
Realized EGARCH, CBOE VIX and Variance Risk Premium∗

Peter Reinhard Hansena Zhuo Huangb† and Tianyi Wangc

aEuropean University Institute & CREATES

bPeking University, National School of Development,

China Center for Economic Research

cUniversity of International Business and Economics

School of Banking and Finance

January 18, 2015

Abstract

It has been documented that GARCH family models, under the locally risk-neutral valuation

relationship (LRNVR), fail to explain the variance risk premium suggested by CBOE VIX index. We

show that the recently proposed Realized EGARCH model, under an exponentially affine stochastic

discount factor, generates reasonable levels of variance risk premium. We derive the closed-form VIX

pricing formula and find empirical evidence that Realized EGARCH model provides significantly

better forecasting performance for VIX index than a number of GARCH volatility models, both

in-sample and out-of-sample. Realized EGARCH model benefits from its dual shock framework,

more flexible dependence of return and volatility shocks and the information gain from including

the realized measures of volatility.
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1 Introduction

In recent years, there are growing research interests in variance risk premium (VRP), which reflect the

compensation for investors for taking volatility risk. It is usually measured in the difference between

average variance under the physical and risk neutral measures. The former could be estimated by

volatility models using returns data and the latter could be extracted from options data, known as

implied volatility. The well-known VIX index launched by Chicago Board Options Exchange (CBOE)

is a model-free measure of expected average variance for next 30 days under the risk neutral measure.

Numerous studies, including Coval and Shumway (2001), Bakshi and Kapadia (2003) and Carr and

Wu (2009), documented negative variance risk premia on average for equity and other financial assets.

Recently, since Bollerslev et al. (2009), variance risk premium has been recognized as an important factor

in asset pricing or a useful signal in predicting financial variables. See Zhang et al. (2009), Bollerslev

et al. (2013), Londono and Zhou (2012), Bekaert et al. (2013), Andreou et al. (2013) etc.

Inspired by the great success in modeling volatility with GARCH family models, Duan (1995) pi-

oneered in employing GARCH model for option pricing by proposing a locally risk-neutral valuation

relationship (LRNVR). Under LRNVR, the one-period ahead conditional variance remains unchanged

during the change of measure. Such model develops a link between expected volatility or variance in the

physical measure and the risk neutral measure. Hao and Zhang (2013) investigated whether GARCH-

type models under LRNVR could accommodate the variance risk premium suggested by the CBOE VIX

index. They examined a number of GARCH family models and derived the model-implied VIX index

under LRNVR. When the models are estimated and risk neutralized with returns data only, the model

implied VIX will be significantly lower then the market CBOE VIX. Even when the models are jointly

estimated with both returns and VIX, the parameters tend to be seriously distorted, for example, a very

large positive price for equity risk parameter, and the model implied VIX still tend to underestimate

and cannot match the CBOE VIX from various statistical aspects. They further provide the theoretical

explanation by showing that the diffusion limit of the GARCH-type models under the LRNVR risk

neutral measure fail to fully compensate for taking volatility risk. More precisely, GARCH-type models

have only a single shock, i.e. the return shock, and thus have no room for an independent adjustment

for the volatility shock.

Basically, there are two directions to alleviate this problem: adopting a more complicated way of

risk neutralization or allowing independent volatility shocks in the modeling framework. Christoffersen

et al. (2013) introduced a variance dependent pricing kernel to improve the option pricing performance of

Heston-Nandi GARCH model, while keeping the closed-form option pricing formula. Stochastic volatility

models follow the second solution by explicitly modeling volatility shocks, with the cost of more difficult

model estimation due to the latent volatility process.

Realized EGARCHmodel, proposed by Hansen et al. (2012) and further developed Hansen and Huang

(2014), includes a second shock by including the realized measure of volatility. The dual-shock nature of
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the model enables greater flexibility when risk neutralizing the model from the physical measure to the

risk neutral measure. Contrast with stochastic volatility models, Realized EGARCHmodel maintains the

observation-driven structure of GARCH framework and thus model parameters can be easily estimated

via (quasi) maximum likelihood estimator.

