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Abstract

The average investor in the variance swap market is indifferent to news about future

variance at horizons ranging from 1 month to 14 years. It is only purely transitory

and unexpected realized variance that is priced. These results present a challenge

to most structural models of the variance risk premium, such as the intertemporal

CAPM, recent models with Epstein—Zin preferences and long-run risks, and models

where institutional investors have value-at-risk constraints. The results also have strong

implications for macro models where volatility affects investment decisions, suggesting

that investors are not willing to pay to hedge shocks in expected economic uncertainty.
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1 Introduction

The recent explosion of research on the effects of volatility in macroeconomics and finance

shows that economists care about macroeconomic volatility. Investors, on the other hand,

do not. We show in this paper that it is costless on average to hedge news about future

volatility in aggregate stock returns; in other words investors are not willing to pay for

insurance against volatility news. In recent macroeconomic models, uncertainty about the

future, or expectations of high future volatility, can induce large fluctuations in the economy.

But if increases in economic uncertainty can drive the economy into a recession, as in, e.g.,

Bloom (2009) and Gourio (2012, 2013), we would expect that investors would want to hedge

those shocks. The fact that volatility shocks are unpriced thus presents a challenge to the

recent macro literature on the effects of volatility shocks.

As a concrete example, consider the legislative battles over the borrowing limit of the

United States in the summers of 2010 and 2011. Those periods were associated with increases

in both financial measures of uncertainty, e.g. the VIX, and also the measure of policy

uncertainty from Bloom, Baker, and Davis (2014)?. Between June and July, 2011, the 1-
month variance swap rate —a measure of investor expectations for S&P 500 volatility over the

next month —rose from 16.26 to 25.96 percent (annualized). However, those shocks also had

small effects on realized volatility in financial markets: annualized realized volatility in June

and July, 2011, was 14.59 and 15.23 percent, respectively. The debt ceiling debate caused

uncertainty about the future to be high, but did not correspond to high contemporaneous

volatility.1 [what is the timing of the numbers here and in the footnote? When is
the vix and rv calculated?]
Those facts make the debt-ceiling shocks the exact type of shock that is studied in

the recent literature. It is precisely changes in expectations of future uncertainty that can

have strong macroeconomic effects, because they affect all forward-looking decisions. In

this paper, we directly measure how much people are willing to pay to hedge shocks to

expectations of future volatility. We find that those news shocks are unpriced: any investor

1The table below reports realized volatility and the 1-month variance swap rate (nearly identical to the
VIX) for June to October of 2011:

June July Aug. Sept. Oct.
1-month variance swap 16.26 25.96 31.68 42.32 28.53
Realized volatility 14.59 15.23 47.18 28.80 29.80

Except for August, when both the variance swap rate and realized volatility rose in tandem, for all other
months the changes in the two series are essentially unrelated.
Some of the volatility in the fall of 2011 was also due to uncertainty about the state of the European

economy.
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can buy insurance against volatility shocks for free, and therefore any investor could have

freely hedged the increases in uncertainty during the debt ceiling debate.

[Could we come up with a way to replicate or price shocks to the BBD index?
For example, what if we projected innovations in the index (e.g. relative to an
AR) onto innovations in the VS market? We could then look at the pricing and
the implied risk premium. The R2 would also be interesting. This would help
give us policy relevance and connect us to the macro literature more. On the
other hand, maybe this should be reserved for another paper...]
We measure the price of variance risk using novel data on a wide range of volatility-

linked assets both in the US and around the world, focusing primarily on variance swaps

with maturities between 1 month and 14 years. Variance swaps are assets that pay to their

owner the sum of daily squared stock market returns from their inception to maturity. They

thus give direct exposure to future stock market volatility and are the most natural and

direct hedge for the risks associated with increases in aggregate economic uncertainty.

The analysis of the pricing of variance swaps yields two simple but important results.

First, news about future volatility is unpriced —exposure to volatility news does not earn a

risk premium. Second, exposure to realized variance is strongly priced, with an annualized

Sharpe ratio of -1.7 —five times larger than the Sharpe ratio on equities.2 Since Bollerslev

and Todorov (2011)? show that realized variance is priced due to its correlation with large
negative jumps, we conclude that investors are willing to pay a large amount of money for

protection from extreme negative shocks to the economy (which mechanically generate spikes

in realized volatility), but they will not pay to hedge news that uncertainty or the probability

of a disaster has changed.

The results present a challenge to a wide range of models. In macroeconomics, there is

now a large literature following Bloom (2009) (who also studies the variance of aggregate

stock returns) arguing that shocks to uncertainty can have important effects on the aggregate

economy. If increases in future uncertainty have suffi ciently important effects on the economy

that they affect investor utility, though, we would expect them to carry a risk premium. The

fact that they do not implies that volatility shocks are not a major driver of welfare.

