

AA 0.03 0.77 0.33 -0.14 -0.07 1.15 0.40 -0.04 0.09 0.98 -0.08 -0.32 0.24
AIG 0.02 0.74 0.45 -0.21 -0.06 1.02 0.45 -0.02 0.04 0.98 -0.06 -0.17 0.08
AXP 0.05 0.70 0.38 -0.12 -0.16 1.08 0.43 -0.02 0.10 0.99 -0.05 -0.30 0.25
BA 0.02 0.82 0.31 -0.17 -0.13 1.22 0.39 -0.03 0.09 0.99 -0.09 -0.36 0.26
BAC 0.00 0.78 0.51 -0.29 0.00 0.99 0.42 -0.04 0.08 0.99 -0.09 -0.31 0.21
C -0.02 0.74 0.45 -0.19 0.09 0.99 0.39 -0.03 0.09 0.99 -0.07 -0.31 0.24

CAT 0.03 0.82 0.37 -0.22 -0.14 1.07 0.38 -0.03 0.09 0.99 -0.08 -0.32 0.27
CVX 0.03 0.71 0.33 -0.14 -0.09 1.32 0.39 -0.08 0.08 0.97 -0.19 -0.35 0.14
DD -0.01 0.77 0.37 -0.17 0.08 1.08 0.40 -0.05 0.08 0.98 -0.13 -0.35 0.20
GE 0.00 0.81 0.38 -0.19 0.01 0.98 0.41 -0.01 0.08 0.99 -0.02 -0.26 0.25
GM 0.06 0.84 0.39 -0.24 -0.32 1.02 0.47 -0.01 0.12 0.99 -0.01 -0.33 0.31
HD 0.01 0.79 0.39 -0.20 0.00 1.01 0.41 -0.05 0.09 0.99 -0.13 -0.37 0.20
IBM 0.00 0.74 0.41 -0.15 0.01 0.94 0.39 -0.04 0.08 0.98 -0.09 -0.32 0.24
INTC 0.02 0.87 0.46 -0.33 -0.11 1.03 0.36 -0.02 0.07 1.00 -0.05 -0.24 0.22
MSFT -0.01 0.79 0.44 -0.22 0.08 0.92 0.38 -0.03 0.08 0.99 -0.08 -0.31 0.24
WMT -0.02 0.80 0.37 -0.19 0.12 1.04 0.39 -0.01 0.09 0.99 -0.02 -0.29 0.30
XOM 0.03 0.71 0.34 -0.12 -0.10 1.26 0.38 -0.08 0.08 0.98 -0.20 -0.37 0.15
SPY 0.04 0.70 0.45 -0.18 -0.18 1.04 0.38 -0.07 0.07 0.99 -0.17 -0.32 0.13

Average 0.01 0.79 0.41 -0.21 -0.02 1.04 0.41 -0.03 0.09 0.99 -0.08 -0.30 0.22
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Log Linear Realized GARCH(1,2) for DJIA Stocks

ω β γ1 γ2 ξ ϕ σu τ1 τ2 π ρ ρ− ρ+

AA 0.03 0.77 0.33 -0.14 -0.07 1.15 0.40 -0.04 0.09 0.98 -0.08 -0.32 0.24
AIG 0.02 0.74 0.45 -0.21 -0.06 1.02 0.45 -0.02 0.04 0.98 -0.06 -0.17 0.08
AXP 0.05 0.70 0.38 -0.12 -0.16 1.08 0.43 -0.02 0.10 0.99 -0.05 -0.30 0.25
BA 0.02 0.82 0.31 -0.17 -0.13 1.22 0.39 -0.03 0.09 0.99 -0.09 -0.36 0.26
BAC 0.00 0.78 0.51 -0.29 0.00 0.99 0.42 -0.04 0.08 0.99 -0.09 -0.31 0.21
C -0.02 0.74 0.45 -0.19 0.09 0.99 0.39 -0.03 0.09 0.99 -0.07 -0.31 0.24