In this paper, we first derive the closed-form VIX pricing formula for Realized EGARCH model,

with an exponentially affine stochastic discount factor of Christoffersen et al. (2010). Then we show

that Realized EGARCH model generates the best in-sample fit for the variance risk premium suggested

by CBOE VIX, compared with other five models including EGARCH, GARCH, Heston-Nandi GARCH

under both LRNVR and the variance dependent pricing kernel. In the rolling-window out-of-sample

forecasting study, Realized EGARCH model also provides the best forecasting performance. The im-

provement is more significant during the recent turmoil periods.

2 Realized EGARCH model

Hansen et al. (2012)proposed the Realized GARCH model that incorporates the realized measures of

volatility into the conventional GARCH framework. The realized measures of volatility are calculated

from high frequency data, for example, five-minute realized variance (RV) or realized kernel (RK) of

Barndorff-Nielsen et al. (2008) that uses tick trading data. Hansen et al. (2012) demonstrated that

Realized GARCH outperformed GARCH family models in terms of modeling and forecasting volatility.

The improved performance comes from the fact that the realized measures based on high frequency

data contain more accurate information about volatility than squared daily returns used in conventional

GARCH-type models. Hansen and Huang (2014) further extended it to Realized EGARCH model by

using a more flexible leverage function and allowing multiple realized measures. Realized EGARCH

(1,1) model under the physical measure is given by the following equations

rt+1 = r + λ
√
ht+1 −

1

2
ht+1 +

√
ht+1zt+1 (1)

log ht+1 = ω + β log ht + τ(zt) + γσut (2)

log xt = ξ + φ log ht + δ(zt) + σut (3)

where rt is the rate of return, λ is the price for taking equity risk, ht is the conditional variance, r is

the risk-free interest rate and xt is the realized measure of volatility. zt and ut are assumed bi-variate

standard Gaussian. The quadratic functionsτ(z) = τz+τ2(z
2−1) and δ(z) = d1z+d2(z

2−1) are referred

as the leverage function, accounting for dependence between return shocks and volatility shocks, which

is empirically important. When γ = 0, the Realized EGARCH model shrinks to a variant of the classical

EGARCH model of Nelson (1991), with a squared term replacing the absolute value term in the original

EGARCH model1.
1See Hansen et al. (2012) for the argument in favor of the quadratic form leverage function. For comparison reason,
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Equation (1) and (2) define the joint dynamics of return and volatility process, which looks very

similar to that in discrete-time stochastic volatility models, such as Taylor (1986) and Kim et al. (1998).

The feature is substantial for model’s capacity of accommodating variance risk premium. In conventional

GARCH family models, volatility shock is introduced via some function of lagged daily return. As there

is no independent volatility shock term, the variance risk is only reflected through this dependence

with equity risk. Therefore, in order to explain the market level of variance risk premium, the equity

risk premium parameter λ will typically be inflated to an unreasonable level. Such pattern have been

documented in Hao and Zhang (2013) and also confirmed in this paper. Realized EGARCH model does

not suffer from this problem, due to the introduction of residual volatility shock ut, the proportion of

the volatility shock that can not been captured by zt.

Realized EGARCH models are fundamentally different from stochastic volatility models in terms of

information updating and model estimation, due to the introduction of Equation (3), the measurement

equation. By substituting ut of the variance equation with the measurement equation, the conditional

volatility is actually updated by new information from both the realized standardized return and the

realized measure. As ht recursively observable, we can derive the explicit form of the joint likelihood func-

tion of (rt, log xt) and the maximum likelihood estimation is straightforward. In contrast, for stochastic

volatility models, ht is a latent process and in general it is not likely to derive the explicit likelihood func-

tion. Therefore, the generalized method of moment (GMM) or simulation based methods, are commonly

used to estimate stochastic volatility models.

log ht+1 = (ω − γξ) + (β − γφ) log ht + (τ(zt)− γδ(zt)) + γ log xt

2.1 Risk neutralization

In order to derive the model implied CBOE VIX, we need to derive the model dynamics under the risk

neutral measure. Following Christoffersen et al. (2010), we choose the following exponentially affine

stochastic discount factor (SDF) for risk neutralization,

Zt+1 =
exp(v1,tzt+1 + v2,tut+1)

E(exp(v1,tzt+1 + v2,tut+1))
= exp

(
v1,tzt+1 + v2,tut+1 −

v21,t
2
−
v22,t
2

)

Non-arbitrage condition requires that the expected rate of return under the risk-neutral measure is

just the risk-free rate.