From a finance perspective, Merton’s (1973?) intertemporal capital asset pricing model
says that assets that have high returns in periods with good news about future investment

opportunities are viewed as hedges and thus earn low average returns. Since expected future

volatility is a natural state variable for the investment opportunity set, the covariance of an

asset’s returns with shocks to future volatility should affect its expected return, but it does

2The Sharpe ratio is equal to the average excess return divided by the standard deviation. It thus gives
a scale-free measure of the risk premium on an asset.
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not.3

Consumption-based models with Epstein—Zin (1991)? preferences have similar predic-

tions. Under Epstein—Zin preferences, marginal utility depends on lifetime utility, so that

assets that covary positively with innovations to lifetime utility earn high average returns

because they have low payouts in bad states of the world.4 If high expected volatility is

bad for lifetime utility (either because volatility affects the path of consumption or because

volatility reduces utility simply due to risk aversion), then volatility news should be priced.5

As a specific parameterized example with Epstein—Zin preferences, we study variance

swap prices in Drechsler and Yaron’s (2011) calibrated long-run risk model. Drechsler and

Yaron (2011) is a key benchmark because it is a quantitative model that can match a wide

range of features of the dynamics of consumption growth, stock returns, and volatility. While

the model represents a major innovation in being able to both generate a large variance risk

premium (the risk premium of short-term realized volatility shocks) and match results about

the predictability of market returns, we find that its implications for the term structure of

variance swap prices and returns are strongly at odds with the data: as one would expect, it

predicts that shocks to future expected volatility should be strongly priced, counter to what

we observe empirically.

We obtain similar results in Wachter’s (2013)? model of time-varying disaster risk with
Epstein—Zin preferences: the combination of predictability in the long-run probability of

disaster and Epstein—Zin preferences results in a counterfactually high price for insurance

against shocks to expected future volatility relative to current volatility. In both Wachter

(2013) and Drechsler and Yaron (2011), Sharpe ratios earned by claims on future variance

from 3 months to 14 years ahead are similar to those earned by claims to realized variance

over the next month, whereas in the data the Sharpe ratios are all near zero (or positive)

for claims to variance more than two months in the future. So both models fail to match

our key stylized fact that only very short-term variance claims earn large negative Sharpe

ratios.6

3Recently, Campbell et al. (2014)? and Bansal et al. (2013)? estimate an ICAPM model with stochastic
volatility and find that shocks to expected volatility (and especially long-run volatility) are priced in the
cross-section of returns of equities and other asset classes. Although the focus on their paper is not the
variance swap market, Campbell et al. (2014) test their specification of the ICAPM model also on straddle
returns and synthetic volatility claims, and find that the model manages to explain only part of the returns
on these securities. This suggests that the model is missing some high-frequency features of the volatility
market.

4This is true in the most common calibrations with a preference for early resolution of uncertainty. When
investors prefer a late resolution of uncertainty the risk prices are reversed.

5Also see Branger and Völkert (2010?) and Zhou and Zhu (2012?) for discussions. Barras and Malkhozov
(2014)? study the determinants of changes in the variance risk premium over time.

6Similar problems with matching term structures of Sharpe ratios in structural models have been studied
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More positively, we show that Gabaix’s (2012)? model of rare disasters can match the
stylized fact that Sharpe ratios on variance claims fall to zero rapidly with maturity. In

his model, the probability of a disaster is constant, but the exposure of the stock market —

its expected decline if a disaster occurs —varies over time. The realization of a disaster is

inevitably a state with high realized volatility (since if returns are highly negative, squared

daily returns will mechanically be high), so variance swaps provide a direct hedge against

the occurrence of a disaster, meaning they earn a large negative Sharpe ratio. But since

changes in the exposure of the stock market to consumption disasters, which drive expected

future return variance, are uncorrelated with the current level of consumption, they are not

priced shocks. The model is thus able to simultaneously generate a large negative premium

on realized stock return variance and zero premium on news about future variance, just like

in the data.7 That said, Gabaix’s (2012) model is not a complete quantitative description

of financial markets; we simply view it as giving a set of suffi cient conditions a model must

satisfy to match the behavior of the variance swaps.

Our work is related to three main strands of the literature. First, there is the recent

work in macroeconomics on the consequences of shocks to volatility, such as Bloom (2009)?,
Bloom et al. (2014), Christiano, Motto, and Rostagno (2014)?, Fernandez-Villaverde et al.
(2011)?, and Gourio (2012, 2013)??. We argue that if shocks to volatility are important to
the macroeconomy, then investors should be willing to pay to hedge them. The lack of a risk

premium on volatility news thus argues against theories in which aggregate volatility news

is a major driver of business cycles.

Second, we build on the consumption-based asset pricing literature that has recently

focused on the pricing of volatility, including Bansal and Yaron (2004), Drechsler and Yaron

(2011), Wachter (2013), Campbell et al. (2014)?, and Bansal et al. (2013)?. We argue that
consumption-based models with Epstein—Zin preferences are unlikely to explain the pricing

of volatility claims.

Finally, there is a large extant literature studying the pricing of volatility in financial

markets.8 Most closely related to us is a small number of recent papers with data on variance

in the context of claims to aggregate market dividends by van Binsbergen, Brandt, and Koijen (2012)?. Our
results thus support and complement theirs in a novel context. Our paper also relates to a large literature
that looks at derivative markets to learn about general equilibrium asset pricing models, for example Backus,
Chernov and Martin (2011)? and Martin (2013, 2014)??.