CAT 0.03 0.82 0.37 -0.22 -0.14 1.07 0.38 -0.03 0.09 0.99 -0.08 -0.32 0.27
CVX 0.03 0.71 0.33 -0.14 -0.09 1.32 0.39 -0.08 0.08 0.97 -0.19 -0.35 0.14
DD -0.01 0.77 0.37 -0.17 0.08 1.08 0.40 -0.05 0.08 0.98 -0.13 -0.35 0.20
GE 0.00 0.81 0.38 -0.19 0.01 0.98 0.41 -0.01 0.08 0.99 -0.02 -0.26 0.25
GM 0.06 0.84 0.39 -0.24 -0.32 1.02 0.47 -0.01 0.12 0.99 -0.01 -0.33 0.31
HD 0.01 0.79 0.39 -0.20 0.00 1.01 0.41 -0.05 0.09 0.99 -0.13 -0.37 0.20
IBM 0.00 0.74 0.41 -0.15 0.01 0.94 0.39 -0.04 0.08 0.98 -0.09 -0.32 0.24
INTC 0.02 0.87 0.46 -0.33 -0.11 1.03 0.36 -0.02 0.07 1.00 -0.05 -0.24 0.22
MSFT -0.01 0.79 0.44 -0.22 0.08 0.92 0.38 -0.03 0.08 0.99 -0.08 -0.31 0.24
WMT -0.02 0.80 0.37 -0.19 0.12 1.04 0.39 -0.01 0.09 0.99 -0.02 -0.29 0.30
XOM 0.03 0.71 0.34 -0.12 -0.10 1.26 0.38 -0.08 0.08 0.98 -0.20 -0.37 0.15
SPY 0.04 0.70 0.45 -0.18 -0.18 1.04 0.38 -0.07 0.07 0.99 -0.17 -0.32 0.13

Average 0.01 0.79 0.41 -0.21 -0.02 1.04 0.41 -0.03 0.09 0.99 -0.08 -0.30 0.22
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Log Linear Realized GARCH(1,2) for DJIA Stocks

ω β γ1 γ2 ξ ϕ σu τ1 τ2 π ρ ρ− ρ+

AA 0.03 0.77 0.33 -0.14 -0.07 1.15 0.40 -0.04 0.09 0.98 -0.08 -0.32 0.24
AIG 0.02 0.74 0.45 -0.21 -0.06 1.02 0.45 -0.02 0.04 0.98 -0.06 -0.17 0.08
AXP 0.05 0.70 0.38 -0.12 -0.16 1.08 0.43 -0.02 0.10 0.99 -0.05 -0.30 0.25
BA 0.02 0.82 0.31 -0.17 -0.13 1.22 0.39 -0.03 0.09 0.99 -0.09 -0.36 0.26
BAC 0.00 0.78 0.51 -0.29 0.00 0.99 0.42 -0.04 0.08 0.99 -0.09 -0.31 0.21
C -0.02 0.74 0.45 -0.19 0.09 0.99 0.39 -0.03 0.09 0.99 -0.07 -0.31 0.24

CAT 0.03 0.82 0.37 -0.22 -0.14 1.07 0.38 -0.03 0.09 0.99 -0.08 -0.32 0.27
CVX 0.03 0.71 0.33 -0.14 -0.09 1.32 0.39 -0.08 0.08 0.97 -0.19 -0.35 0.14
DD -0.01 0.77 0.37 -0.17 0.08 1.08 0.40 -0.05 0.08 0.98 -0.13 -0.35 0.20
GE 0.00 0.81 0.38 -0.19 0.01 0.98 0.41 -0.01 0.08 0.99 -0.02 -0.26 0.25
GM 0.06 0.84 0.39 -0.24 -0.32 1.02 0.47 -0.01 0.12 0.99 -0.01 -0.33 0.31
HD 0.01 0.79 0.39 -0.20 0.00 1.01 0.41 -0.05 0.09 0.99 -0.13 -0.37 0.20
IBM 0.00 0.74 0.41 -0.15 0.01 0.94 0.39 -0.04 0.08 0.98 -0.09 -0.32 0.24
INTC 0.02 0.87 0.46 -0.33 -0.11 1.03 0.36 -0.02 0.07 1.00 -0.05 -0.24 0.22
MSFT -0.01 0.79 0.44 -0.22 0.08 0.92 0.38 -0.03 0.08 0.99 -0.08 -0.31 0.24
WMT -0.02 0.80 0.37 -0.19 0.12 1.04 0.39 -0.01 0.09 0.99 -0.02 -0.29 0.30
XOM 0.03 0.71 0.34 -0.12 -0.10 1.26 0.38 -0.08 0.08 0.98 -0.20 -0.37 0.15
SPY 0.04 0.70 0.45 -0.18 -0.18 1.04 0.38 -0.07 0.07 0.99 -0.17 -0.32 0.13