EQt (exp(rt+1)) = Et(Zt+1 exp(rt+1))

= exp(r + λ
√
ht+1 + v1,t

√
ht+1)

= exp(r)

we also estimated a Realized EGARCH model with τ1zt+ τ2(|zt| −
√

2/π), the exact functional form in EGARCH model.
We got very similar empirical results and our main conclusions still hold.

4



i.e., it must be

v1,t = −λ

To obtain the model dynamics under Q-measure, we derive the moment generating function (MGF) as

below

EQt (exp(s1zt+1 + s2ut+1)) = Et(Zt+1 exp(s1zt+1 + s2ut+1))

= exp

(
−s1λ+ s2v2,t +

s21
2

+
s22
2

)

It suggests a way of changing measure from the physical world to the risk-neutral world,

z∗t+1 = zt+1 + λ

u∗t+1 = ut+1 − v2,t

Following Christoffersen et al. (2010), we just assume a time-invariate volatility risk premium α2 = v2,t

to make sure the model remains the same dynamic structure under Q-measure. A positive value of α2

suggests the negative variance risk premium.

Hence, the risk neutral dynamics of the model is

rt+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1 (4)

log ht+1 = ω + β log ht + τ1(z∗t − λ) + τ2((z∗t − λ)2 − 1) + γσ(u∗t + α2) (5)

log xt = ξ + φ log ht + d1(z∗t − λ) + d2(((z∗t − λ)2 − 1) + σ(u∗t + α2) (6)

where (z∗t , u∗t ) has joint bi-variate standard Gaussian distribution. Here we can see the way of

changing measure is straightforward and could be treated as a bi-variate extension of Duan (1995)’s

LRNVR.

2.2 The VIX pricing formula

From the risk neutral dynamics, we have

log ht+1 = ω̃ + β log ht + vt

by defining ω̃ = ω + α2σ̃ and σ̃ = γσ

vt = τ1(z
∗
t − λ) + τ2((z

∗
t − 1)2 − 1) + σ̃u∗t
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The k step forward expected conditional variance is

EQt [ht+k] = EQt

[
exp

(
βk−1 log ht+1

)
exp

(
k−2∑
i=0

ωβi
)

exp

(
k−2∑
i=0

βk−2−ivt+1+i

)]

= hβ
k−1

k−2∏
i=0

eβ
iω̃EQt

[
eβ

ivt+k−1−i

]

Let Fi = eβ
iω̃EQt

[
eβ

ivt+k−1−i

]
, suppress star and t on z and u. We have

Fi = eβ
iω̃EQt

[
exp

(
βiτ2λ

2 − βiτ1λ− βiτ2 + βi
(
τ2z

2 − (2τ2λ− τ1) z
))

exp
(
βiσ̃u

)]
(7)

= eβ
iω̃ exp

[
βiτ2λ

2 − βiτ1λ− βiτ2 +
β2iσ̃2

2

]
EQt exp

(
βi
(
τ2z

2 − (2τ2λ− τ1) z
))

(8)

= eβ
iω̃ exp

[
βiτ2λ

2 − βiτ1λ− βiτ2 +
β2iσ̃2

2
−
βi (τ1 − 2τ2λ)

2

4τ2

]
EQt

[
βiτ2

(
z +

(τ1 − 2τ2λ)

2τ2

)2
]

(9)

The last term in the third equation is essential the MGF of the non-central chi-square distribution.

Therefore:

EQt

[
βiτ2

(
z +

(τ1 − 2τ2λ)

2τ2

)2
]

=
1√

1− 2βiτ2
exp

[
βi(τ1 − 2τ2λ)2

2(1− 2βiτ2)τ2

]
(10)

Substitute (10) into (9), we have

Fi =
1√

1− 2βiτ2
exp

[
βiω̃ + βiτ2(λ2 − 1)− βiτ1λ+

β2i(τ1 − 2τ2λ)2

2(1− 2βiτ2)
+
β2σ̃2

2

]
Therefore, the model implied VIX is given by

V IXt =

√√√√252

22

22∑
k=1

EQt (ht+k)× 100 =

√√√√252

22

[
ht+1 +

22∑
k=2

(
k−2∏
i=0

Fi

)
hβ

k−1

t+1

]
× 100 (11)