7An alternative possibility is that the variance market is segmented from other markets, as in, e.g.,
Gabaix, Krishnamurthy, and Vigneron (2007)?. In that case, the pricing of risks might not be integrated
between the variance market and other markets. We show, however, that our results hold not only with
variance swaps, but also in VIX futures and in the options market, which is large, liquid, and integrated
with equity markets, making it less likely that our results are idiosyncratic.

8A number of papers study the pricing of volatility in options markets, e.g. Jackwerth and Rubinstein
(1996)?, Coval and Shumway (2001)?, Bakshi and Kapadia (2003)?, Broadie, Chernov and Johannes (2009)?,
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swaps with maturities from two to 24 months, including Egloff, Leippold, and Wu (2010) and

Aït-Sahalia, Karaman, and Mancini (2014)?, who study no-arbitrage term structure models.
The pricing models we estimate are less technically sophisticated than that of Aït-Sahalia,

Karaman, and Mancini (2014), but we complement and advance their work in three ways.

First, we examine a vast and novel range of data sources. For S&P 500 variance swaps, our

panel includes data at both shorter and longer maturities than in previous studies —from one

month to 14 years. The one-month maturity is important for giving a claim to shorter-term

realized variance, which is what we find is actually priced. Having data at very long horizons

is important for testing models, like Epstein—Zin preferences, in which expectations at very

long horizons are the main drivers of asset prices. In addition, we are the first to examine

the term structure of variance swaps for major international indexes, as well as for the term

structure of the VIX obtained from options on those indexes. We are thus able to confirm

that our results hold across a far wider range of markets, maturities, and time periods than

previously studied.

Our second contribution to the previous term structure literature is that rather than

working exclusively within the context of a particular no-arbitrage pricing model for the term

structure of variance claims, we derive from the data more general and model-independent

facts about pricing in this market. Our pricing results can be directly compared against the

pricing implications of different structural economic models, which would be more diffi cult if

the pricing results were only derived within a specific no-arbitrage framework. Our key result,

that purely transitory realized variance is priced while innovations to expectations are not,

can be obtained from a simple reduced-form analysis and in data both for the United States

and other countries. Nevertheless, we also confirm our results in a more formal no-arbitrage

setting, whose main advantage is to yield much more precise estimates of risk prices.

Our third and most important contribution is to explore the ability of variance swaps

to test structural economic models. Our theoretical analysis leads us to the conclusion that

the empirical facts in the variance swap market are most consistent with a model in which

variance swaps are used to hedge the realization of market crashes and in which variation in

expected future stock market volatility is not priced by investors, counter to the predictions

of most standard asset pricing and macroeconomic models.

The remainder of the paper is organized as follows. Section 2 describes the novel datasets

Christofferson, Jacobs, Ornthanalai, and Wang (2008)?, and Kelly, Pastor, and Veronesi (2014)?. Lu and
Zhu (2010)? and Mencia and Sentana (2013)? study VIX futures markets, while Bakshi, Panayotov, and
Skoulakis (2011)? show how to construct forward claims on variance with portfolios of options. In the
Treasury bond market, Cieslak and Povala (2014)? find, similar to us, that short-run volatility is more
strongly priced than long-run volatility. See also Amengual and Xiu (2014)? for an important recent study
of jumps in volatility.
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we obtain for variance swap prices. Section 3 reports unconditional means for variance

swap prices and returns, which demonstrate our results in their simplest form. Section 4

analyzes the cross-sectional and time-series behavior of variance swap prices and returns

more formally in standard asset pricing frameworks. In section 5, we discuss what structural

general-equilibrium models can fit the data. We calibrate three leading models from the

literature, comparing them to our data, showing that only one matches the key stylized

facts. Section 6 concludes.

2 The data

This section discusses various ways that an investor can obtain exposure to volatility. They

are all obviously closely related. We have data on each of the major markets, both in the

US and internationally.

2.1 Variance swaps

We focus primarily on variance swaps. Variance swaps are contracts in which one party pays

a fixed amount at maturity, which we refer to as price of the variance swap, in exchange for

a payment equal to the sum of squared daily log returns of the underlying occurring until

maturity. In this paper, the underlying is the S&P 500 index unless otherwise specified. The

payment at expiration of a variance swap initiated at time τ and with maturity m is

Payoffmτ =
τ+m∑
j=τ+1

r2
j − V Smτ (1)

where time here is indicated in days, rj is the log return on the underlying on date j, and

V Smτ is the price on date τ of an m-day variance swap. We focus on variance swaps because

they give pure exposure to variance, their payoffs are transparent and easy to understand,

they have a relatively long time-series, and they are relatively liquid.

Our main analysis focuses on two proprietary datasets of quoted prices for S&P 500

variance swaps.9 Dataset 1 contains monthly variance swap prices for contracts expiring in

1, 2, 3, 6, 12, and 24 months, and includes data from December, 1995, to October, 2013.