Average 0.01 0.79 0.41 -0.21 -0.02 1.04 0.41 -0.03 0.09 0.99 -0.08 -0.30 0.22
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Out-of-Sample Analysis

n ' 1, 500 and m ' 187.
Out-of-sample likelihood ratio statistic is asymptotically distributed as
√

n

m
{`i (r , x)− `j(r , x)} d→ Z ′1Z2, as m, n→∞ with

m

n
→ 0,

where Z1 and Z2 are independent Zi ∼ Nk(0, I ).
Two-sided critical values can be inferred from the distribution of
|Z ′1Z2|.
k = 1 : 2.25 and 3.67, are the 5% and 1% critical values.
k = 2: 3.05 and 4.83.
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Out-of-Sample Analysis

RG(1,1) RG(1,2) RG(2,1) RG(2,2) RG(2,2)† RG(2,2)∗
AA 6.9 4.5 6.4 0 21.9 0.1
AIG 15.7 -0.2 6.0 0 25.5 12.5
AXP 1.2 2.7 1.5 0 13.3 0.2
BA -1.4 0.4 -2.6 0 24.5 0.0
BAC 8.0 -0.7 -0.3 0 56.5 -2.8
C 1.3 -2.7 -2.5 0 -0.1 -7.2

CAT 1.7 -1.0 -4.2 0 9.0 2.2
CVX 5.3 0.0 2.2 0 20.8 -0.1
DD 4.6 4.1 3.0 0 -7.1 6.9
DIS 4.8 4.8 3.7 0 24.3 0.0
GE 14.1 0.6 5.9 0 9.3 0.6
GM 17.0 -0.2 6.8 0 7.2 14.6
HD 2.2 -1.0 -1.0 0 28.9 0.5
IBM 3.3 -0.1 1.0 0 25.0 -0.2
INTC 0.9 0.1 -3.4 0 36.8 19.1
MSFT 8.3 4.2 7.1 0 17.0 4.1
WMT -7.2 -3.8 -7.9 0 28.7 9.4
XOM 5.7 -0.1 1.0 0 27.9 0.6
SPY 6.3 -1.2 1.9 0 24.4 1.4

Average 4.4 0.1 1.1 0 23.0 2.1
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Out-of-Sample: Partial Likelihood

Out-of-sample partial likelihood ratio

2{max
i
`i (r |x)− `j(r |x)}.

“Best” will have a zero.
Enables comparison with conventional GARCH.
GARCH maximizes the in-sample partial log-likelihood.
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Out-of-Sample Analysis (Partial)

G11 RG(1,1) RG(1,2) RG(2,1) RG(2,2) RG(2,2)† RG(2,2)∗
AA 4.6 3.3 1.4 2.6 0.0 0.6 0.7
AIG 56.1 9.3 5.9 7.4 6.0 0.0 7.2
AXP 24.0 0.0 0.3 0.1 1.3 1.7 1.4
BA 1.1 0.6 1.8 1.7 0.0 0.3 0.0
BAC 147.9 4.1 0.6 0.0 1.5 19.7 0.9
C 26.9 0.3 0.9 0.5 1.1 0.0 0.4

CAT 47.3 0.1 0.8 0.0 1.0 1.6 1.5
CVX 30.1 0.6 0.3 0.2 0.3 0.0 0.3
DD 19.2 1.2 1.5 1.5 1.2 1.4 0.0
DIS 35.4 0.0 2.0 1.4 0.8 1.1 0.8
GE 41.6 0.9 0.0 0.6 0.0 0.3 0.7
GM 57.5 1.4 0.0 0.2 0.0 0.3 0.9
HD 45.5 0.9 0.0 0.1 0.2 2.1 0.4
IBM 12.0 0.4 0.5 0.7 0.1 0.3 0.0
INTC 133.1 1.7 0.5 2.0 0.0 0.1 1.8
MSFT 37.1 0.1 0.5 0.4 0.0 0.2 0.1
WMT 30.5 0.0 0.6 0.0 1.3 1.4 2.6
XOM 21.6 0.0 0.5 0.3 0.5 0.5 0.5
SPY 40.8 0.8 0.6 0.7 0.0 2.5 1.3