3 Models in comparison

To evaluate the ability of Realized EGARCH to fit and forecast the market CBOE VIX index, we

include five models for comparison, i.e. Realized GARCH model with log-linear specification, GARCH,

EGARCH, Heston-Nandi GARCH under LRNVR, Heston-Nandi GARCH under variance dependent

pricing kernel proposed by Christoffersen et al. (2013)2.
2Hao and Zhang (2013) examined GARCH, EGARCH, TGACH, AGARCH and CGARCH models. To save space, we

only keeps GARCH and EGARCH models for comparison because GARCH is the benchmark and EGARCH performs the
best among the five models in Hao and Zhang (2013)
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3.1 Realized GARCH

The Realized GARCH model with log-linear specification is:

rt+1 = r + λ
√
ht+1 −

1

2
ht+1 +

√
ht+1zt+1 (12)

log ht+1 = ω + β log ht + γ log xt−1 (13)

log xt = ξ + φ log ht + d1zt + d2(z
2
t − 1) + σut (14)

Realized GARCH can be viewed as a constrained version of Realized EGARCH. By insert equation

(14) to equation (13) we have

log ht+1 = ω̃ + β̃ log ht + d̃1zt + d̃2(z
2
t − 1) + γσut (15)

where ω̃ = ω+γξ, β̃ = β+γφ, d̃. = γd.. It is clear that although Realized GARCH model can also have

a leverage function in variance equation, its coefficients are, however, constrained to be proportional to

those for leverage function in measurement equation. The latter leverage function is included just to

model correlations between return and volatility shock.

The model generated VIX can be calculate with the help of the formula for Realized EGARCH and

we will not repeat it here, to save space.

3.2 GARCH and EGARCH model

GARCH and EGARCH model are commonly used as benchmarks of GARCH family models. Unlike

the linear GARCH model, EGARCH model is a log-linear model and the exponential function makes it

easier to adjust to drastic volatile changes. With the same return equation as defined above, GARCH

and EGARCH specify the following volatility equations respectively,

• GARCH

ht+1 = ω + βht + αhtz
2
t

• EGARCH

log ht+1 = ω + β log ht + τ1zt + τ2(|zt| −
√
2/π)

Using the results in Hao and Zhang (2013) (Prop.1-4 in their paper), the model implied VIX pricing

formula is given by

GARCH

V IXt =

√√√√252

22

22∑
k=1

EQt (ht+k)× 100 =

√
252σ2

h +
252

22

1− β22

1− β (ht+1 − σ2
h)× 100
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where σ2
h = ω/(1− β).

• EGARCH

V IXt =

√√√√252

22

[
ht+1 +

22∑
k=2

(
k−2∏
i=0

Fi

)
hβ

k−1

t+1

]
× 100

where

Fi = exp

[
β

(
ω − τ2

√
2

π

)]
{exp

[
−βi(τ1 − τ2)λ+

β2i(τ2 − τ1)2

2

]
Φ[λ− βi(τ1 − τ2)]

+ exp

[
−βi(τ1 + τ2)λ+

β2i(τ2 + τ1)2

2

]
Φ[βi(τ1 + τ2)− λ]}

3.3 Heston-Nandi GARCH model under LRNVR

The Heston-Nandi GARCH model (Heston and Nandi (2000)) is one of the most popular discrete-time

option pricing model. It specifies different return and volatility equations to ensure closed-form option

pricing formula.

rt+1 = r + λht+1 −
1

2
ht+1 +

√
ht+1zt+1

ht+1 = ω + βht + α(zt − δ
√
ht)

2

The LRNVR risk neutralization follows yields a risk neutral dynamics by letting z∗t = zt + λ
√
ht,

rt+1 = r − 1

2
ht+1 +

√
ht+1z

∗
t+1

ht+1 = ω + βht + α(z∗t − (δ + λ)
√
ht)

2

It is easy to see that the unconditional mean of ht is σ2
h = ω̃/(1−β̃), where ω̃ = ω+α, β̃ = β+α(δ+λ)2.