Dataset 2 contains data on variance swaps with expirations that are fixed in calendar time,

9Both datasets were obtained from industry sources. Dataset 2 is obtained from Markit Totem, and
reports averages of quotes obtained from dealers in the variance swap market. Since the prices we observe
are a composite of quotes from many different dealers (on average 11), the quality of this dataset is very
high, and comparable to that of the widely used CDS dataset from Markit.
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instead of fixed maturities. Common maturities are clustered around 1, 3, and 6 months,

and 1, 2, 3, 5, 10, and 14 years. Dataset 2 contains prices of contracts maturities up to five

years starting in September, 2006, and up to 14 years starting in August, 2007, and runs

up to February, 2014. We apply spline interpolation to each dataset to obtain the prices of

variance swaps with standardized maturities covering all months between 1 and 12 months

for Dataset 1 and between 1 and 120 months for Dataset 2 (though in the no-arbitrage model

below we use the original price data without interpolation).10

Both variance swap datasets are novel to the literature. Variance swap data with ma-

turities up to 24 months as in Dataset 1 has been used before (Egloff, Leippold, and Wu,

2010?, Ait-Sahalia, Karaman, and Mancini, 2014?, and Amengual and Xiu, 2014?), but the
shortest maturity previous studies observed was two months. We show that the one-month

variance swap is special in this market because it is the exclusive claim to next month’s

realized variance, which is the only risk priced in this market. Observing the one-month

variance swap is critical for precisely measuring the price of realized-variance risk.

This is also the first paper to observe and use variance swap data with maturity longer

than two years. Since Epstein—Zin preferences imply that it is the very low-frequency com-

ponents of volatility that should be priced (Branger and Volkert, ?2010; Dew-Becker and
Giglio, 2014?), having claims with very long maturities is important for effectively testing
the central predictions of Epstein—Zin preferences.

The variance swap market is large: the notional value of outstanding variance swaps at

the end of 2013 was $4 billion of vega.11 This means that an increase in annualized realized

volatility of one percentage point induces total payments of $4 billion. This market is thus

small relative to the aggregate stock market, but it is non-trivial economically. Current

bid/ask spreads in the variance swap market average 1 to 3 percent, depending on maturity

and trade size.

Table ?? shows the total volume (in notional vega) for all transactions between March
2013 and June 2014. In little more than a year, the variance swap market saw $7.2 billion of

notional vega traded. Only 11 percent of the volume was traded in short maturity contracts

(1-3 months); the bulk of the transactions occurred for maturities between 6 months and 5

years, and the median maturity was 12 months.

To check the accuracy of the quoted prices that we obtained, we compare them to those

10For the times and maturities for which we have both datasets, the prices are effectively identical: the
correlations between the two datasets are never below 0.996. We will also show below that the prices are well
explained by only two principal components, suggesting that interpolation should accurately recover prices.
11See the Commodity Futures Trading Commission’s (CFTC) weekly swap report. The values reported

by the CFTC are consistent with data obtained from the Depository Trust & Clearing Corporation that we
discuss below.
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reported for actual trades by Depository Trust & Clearing Corporation (DTCC), which has

collected data on all trades of variance swaps in the US since 2013.12 Appendix Figure ??
shows the distribution of the percentage difference between our quotes and the transaction

prices for different maturity baskets. Quotes and transaction prices are in most cases very

close, with the median absolute percentage difference across all maturities approximately 1

percent.13

[What is the median absolute difference? I don’t think the number above is
right. What is the standard deviation of the errors across all the claims?]
In addition to the prices of S&P 500 variance swaps, we also obtained prices for variance

swaps in 2013 and 2014 for the FTSE 100 (UK), Euro Stoxx 50 (Europe), and DAX (Ger-

many) indexes. This is the first paper to examine volatility claims in international markets

and we show that our main results are consistent globally.

2.2 Options

The VIX index is constructed using all available out-of-the money options and, if the under-

lying follows a diffusion, measures the risk-neutral expectation of variance integrated over

the life of the options (Carr and Wu (2009)?). The VIX is usually reported for a 30-day

maturity, but the formulas are valid at any horizon.

While the VIX has the drawback that it requires extra assumptions in order to represent

a claim on volatility (i.e. no jumps) it has the advantage that it is calculated based on

an extraordinarily deep market. Options are traded in numerous venues, have notional

values outstanding of trillions of dollars, and have been thoroughly studied.14 Since options

are exchane-traded, they involve no counterparty risk, so we can use them to whether our

results for variance swaps are affected by counterparty risk.