Average 33.5 1.2 1.0 1.0 0.8 1.6 1.0
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Misspecification
Analysis
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Lin-No-Leverage: Bivariate Gaussian?
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Lin-Leverage: Bivariate Gaussian?
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Log-No-Leverage: Bivariate Gaussian?
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Log-Leverage: Bivariate Gaussian?
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Misspecification

Standard Errors for the RealGARCH(1,2) Model

Linear Model Log-linear Model

I−1 J −1 I−1J I−1 I−1 J −1 I−1J I−1

ω 0.007 0.004 0.019 0.015 0.015 0.016
β 0.034 0.017 0.125 0.040 0.031 0.053
γ1 0.053 0.040 0.133 0.030 0.025 0.040
γ2 0.054 0.032 0.177 0.046 0.036 0.062
ξ 0.038 0.037 0.096 0.044 0.042 0.051
ϕ 0.080 0.064 0.212 0.044 0.033 0.069
σu 0.009 0.002 0.054 0.005 0.005 0.006
τ1 0.013 0.014 0.016 0.010 0.011 0.011
τ2 0.008 0.013 0.011 0.006 0.008 0.006
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Alternative: MEM/HEAVY (“Parallel GARCH”)

The return equation implies

r2
t = htz

2
t

MEM (Engle & Gallo, 2006) and HEAVY (Shephard & Sheppard, 2010)

xt = hx ,tz
2
x ,t ,

where hx ,t is an additional latent variable zx ,t ∼ (0, 1).

Parallel GARCH structure:

hx ,t = ωx + αx r
2
t−1 + βxhx ,t−1 + γxxt−1.
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MEM and HEAVY Model

Latent Variable Observables

MEM
ht = ω + αr2t−1 + βht−1 + δrt−1 + ϕR2

t−1
hR,t = ωR + αRR

2
t−1 + βRhR,t−1 + δR rt−1

hRV ,t = ωRV + αRV RVt−1 + βRV hRV ,t−1
+δRV rt−1 + ϑRV RVt−11(rt−1<0) + ϕRV r2t−1

r2t = ht z
2
t

R2
t = hR,t z

2
R,t

RVt = hRV ,t z
2
RV ,t

HEAVY ht = ω + βht−1 + γxt−1
µt = ωR + αR xt−1 + βRµt−1

rt =
√

ht zt
xt = µt z

2
RK,t

Realized
GARCH ht = ω + βht−1 + γxt−1

rt =
√

ht zt
xt = ξ + ϕht + τ(zt ) + ut
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MEM/HEAVY Structure

Estimate latent volatility for: Return, Range, and Realized Kernel,
separately.

rt =
√

htzt ht = ω + αr2
t−1 + βht−1

R2
t = hRtz

2
R,t hR,t = ωR + αRR

2
R,t−1 + βRhR,t−1

RKt = hRK ,tzRK ,t hRK ,t = ωRK + αRKR
2
RK ,t−1 + βRKhRK ,t−1

Do we need 3 volatility factors?
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Single versus Multiple Latent Volatility Variable
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Moments, Forecasting, and More
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Skewness and Kurtosis of Cumulative Returns

No skewness for rt , unless zt is skewed.
“Leverage effect” induces skewness for multiperiod returns.
Simulation using log-linear Realized GARCH(1,2) parameters for SPY.
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Skewness of Cumulative Returns
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Kurtosis of Cumulative Returns
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Multi-Period Forecast

Multi-period ahead predictions with the Realized GARCH model is
straightforward.
When p = q = 1. we obtain VARMA(1,1) structure
[
h̃t
x̃t

]
=

[
β γ
ϕβ ϕγ

] [
h̃t−1
x̃t−1

]
+

[
ω

ξ + ϕω

]
+

[
0

τ(zt) + ut

]
,

so we can write, Yt = AYt−1 + µ+ εt .