Therefore, the k step forward expected conditional variance is

EQt (ht+k) = σ2
h + β̃k−1(ht+1 − σ2

h)

Therefore, the model implied VIX can be expressed as

V IXt =

√√√√252

22

22∑
k=1

EQt (ht+k)× 100 =

√
252σ2

h +
252

22

1− β̃22

1− β̃
(ht+1 − σ2

h)× 100

3.4 Heston-Nandi GARCH under variance dependent pricing kernel

In line with stochastic volatility models, Christoffersen et al. (2013) introduced a variance dependent

pricing kernel to improve the option pricing performance of Heston-Nandi GARCH model. Unlike
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LRNVR, now the one-step conditional volatility does no remains the same after the measure change.

Citing the results in Christoffersen et al. (2013), we can write the risk neutral dynamics as below

rt+1 = r − 1

2
h∗t+1 +

√
h∗t+1z

∗
t+1

h∗t+1 = ω∗ + β∗h∗t + α∗(z∗t − δ∗
√
h∗t )

2

where z∗t has a standard normal distribution and

h∗t = ht/(1− 2αα2)

ω∗ = ω/(1− 2αα2)

α∗ = α/(1− 2αα2)
2

δ∗ = (λ+ δ − 1/2)(1− 2αα2) + 1/2

where α2 is the free parameter included in the variance dependent pricing kernel3. Following the similar

procedures for GARCH model, the model implied VIX can be expressed as

V IXt =

√
252σ∗2h +

252

22

1− β̃∗22

1− β̃∗
(h∗t+1 − σ∗2h )

where σ∗2
h = ω̃∗/(1 − β̃∗) and ω̃∗ = ω∗ + α∗, β̃∗ = β∗ + α∗δ∗2. As suggested in Christoffersen et al.

(2013), α2 is estimated under the transformation 1/(1− αα2), Unlike LRNVR, the variance dependent

kernel will induce a transformation of one-step-ahead conditional variance after the change of measure.

4 Empirical Results

4.1 Model Estimation

We use maximum likelihood (ML) method to estimate model parameters by maximizing the joint log-

likelihood functions of observed variables in the physical dynamics and the risk neutral dynamics (CBOE

VIX index)4. The first part involves the joint log-likelihoods of both returns and realized measures for

Realized EGARCH/Realized GARCH, and only return likelihood for other models.

lP =

T∑
t=1

log f(rt, log xt) or =

T∑
t=1

log f(rt)

Since we have obtained the model implied VIX formula, we can construct a likelihood function

related to model’s goodness-of-fit to the market CBOE VIX index. By assume that the error between
3In Christoffersen et al. (2013), this free parameter is denote as ξ, we rename it as α2 because it takes the same job as

the free parameter we used in our Realized GARCH model.
4Although it is not a must to include VIX data in the estimation process for GARCH, EGARCH and original Heston-

Nandi GARCH model, VIX information will significantly improves those model’s fitting of VIX index. It is worth to point
out that this improvement does not necessarily mean that those model’s ability of describing the return dynamics is also
improved. In fact, such procedure will distort those models from the underling dynamics
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market VIX (V IXMarket) and model implied VIX (V IXModel) to be a normal distribution N(0, σ2
e),

the log-likelihood for VIX is given by

lV IX = −T
2
log(2π)− T log σe −

T∑
t=1

(V IXMarket
t − V IXModel

t )2

2σ2
e

The full log-likelihood function is therefore the sum of the two parts, reflecting the balance between

the model’s goodness-of-fit for both physical and risk neutral dynamics. Such joint-likelihood method is

widely used in recent option pricing literature such as Christoffersen et al. (2012), Christoffersen et al.

(2013), Hao and Zhang (2013) etc.

4.2 Data

Our empirical analysis is based on daily data for S&P 500 stock index. The full-sample starts from July

2003 to June 2013, spanning a thirteen-year period. We obtain the daily VIX index from the CBOE

website, daily return and realized kernel (RK) from the Realized Library at Oxford-Man Institute. For

out-of-sample forecast, we use a 750-day rolling window method on daily basis. The three years of

observations from July 2000 to June 2003 are used as pre-sample to get the first parameter for the

out-of-sample analysis. We also divide the full-sample into two sub-sample periods, using the beginning

of 2008 as the break-point, to check if the model performances are different before and after the financial

crisis.

4.3 Empirical Results

Throughout this section, we use the following abbreviations: REG for Realized EGARCH, RG for

Realized GARCH, EG for EGARCH, G for GARCH, HNG for Heston-Nandi GARCH and HNG-V for

Heston-Nandi GARCH with variance dependent pricing kernel.