We construct VIX-type portfolios for the S&P 500, FTSE 100, Euro Stoxx 50, DAX, and

12DTCC was the only swap data repository registered under the Dodd—Frank act to collect data on variance
swaps in 2013. The Dodd—Frank act requires that all swaps be reported to a registered data repository.
13Since variance swaps are traded over the counter, it is possible that counterparty risk could influence

their prices. Given that variance swaps are standardized contracts covered by the ISDA Master Agreement,
their margining follows standard procedures: an initial margin is posted by both parties, and variational
margin is exchanged regularly depending on the value of the position. The residual counterparty risk in these
contracts depends on the possibility of jumps in the value of the contracts between exchanges of collateral,
and is therefore only a material issue when returns have high skewness and kurtosis at short horizons.
As we will discuss later, only short-term variance swaps have payoffs that are far from Gaussian, and are
therefore exposed to counterparty risk, and we argue below that for these contracts counterparty risk would
push against the results we observe. We conclude that if counterparty risk was indeed priced by market
participants, accounting for it would in fact make our results stronger.
14Even in 1990, Vijh (1990)? noted that the CBOE was highly liquid and displayed little evidence of price

impact for large trades.
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CAC 40 indexes using data from Optionmetrics. We confirm our main results by showing

that term structures and returns obtained from investments in options are similar to those

obtained from variance swaps.15

2.3 VIX futures

Futures have been traded on the VIX since 2004. The VIX futures market is significantly

smaller than the variance swap market, with current outstanding notional vega of roughly

$500 million.16 Bid/ask spreads are smaller than what we observe in the variance swap

market, at roughly 0.1 percent, but as the market is smaller, we would expect price impact

to be larger (and market participants claim that it is). We collected data on VIX futures

prices from Bloomberg since their inception and show below that they yield nearly identical

results to variance swaps.

More recently, a market has developed in exchange-traded notes and funds available to

retail investors that are linked to VIX futures prices. These funds currently have an aggregate

notional exposure to the VIX of roughly $5 billion, making them comparable in size to the

variance swap market.

3 The term structure of variance claims

In this section we study average prices and returns of variance swaps. The key result that

emerges is that only very short-duration variance claims earn a risk premium.

3.1 Variance Swap Prices

The shortest maturity variance swap we consistently observe has a maturity of one month,

so we treat a month as the fundamental period of observation. We define RVt to be realized

variance (
∑
r2
j ) during month t. The subscript from here forward always indexes months,

rather than days

Given a risk-neutral (pricing) measure Q, the price of an n-month variance swap at the

15Recently, Boguth et al. (2012a, b)?? argue that returns measured on options portfolios can be sub-
stantially biased by noise, one potential source of which is the bid/ask spread. The majority of our results
pertain directly to prices of volatility claims, as opposed to their returns, meaning that the issues noted by
Boguth et al. are unlikely to affect our analysis. Furthermore, when we analyze returns, the portfolios are
not levered to the degree that Boguth et al. argue causes biases in results.
16According to the CBOE futures exchange market statistics. See:

http://cfe.cboe.com/Data/HistoricalData.aspx
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end of month t, V Snt , is

V Snt = EQ
t

[
n∑
j=1

RVt+j

]
(2)

where EQ
t denotes the mathematical expectation under the risk-neutral measure conditional

on information available at the end of month t.17

Since an n-month variance swap is a claim to the sum of realized variance over months

t + 1 to t + n, it is straightforward to compute prices of zero-coupon claims on realized

variance. Specifically, we define an n-month zero-coupon variance claim as an asset with a

payoff equal to realized volatility in month t+ n. The absence of arbitrage implies

Zn
t ≡ EQ

t [RVt+n] (3)

= V Snt − V Sn−1
t (4)

Zn
t represents the market’s risk-neutral expectation of realized variance n months in the

future. We use the natural convention that

Z0
t = RVt (5)

so that Z0
t is the variance realized during the current month t. A one-month zero-coupon

variance claim is exactly equivalent to a one-month variance swap, Z1
t = V S1

t .

Figure ?? plots the time series of zero-coupon variance claim prices for maturities between
one month and ten years. The figure shows all series in annualized percentage volatility units,

rather than variance units: 100×
√

12× Zn
t instead of Z

n
t . It also plots annualized realized

volatility, 100 ×
√

12× Z0
t , in each panel. The top panel plots zero-coupon variance claim

prices for maturities below one year, while the bottom panel focuses on maturities longer

than one year.

The term structure of variance claim prices is usually weakly upward sloping. In times of

distress, though, such as during the financial crisis of 2008, the short end of the curve spikes,

temporarily inverting the term structure. Volatility obviously was not going to continue at

crisis levels, so markets priced variance swaps with the expectation that it would fall in the

future.
17In the absence of arbitrage, there exists a probability measure Q such that the price of an asset with

payoffXt+1 is 1
Rf,t+1

EQt [Xt+1], where Rf,t+1 is the risk-free interest rate. Under power utility, for example,

we have EQt [Xt+1] = EP
[

(Ct+1/Ct)
−ρ

EPt [(Ct+1/Ct)−ρ]
Xt+1

]
, where ρ is the coeffi cient of relative risk aversion, C is

consumption, and P is the physical probability measure. The price of a variance swap does not involve the
interest rate because money only changes hands at the maturity of the contract.
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Figure ?? reports the average term structure of zero-coupon variance claims for two

different subperiods —2008—2014, a relatively short sample for which we have data for longer

maturities, is in the top panel, while the full sample, 1996—2013, is in the bottom panel. The

term structure of zero-coupon variance claim prices is upward sloping on average, but the

figure also shows that it is concave, flattening out very quickly as the maturity increases.