Peter Reinhard Hansen (UNC) Realized GARCH Big Data, Aarhus 2016 80 / 103



Realized Exponential GARCH
An Improved Variant
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Realized Exponential GARCH

rt = µ+
√
htzt

log ht = ω + β log ht−1 + τ(zt) + γ′ut−1

log xk,t = ξk + ϕk log ht + δ(k)(zt) + uk,t k = 1, . . . ,K .

Leverage functions (a particular choice)

τ(zt) = τ ′at

δ(k)(zt) = δ′kat ,
at = a(zt) =




zt
z2
t − 1
...


 .

(hermite polynomials).
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Estimates for SPY with RK

Open-to-Close

log ht = −0.017
(0.004)

+ 0.970
(0.005)

log ht−1 − 0.102
(0.009)

zt−1 + 0.051
(0.005)

(z2
t−1 − 1) + 0.272

(0.024)
ut−1

log xt = −0.1643
(0.042)

+ 1.099
(0.046)

log ht − 0.072
(0.009)

zt + 0.073
(0.009)

(z2
t − 1) + ut ,

with σ̂2
u = 0.132.

Close-to-close

log ht = −0.008
(0.004)

+ 0.970
(0.005)

log ht−1 − 0.133
(0.009)

zt−1 + 0.03
(0.005)

(z2
t−1 − 1) + 0.273

(0.024)
ut−1

log xt = −0.410
(0.042)

+ 1.054
(0.046)

log ht − 0.011
(0.009)

zt + 0.038
(0.009)

(z2
t − 1) + ut ,

with σ̂2
u = 0.133.
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Multiple Measures (Partial Log-Likelihood)

In-sample Out-of-sample
EGARCH -6.84 -19.75

RK -1.31 -0.27
RG -2.16 -3.22

RV15s -7.64 -4.49
RV2m -2.82 -0.70
RV5m -1.49 -0.68
RV15m -2.23 -1.15
RV20m -2.27 -1.51
RK&RG -0.76 0

RK&RV15s -9.28 -5.21
RK&RV5m -0.89 -0.13

RV15s&RV5m -8.44 -4.71
RV5m&RV20m -1.21 -0.47

RG&RV5m -0.67 -0.34
RG&RV20m -1.06 -1.25

RK&RG&RV15s -8.13 -4.91
RK&RG&RV5m -0.30 -0.01

RK&RV2m&RV5m&RV20m -2.31 -0.54
RK&RG&RV5m&RV20m 0 -0.01
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Top-3: Partial Out-of-Sample Log-Likelihood

In-sample Out-of-sample
EGARCH -6.84 -19.75

RK -1.31 -0.27
RG -2.16 -3.22

RV15s -7.64 -4.49
RV2m -2.82 -0.70
RV5m -1.49 -0.68
RV15m -2.23 -1.15
RV20m -2.27 -1.51
RK&RG -0.76 0

RK&RV15s -9.28 -5.21
RK&RV5m -0.89 -0.13

RV15s&RV5m -8.44 -4.71
RV5m&RV20m -1.21 -0.47

RG&RV5m -0.67 -0.34
RG&RV20m -1.06 -1.25

RK&RG&RV15s -8.13 -4.91
RK&RG&RV5m -0.30 -0.01

RK&RV2m&RV5m&RV20m -2.31 -0.54
RK&RG&RV5m&RV20m 0 -0.01
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Realized EGARCH vs Realized GARCH (Full)
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Realized EGARCH vs Realized GARCH (Partial)
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Realized GARCH Volatility
during the

Global Financial Crisis
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Realized EGARCH: Global Financial Crisis

Figure: Conditional volatility during the global financial crisis with some of the
major events .
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Realized Beta GARCH

Multivariate GARCH model that utilizes realized measures of volatility
and covolatility
In essence: Bivariate GARCH model (+model for realized measures)

With a particular structure: Market return + individual return
Easy to extend to large number of “individual returns”
One-factor structure... can extract “betas”.
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Setting the Stage
Data and Object of Interest