4.3.1 Full-sample parameter estimation

In this section, we present the full-sample estimate of parameters for different models based on joint

estimation. Results are listed in Table 4.3.1.

The most notable finding in Table 4.3.1 is the different estimates of λ, the market price for equity

risk. They are all positive, which is consistent with the positive equity risk premium, but the magnitudes

are much smaller in Realized EGARCH and Realized GARCH models. Our estimates for EGARCH and

GARCH models are very close to that in Hao and Zhang (2013) and the values are much larger than the

parameters when the models are estimated with only returns data. The underlying reason is that the

positiveλ has to be inflated so much to account for the negative volatility risk premium. The estimates

for λ are even larger for the two Heston-Nandi GARCH models, although using a variance dependent

pricing kernel gives a smaller estimate. We do not see that happening in the Realized EGARCH and
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Realized GARCH models, when the volatility shocks are explicitly introduced via the measurement

equation.

The persistence parameters are close to one for all of the models, indicating a high persistent in

physical and risk neutral process of volatility. The estimates for τ1 and d1 are negative for both Realized

EGARCH, Realized GARCH and EGARCH models, suggesting a strong negative correlation between

return and volatility shocks. This finding is consistent with the so-called leverage effect, that is, a large

negative return is usually followed by an increase in volatility.

The values of the optimized log-likelihood functions measure the model’s goodness-of-fit for the

observed data, in terms of the distribution. We present the log-likelihoods for rt, V IXt, (rt, V IXt),

and (rt, V IXt, RKt). In all cases, Realized EGARCH gives the best fit, followed by Realized GARCH

and then EGARCH. The gain of Realized EGARCH over Realized GARCH models are statistically

significant, when the conventional likelihood ratio tests are applied.

4.3.2 Conmparison of actual and model implied VIX

Table 2 presents the full-sample fit of the CBOE VIX index across different models. Comparisons

are made based the goodness-of-fit between the model implied VIX and market VIX and their other

summary statistics.

Realized EGARCH model consistently provides the smallest bias, standard deviation, mean squared

error and mean absolute error, followed by Realized GARCH, with a little underestimation. EGARCH,

GARCH and HNG, with LRNVR, tend to underestimate VIX, whiling HNG-V tend to overestimate to

some extent. The correlation between model generated VIX and market VIX are highest for REG/RG

and lowest for two Heston-Nandi GARCH models. Comparing other statistical measures, Realized

EGARCH model also give close results to that of the market VIX.

Among the models without realized measures, EGARCH seems the best model and GARCH gives

the worst performance. Although HNG model is popular in option pricing practice due to the quasi-

analytical formula, it seems that there is not a large improvement in handling VIX fit.

To evaluate the model’s performance during different sample periods, we also estimate the models

for the two sub-samples divided by the start of 2008 and present their goodness-of-fit measures in Table

3. For both sub-samples, Realized EGARCH and Realized GARCH are still the best models, which

slightly estimate VIX during the first relatively calm period and slightly overestimate during the second

relatively turmoil sub-sample. On average, the goodness-of fit for all models are better during the

first calm sub-sample. HNG-V outperforms HNG in turmoil period. more substantially, indicating the

volatility dependent pricing kernel works better in a more volatile situation.
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4.3.3 Conmparison of actual and model implied variance risk premium

In this section we compare the actual and model implied and variance risk premium series. The model

implied variance risk premium at time t is defined as the difference between the model implied VIX at

time t and the annualized 22 days averaged fitted volatility. i.e.

V RPModel
t =


√√√√252

22

22∑
i=1

EQt (ht+i)−

√√√√252

22

22∑
i=1

EPt+i−1(ht+i)

× 100

Notice that the model implied variance risk premium is not a concept of forecast since it bears the

looking backward bias. The market counterpart, the actual variance risk premium is calculated with

their market counterparts. We want to investigate whether the models are able to match the observed

levels of variance risk premium throught the sample period.

V RPActualt =

V IXt −

√√√√252

22
× IF ×

22∑
i=1

RKt+i

× 100

where the inflated parameter (IF) is defined as IF = V ar(ret)/Mean(RK) which is designed to trans-

form open-to-close volatility to close-to-close volatility.