The average zero-coupon term structures in Figure ?? provide the first indication that
the compensation for bearing risk associated with news about future volatility is small in

this market. The return on holding a zero-coupon variance claim for a single month is
Zn−1t+1 −Znt

Znt
. The average return is therefore closely related to the slope of the variance term

structure. If the variance term structure is upward sloping then zero-coupon claims will

have negative average returns, implying that it is costly to buy insurance against increases

in future expected volatility. The fact that it is steep at short horizons and flat at long

horizons is a simple way to see that it is only the claims to variance in the very near future

that earn significant negative returns.

3.2 Returns on zero-coupon variance claims

We now study the monthly returns on zero-coupon variance claims. The return on an n-

month claim corresponds to a strategy that buys the n-month claim and sells it one month

later as an (n− 1)-month claim, reinvesting then again in new n-month zero-coupon variance

claims. We define the excess return of an n-period variance claim following Gorton, Hayashi,

and Rouwenhorst (2013)?18

Rn
t+1 =

Zn−1
t+1 − Zn

t

Zn
t

(6)

Given the definition that Z0
t = RVt, the return on a one-month claim, R1

t+1 is simply the

percentage return on a one-month variance swap. We focus here on the returns for maturities

of one to 12 months, for which we have data since 1995. All the results extend to higher

maturities in the shorter sample.

Table ?? reports descriptive statistics for our panel of monthly returns. Only the average
returns for the first and the second zero-coupon claims are negative, while all the others are

zero or slightly positive. Return volatilities are also much higher at short maturities, though

the long end still displays significant variability —returns on the 12-month zero-coupon claim

18Note that Zn−1
t+1 −Znt is also an excess return on a portfolio since no money changes hands at the inception

of a variance swap contract. Following Gorton, Hayashi, and Rouwenhorst (2013), we scale the return by
the price of the variance claim bought. This is the natural scaling if the amount of risk scales proportionally
with the price, as in Cox, Ingersoll, and Ross (1985)?. We have reproduced all of our analysis using the
unscaled excess return Zn−1

t+1 − Znt as well and confirmed that all the results hold in that case.
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have an annual standard deviation of 17 percent, which indicates that markets’expectations

of 12-month volatility fluctuates significantly over time.

Finally, note that only very short-term returns have high skewness and kurtosis. A buyer

of short-term variance swaps is therefore potentially exposed to counterparty risk if realized

variance spikes and the counterparty defaults. This should induce her to pay less for the

insurance, i.e. we should expect the average return to be less negative. Therefore, the

presence of counterparty risk on the short end of the term structure would bias our estimate

towards not finding the large negative expected returns that we instead find. On the other

hand, returns on longer-maturity zero-coupon claims have much lower skewness and kurtosis,

which indicates that counterparty risk is substantially less relevant for longer maturities.

Given the different volatilities of the returns at different ends of the term structure,

it is perhaps more informative to examine Sharpe ratios (average excess returns scaled by

standard deviations), which measure compensation earned per unit of risk. Figure ?? shows
the annual Sharpe ratios of the 12 zero-coupon claims. The Sharpe ratios are negative for

the one- and two-month claims (at -1.4 and -0.5, respectively), but all other Sharpe ratios

are insignificantly different from zero.

The results at the short end of the curve indicate that investors are willing to pay a

large premium to hedge realized volatility. What is new and surprising in this picture is

the fact that agents are not willing to pay to hedge any innovations in expected volatility,

even two or three months ahead. A claim to volatility at a horizon beyond one month is

purely exposed to news about future volatility: its return corresponds exactly to the change

in expectations about volatility at its maturity. Pure news about future expected volatility

will therefore affect its return, whereas purely transitory shocks to volatility that disappear

before its maturity will not affect it at all. Our results therefore show that news about future

volatility commands a small to zero risk premium.19

3.3 Evidence from other markets

The results for variance swaps can also be confirmed in the options market. We exploit the

well-known fact that if the S&P 500 follows a diffusion, a variance swap can be replicated

by a portfolio of options with the same maturity.20 The term structure of synthetic zero-

19The declining term structure of Sharpe ratios on short positions in volatility is consistent with the
finding of van Binsbergen, Brandt, and Koijen (2012?) that Sharpe ratios on claims to dividends decline
with maturity, and that of Duffee (2011)? that Sharpe ratios on Treasury bonds decline with maturity.
20The most famous use of that result is in the construction of the VIX index, which uses 1-month options,

and corresponds to the price of a 1-month variance swap. If returns are not a diffusion, the corresponding
portfolio of options will not perfectly replicate the payoff of the variance swap. While the difference in
prices of variance swaps and option-based synthetic contracts is economically informative, its magnitude is
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coupon variance claim prices constructed from options should then align well with the term

structure of actual variance swap prices. The appendix reports details of the construction of

the synthetic variance swap prices.