We assume a simple one-factor structure: Where assets are taged on one-by-one

hej
Market index

SPY

hej
Market index

SPY

AA

hej
Market index

SPY

AA

AMD

hej
Market index

SPY

AA

AMD

AYE
BA

BAC
BBY

CC

CAT

DIS

DNR

DD

HPQHUM

JPM

IBM

NOVKG

OKE

PG

SUN

URBN

WAT

XOM
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Multivariate Realized GARCH

Bivariate return:

r0t Market return (SPX returns used as proxy)
r1t “Individual asset” return
x0t Realized measure of market volatility
x1t Realized volatility measure for r1t .
y1t realized correlation measure

y1t =
x01t√
x0tx1t

,

where x01t is a realized covariance measure..
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Notation and Key Variables

Filtration:
Ft = σ(r0s , r1s , x0s , x1s , y1s |s ≤ t).

Conditional Correlation

ρt =
cov(r0t , r1t |Ft−1)√

var(r0t |Ft−1)var(r1t |Ft−1)
,

Dynamic Beta

βt =
cov(r0t , r1t |Ft−1)

var(r0t |Ft−1)
.
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Decomposing the Problem

Seek model for
f (r0t , x0t , r1t , x1t , y1t |Ft−1).

Decompose into:

f (r0t , x0t |Ft−1)f (r1t , x1t , y1t |r0t , x0t ,Ft−1).

Peter Reinhard Hansen (UNC) Realized GARCH Big Data, Aarhus 2016 93 / 103



Realized EGARCH For Market Returns

r0t = µ0 +
√

h0tz0t , z0t ∼ iidN(0, 1),

log h0t = a0 + b0 log h0t−1 + c0 log x0t−1 + τ(0)(z0t−1)

log x0t = ξ0 + ϕ0 log h0t + δ(0)(z0t) + u0t , u0t ∼ iidN(0, σ2
u).

With z0t⊥⊥u0t . This specifies

f (r0t , xt |Ft−1).
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Now the Conditional Model

f (r1t , x1t , y1t |r0t , x0t ,Ft−1).

(another) decomposition into...

f (r1t |r0t , x0t ,Ft−1)f (x1t , y1t |r1t , r0t , x0t ,Ft−1).
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Conditional Model for Individual Return

r1t = µ1 +
√

h1tz1t ,

log h1t = a1 + b1 log h1t−1 + c1 log x0t−1 + d1 log h0t−1 + τ(1)(z1,t−1)

With z1t |r0t , x0t ,Ft−1 = z1t |z0t ∼ N(ρtz0t , 1− ρ2
t ) i.e.

(
z0t
z1t

)
∼ N

(
1 ρt
ρt 1

)
.

This specifies
f (r1t |r0t , x0t ,Ft−1)
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Conditional Model for Individual RM

Finally f (x1t , y1t |r1t , r0t , x0t ,Ft−1) defined by

log x1t = ξ1 + ϕ1 log h1t + δ(1)(z1t) + u1t ,

z(y1t) = ξ10 + ϕ10z(ρ1t) + v1t ,

where
z(ρ) =

1
2
log

1 + ρ

1− ρ, (Fisher transform)

and 


u0t
u1t
v1t


 ∼ iidN(0,




σ2
u0

σ2
u0,u1

σ2
u0,v1

• σ2
u1

σ2
u1,v1

• • σ2
v1



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Estimation
Log-likelihood Components

We formulate a quasi likelihood function of the joint model, by adopting a
Gaussian specification.

So (z0,t , z1,t ) are independent of (u0,t ,u1,t , v1,t ) which implies that the
log-likelihood of the model is given by

`(r0, x0, r1, x1, y1) = −
1
2

(
`z0 + `u0 + `z1|z0

+ `u1,v1|u0

)

The likelihood contributions given a normal distribution are straightforward to
derive (and available in the paper)
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Results and Discussion
The Data Set

In estimating our proposed model, we use high-frequency prices of 594 assets.

SPY is an exchange-traded fund that holds all of the S&P 500 Index stocks and
has enormous liquidity. We use this as a proxy for the market.

The data source is the collection of trades and quotes recorded on the NYSE,
taken from the TAQ database through the Wharton Research Data Services
(WRDS) system.

The sample period runs from January 3, 2002 to the end of 2009, delivering (for
most of the stocks) 2008 distinct trading days.