Table 1 plot the time seris of the actual and model implied variance risk premium. It is obvious that

models realized measures provide the best match. Garch and HNG give the poorest performance. Using

the variance dependent kernel seems to improve the performance of Heston-Nandi GARCH model.

4.3.4 Out-of-sample forecasting comparison

We also conduct out-of-sample rolling window forecasting comparison, to examine if the fit improvements

in the previous section are due to in-sample over-fit. We present the bias, MAE, RMSE for the three

sample periods in Table 4, and DM statistics are also reported to evaluate if the improvements are

statistically significant. In all of the three sample periods, Realized EGARCH provides the best out-

of-sample fit, whether MAE or RMSE is used as the comparison standard. During the turmoil period,

the improvement is more substantial and likely to be statistically significant. Due to possible outliers of

HNG-V, the difference is not significant at 5% level (it is significant at 10% level). Unlike the in-sample

results, Realized EGARCH tend to overestimate the VIX index during calm period and underestimate

during the more volatile sub-sample. Its average out-of-sample forecasting bias is positive.

HNG and HNG-V are not good under both sub-samples. The volatility dependent pricing kernel does

make HNG model better but not good enough. One possible reason is that the information is linearly

rather than exponentially depends on standardized shock for HNG than log-linear models REG/RG/EG.

Those results indicate that if a linear model is used, it is better to use non-standardized shocks like the

original GARCH model.
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5 Conclusion

We show that the Realized EGARCH model proposed in Hansen et al. (2012) and Hansen and Huang

(2014), under an exponentially affine stochastic discount factor, generates reasonable levels of variance

risk premium, which is not possible for other conventional GARCH-family models. We derive the

closed-form VIX pricing formula and find empirical evidence that Realized EGARCH model provides

significantly better forecasting performance for VIX index than a number of GARCH volatility models,

both in-sample and out-of-sample. To sum, Realized EGARCH shares all of the benefits below: 1)

it exploits information contained in realized measures of volatility; 2) a flexible leverage function that

accounts for return-volatility dependence; 3)whiling remaining its GARCH-like modeling framework and

estimation convenience, the model allows independent return and volatility shock and this dual shock

nature leaves a room for variance risk premium. 4) combined with a popular pricing kernel, the model

generates analytical pricing form of CBOE VIX index, that is, the expected average integrated variance

under the risk neutral measure.
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Table 1: Parameter estimation with full sample

Model REG RG EG G HNG HNGV

λ 0.029 0.031 0.232 0.334 9.125 2.356
(0.011) (0.021) (0.024) (0.019) (0.834) (1.469)

ω -0.067 -0.098 -0.001 1.68× 10−6 −2.09×10−6 −1.39×10−6

(0.011) (0.048) (0.004) (1.25×10−7) (2.70×10−7) (5.92×10−8)

β 0.993 0.871 0.990 0.944 0.906 0.943
(0.001) (0.058) (4.52×10−4) (0.004) (0.006) (0.002)

α 0.049 4.37× 10−6 1.96× 10−6

(0.004) (3.94×10−7) (1.67×10−8)

δ 134.154 159.143
(9.065) (4.220)

τ1 -0.066 -0.071
(0.004) (0.003)

τ2 0.011 0.088
(0.002) (0.005)

γ 0.064 0.114
(0.006) (0.053)

ξ 0.388 0.193
(0.272) (0.354)

φ 1.080 1.060
(0.029) (0.039)

d1 -0.085 -0.075
(0.010) (0.014)

d2 0.120 0.125
(0.011) (0.013)

σ2
u 0.263 0.279

(0.010) (0.025)
α2 1.405 0.430 1.221

(0.163) (0.194) (0.036)
πP 0.993 0.992 0.990 0.994 0.984 0.993
l(rt) 8232.57 8218.32 8126.90 7994.82 8074.33 8127.13

l(V IXt) -5905.39 -6168.79 -6335.45 -6480.41 -6894.29 -6930.90
l(rt, V IXt) 2327.18 2049.53 1791.45 1514.41 1180.05 1196.23

l(rt, V IXt, log xt) 2327.18 2049.53

Note: Robust standard errors are in parenthesis. The α2 reported for HNG-V is the value of (1− 2αα2)−1 and
the implied value of α2 is 92305.598. The persistence parameter πP is measured by β + φγ for Realized
GARCH and β for other models.
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Table 2: Summary statistic comparison between model generated VIX and market VIX