Figure ?? shows the term structure and Sharpe ratios of zero-coupon variance claims

obtained from the variance swap data compared to the synthetic claims for maturities up

to 1 year. While the curves obtained using options data seem noisier, they curves deliver

the same message: the volatility term structure is extremely steep at the very short end but

quickly flattens out for maturities above two months, and Sharpe ratios rapidly approach

zero as the maturity passes two months.21 Appendix Figure ?? shows that we obtain similar
results with VIX futures.

Figure ?? shows that our results also extend to international markets. Figure ?? plots
average term structures obtained from both variance swaps and synthetic option-based vari-

ance claims for the Euro Stoxx 50, FTSE 100, CAC 40 and DAX indexes.22 To ease the

comparison across markets, in this figure we plot the term structures relative to the prices

of the respective 2-month claims, so that all the curves are equal to 1 at the two-month

maturity.

Both panels of the figure show that the international term structures have an average

shape that closely resembles the one observed for the US (the solid line in both panels),

demonstrating that our results using US variance swaps extend to the international mar-

kets.23

4 Asset pricing

We now formally examine the pricing of risks in the variance market.

4.1 Reduced-form estimates

We begin by exhibiting our main pricing result in a simple reduced-form setting: investors

pay to hedge the immediate realized volatility but not shocks to expected volatility. To test

far smaller than the differences in prices of zero-coupon volatility claims across maturities (Bollerslev and
Todorov (2011)? and Ait-Sahalia et al. (2014)).
21Given the high liquidity of the options market, we might have expected option-based oprtfolios to be

less noisy. However, the synthetic variance portfolios load heavily on options very far out of the money
where liquidity is relatively low. This demonstrates another advantage of studying variance swaps instead
of options.
22We do not plot Sharpe ratios for these markets because the data is of relatively poor quality, and the

series of returns are very noisy.
23In the appendix (Figure ??) we also confirm that for the indexes for which we have both variance swap

prices and synthetic prices obtained from options, the two curves align well.
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that claim, we need to disentangle shocks to realized variance from shocks to expectations

of future volatility. This subsection focuses just on the returns of the variance claims with

maturity of 12 months or less since they require less interpolation; all the economically

interesting results are clearly visible in this maturity range.

4.1.1 Extracting innovations

As usual in the term structure literature, we begin by extracting principal components from

the term structure of zero-coupon variance claims. The first factor explains 97.1 percent

of the variation in the term structure and the second explains an additional 2.7 percent.

The loadings of the variance swaps on the factors are plotted in the top panel of Figure ??,
while the time series of the factors are shown in the bottom panel of the figure. The first

factor captures the level of the term structure, while the second measures the slope. As we

would expect, during times of crisis, the slope turns negative. The level factor captures the

longer-term trend in volatility and clearly reverts to its mean more slowly.

The two factors explain 99.9 percent of the variation in variance swap prices and thus

encode essentially all the information contained in variance swap prices. So if we find that

the shocks to both factors are unpriced, then that means that no forward-looking information

in the term structure, whether it is driven by expectations for volatility or risk premia, is

priced.

To extract shocks to variance and expectations, we estimate a first-order vector autore-

gression (VAR) with the two principal components and realized variance (RV ). Including

RV in the VAR allows us to separately identify shocks to the term structure of variance

swaps and transitory shocks to realized volatility. The three estimated innovations are posi-

tively correlated: the correlation between RV and level shocks is 0.7, and that between RV

and slope shocks is 0.6.

We rotate the three shocks using a Cholesky factorization where the first shock affects all

three variables, the second affects only the slope and RV , and the third shock affects only

RV . We will therefore refer to the third shock as the pure RV shock. The pure RV shock

allows us to measure the price of risk for a shock that has only a transitory effect on realized

variance and no effect on the term structure of variance swap prices, while the other two

rotated shocks affect both current realized variance and also expectations of future variance.

Impulse response functions are reported in Appendix Figure ??.
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4.1.2 Risk prices

We estimate risk prices for the three shocks using the Fama—MacBeth (1973)? procedure on
1- to 12-month zero-coupon variance claims.24 The top panel of Table ?? reports the loadings
of each variance swap return on the three orthogonalized shocks. Short-maturity variance

swaps are exposed to all three shocks with the expected signs. The higher maturities are

mostly exposed to the level and slope shocks, with essentially no exposure to the pure RV

shock.

The bottom panel of Table ?? reports the estimated annualized risk prices. Of the three
shocks, only the pure RV shock has a statistically significant risk price. The risk price is

also economically highly significant: it implies that an asset that was exposed only to the

pure RV shock would earn an annualized Sharpe ratio of -2.72. Since the three shocks all

have the same standard deviation, the magnitudes of the risk prices are directly comparable.

Those for shocks 1 and 2 are five to eight times smaller than that for the pure RV shock,

and thus economically far less important.

[Can we do a GRS test or something here to claim that the model fits?]
Table ?? thus shows that investors do not price shocks to the level and slope, but they

accept large negative returns to hedge transitory RV shocks. No forward-looking information

about volatility is priced.