We match TAQ data to CRSP data and eventually use CRSP’s permnos to identify
stocks and to adjust for splits and dividends.
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Results and Discussion
The Data Set

We start with a ticker list of all S&P 500 constituents as of 31.12.2009. We match
these to CRSP permnos.

The ticker history of each permno is collected and HF data for tickers that were
detected in the second step and were not in the initial ticker symbol list is
extracted.

Finally, the daily data from the CRSP is matched to the high-frequency based
realized measures using the PERMNOs as a company identifier resulting in a total
of 743 assets.

Tickers as company identifiers are risky:

Over the sample period we consider, around 10% of the companies had 2 or more
ticker symbols

A particular ticker symbol can be used over time for more than one company: e.g. ”T”
(AT&T) has two permnos (i.e. CRSP identifies two distinct companies for this ticker)
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Estimated Market Model

Return eq.

r0t = 0.01 +
√
h0tz0t , (h01 = 1.33).

GARCH eq.

log h0t = 0.175 + 0.601 log h0t−1 + 0.377x0t−1 − 0.092z0t−1 + 0.020(z2
0t−1 − 1),

Measurement eq.

log x0t = −0.469 + log h0t − 0.104× z0t + 0.018× (z2
0t − 1) + u0t .
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Estimated Model (Individual Assets)

log hit = ai + bi log hit−1 + cixit−1 + dih0t + τi1zit−1 + τi2(z2
it−1 − 1),

log xit = ξi + ϕi log hit + δi1zit + δi2(z2
it − 1) + uit ,

Volatility parameters
hi,1 µi ai bi ci di τi1 τi2 ξi δi1 δi2

Mean 8.157 0.023 0.212 0.584 0.326 0.055 -0.037 0.011 -0.332 -0.031 0.066
Med. 3.461 0.019 0.197 0.588 0.329 0.042 -0.038 0.010 -0.339 -0.032 0.065

Min 0.025 -0.132 -0.023 0.291 0.152 -0.021 -0.086 -0.022 -0.895 -0.099 0.011
1% 0.252 -0.070 0.022 0.422 0.213 -0.007 -0.072 -0.009 -0.737 -0.069 0.023
5% 0.738 -0.044 0.064 0.461 0.251 0.002 -0.059 -0.004 -0.558 -0.060 0.035
95% 27.54 0.102 0.419 0.701 0.396 0.144 -0.012 0.028 -0.080 -0.000 0.100
99% 58.54 0.148 0.521 0.752 0.425 0.183 -0.000 0.036 -0.005 0.012 0.115
Max 323.9 0.230 0.679 0.805 0.473 0.345 0.014 0.048 0.086 0.026 0.154
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Estimated Model (Correlation Parameters)

z(ρit) = ai0 + bi0z(ρit−1) + ci0z(yit−1)

z(yit) = ξi0 + ϕi0z(ρit) + vit ,

Correlation Parameters
ρi ,1 ai0 bi0 ci0 ξi0 φi0

Mean 0.355 0.036 0.709 0.285 -0.098 0.974
Median 0.353 0.035 0.704 0.277 -0.064 0.912

Min -0.196 -0.112 0.533 0.029 -1.697 0.469
1% 0.012 -0.084 0.563 0.072 -0.740 0.515
5% 0.078 -0.030 0.602 0.121 -0.426 0.599
95% 0.653 0.107 0.834 0.477 0.145 1.481
99% 0.752 0.136 0.890 0.601 0.225 2.460
Max 0.857 0.204 0.964 0.670 0.255 3.620
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Volatities: CVX & SPY
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Correlation & Beta (CVX,SPY)

realized correlation model correlation 
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Results and Discussion
Estimation Results: Correlations
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Results and Discussion
Estimation Results: Betas
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Summary

Realized GARCH
GARCH that make use of Realized Measures.

Realized Beta GARCH

Multivariate GARCH Model with Realized Measures
Simplified one-factor structure that is easy to scale

Key Features

Parsimonious
Tractable (quasi maximum likelihood).
Easy to estimate.
Correlations modeled by Fisher-Transform

Empirical Results

Great deal variation in betas
Cross-sectionally and across time.
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