Model Bias STD MAE RMSE λ πP Corr

REG 0.004 2.557 2.016 2.556 0.029 0.993 0.966
RG 0.015 2.840 2.123 2.840 0.031 0.992 0.957
EG -0.195 3.029 2.340 3.035 0.232 0.990 0.951
G -0.346 3.198 2.473 3.216 0.334 0.994 0.946

HNG -0.069 3.794 2.562 3.793 9.125 0.984 0.926
HNG-V 0.192 3.845 2.580 3.849 2.356 0.993 0.930

Model AR1 AR10 AR30 Mean Var Skew Kurt

REG 0.996 0.926 0.735 20.385 90.030 2.516 10.935
RG 0.997 0.918 0.731 20.397 88.051 2.573 11.372
EG 0.994 0.941 0.779 20.186 87.889 2.377 9.948
G 0.997 0.953 0.789 20.035 89.695 3.041 13.708

HNG 0.994 0.943 0.818 20.312 69.375 1.635 5.595
HNG-V 0.995 0.951 0.831 20.573 61.112 1.674 5.717
VIX 0.982 0.918 0.775 20.381 96.705 2.996 10.074

Note: πP is the persistence parameter under P-measure: REG/EG(β), G(β+α), HNG(β+αδ2), HNG-V(β+αδ).
For VIX index, it is the slope coefficient when an AR(1) model is applied to the time series.

Table 3: Full-sample fit of different models

REG RG EG G HNG HNG-V

Full-sample: 2003/7-2013/6
Bias 0.004 0.015 -0.195 -0.332 -0.219 0.327

RMSE 2.556 2.840 3.035 3.218 3.801 3.838
MAE 2.016 2.123 2.340 2.477 2.552 2.590

Sub-sample: 2003/7-2007/12
Bias 0.004 0.005 -0.065 -0.115 -0.301 0.101

RMSE 1.563 1.739 1.766 1.833 1.933 1.877
MAE 1.224 1.344 1.390 1.435 1.297 1.319

Sub-sample: 2008/1-2013/6
Bias -0.052 -0.043 -0.255 -0.269 -3.327 0.295

RMSE 2.737 3.230 3.438 3.509 6.271 4.003
MAE 2.140 2.341 2.741 2.681 4.704 2.804

Note: Bias is defined as model implied VIX minus Market VIX.
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Table 4: Bias, MAE, RMSE and Diebold-Mariano statistic for VIX forecast

Model Bias RMSE DM Stat. p-value MAE DM stat. p-value

Full-sample: 2003/7-2013/6
REG 0.159 2.872 - - 2.148 - -
RG 0.521 3.159 2.548 0.005 2.361 2.663 0.004
EG -0.348 3.449 4.736 0.000 2.590 4.677 0.000
G 0.226 3.360 4.312 0.000 2.497 3.906 0.000

HNG -0.278 4.433 2.117 0.017 2.916 3.501 0.000
HNG-V 0.338 4.075 1.563 0.059 2.703 2.587 0.005

Sub-sample: 2003/7-2007/12
REG 0.482 1.941 - - 1.521 - -
RG 1.082 2.380 4.340 0.000 1.955 4.408 0.000
EG -0.428 2.164 1.827 0.034 1.637 1.131 0.129
G 0.637 2.072 1.647 0.050 1.647 1.490 0.068

HNG 0.167 2.428 2.427 0.008 1.809 2.494 0.006
HNG-V 0.349 2.390 2.094 0.018 1.809 2.443 0.007

Sub-sample: 2008/1-2013/6
REG -0.106 3.455 - - 2.662 - -
RG 0.060 3.678 1.422 0.078 2.695 0.301 0.382
EG -0.282 4.221 5.113 0.000 3.373 5.713 0.000
G -0.112 4.128 4.418 0.000 3.196 3.924 0.000

HNG -0.642 5.563 2.095 0.018 3.826 3.288 0.001
HNG-V 0.329 5.056 1.495 0.068 3.437 2.187 0.014

Note: Bias is defined as model implied VIX minus Market VIX; DM statistic is calculated with Newey-
West standard errors. The p-value is for H0: REG is as good as the model in the corresponding row
against Ha: REG is better than the model in the corresponding row.
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