4.1.3 Controlling for the market return

One possible explanation for why realized variance is priced is that it provides a good hedge

for aggregate market shocks. To test that possibility, we add the market return as an

additional factor in the estimation.25 The first column of Table ?? shows that indeed the
zero-coupon volatility claims are heavily exposed to the market return. But when the pure

RV shock is included, the market return is no longer significantly priced. The R2 of the

model for the cross-section of average returns also rises from 37.7 to 99.7 percent when the

pure RV shock is included.

[Again, it would be nice to have a GRS statistic]

24The results are robust to estimating the risk prices using one- and two-step GMM.
25We add the market return as a test asset to impose discipline on its risk premium. For readability and

to ensure that the risk premium on the market is matched relatively closely, we increase the weight on the
market return by of factor of 12 as a test asset in our cross-sectional tests. That way, the market return
carries as much weight in the pricing tests as do all the variance claims combined. The market factor, though,
is still the monthly market return, as are all our zero-coupon variance returns.
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4.2 The predictability of volatility

Since the key result of the paper concerns the pricing of volatility shocks at different horizons,

a natural question is how much news there actually is about future volatility. Perhaps the

reason that we do not estimate significant risk prices for volatility news is that there simply

is not much news (which would increase standard errors, though the estimates would still

be unbiased). We would first note that if there is not much news, then the macro literature

showing that volatility news can drive the business cycle would seem irrelevant. Second,

though, we now show that there is in fact substantial predictability of future volatility.

First, a large literature has shown that realized volatility is strongly predictable at hori-

zons of a few months using high-frequency data, and that univariate and multivariate pre-

dictability extends to longer horizons as well.26 Building on that literature, we report in

Table ?? R2s from predictive regressions of realized volatility at different frequencies and

horizons. The first pair of columns focuses on forecasts of monthly realized variance, while

the second pair repeats the exercise at the annual frequency. The R2s for monthly volatility

range from 45 percent at the 1-month horizon to 20 percent at the 12-month horizon. In

predicting annual volatility, R2s range between 56 and 21 percent for horizons of 1 to 10

years.

The third pair of columns in Table ?? reports, as a comparison, the results of forecasts
of dividend growth.27 R2s for dividend growth are never higher than 9 percent. So in

the context of financial markets, there is an economically large amount of predictability of

volatility. The appendix takes an extra step beyond Table ?? and shows, using Fama and
Bliss (1987) and Campbell and Shiller (1991) regressions, that nearly all the variation in

variance swap prices is actually due to variations in expected volatility, rather than risk

premia. We thus conclude that investors’expectations of volatility in fact vary substantially

over time.

4.3 A no-arbitrage model

In this section, we extend the pricing results reported above by considering a more formal

estimation. We analyze a standard no-arbitrage term structure model for variance swaps.

26See for example Andersen et al. (2003)?, Ait-Sahalia and Mancini (2006), Bandi, Russell and Yang
(2008)?, and Brownlees, Engle and Kelly (2011)?. Recently, Campbell et al. (2014) focus explicitly on
longer horizons (up to 10 years) and show evidence of predictability of realized volatility in a multivariate
setting: in particular, they show that both the aggregate price-earnings ratio and the BAA-AAA default
spread are useful predictors of long-run volatility.
27We compare predictability of volatility to that of dividends since realized variance in each month is the

stochastic payment of the variance swap contract in that month.
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The model delivers implications strongly supportive of our reduced-form results. Because

the no-arbitrage model uses the prices of the variance swaps, rather than just their returns,

and because it uses a full no-arbitrage structure, it is able to obtain much more precise

estimates of risk prices. We show that not only are the risk prices on the level and slope

factors statistically insignificant, but they are also economically small.

The no-arbitrage model has three additional advantages over the reduced-form analysis:

it explicitly allows for time-variation in the volatility of shocks to the economy and risk prices,

the standard errors for the risk prices take into account uncertainty about the dynamics of

the economy (through the VAR), and it links us more directly to the previous literature.

Furthermore, because the inputs to the estimation of the no-arbitrage model are the observed

variance swap prices rather than monthly returns, the results in this section do not rely on

any interpolation and we can simultaneously use the full time series from 1996 to 2013 and

every maturity from one month to 14 years.

4.3.1 Risk-neutral dynamics

As above, we assume that the term structure of variance swaps is governed by a bivariate

state vector (s2
t , l

2
t )
′. Rather than state the factors as a level and slope, we now treat them

as a short- and a long-term component, which will aid in the estimation process. s2
t is the

one-month variance swap price: s2
t = EQ

t [RVt+1]. The other state variable, l2t , governs the

central tendency of s2
t .

We begin by specifying the conditional risk-neutral mean of the states,

EQ
t


 s2

t+1

l2t+1

RVt+1


 =

 ρQs 1− ρQs 0

0 ρQl 0

1 0 0


 s2

t

l2t

RVt

+

 0

vQl
0

 (7)

where vQl is a constant to be estimated which captures the unconditional mean of realized

variance. l2t can be viewed as the risk-neutral trend of s
2
t . The first two rows of (7) are the

discrete-time counterpart to the standard continuous-time setup in the literature, e.g. Egloff,

Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014).28 We diverge from

Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014) in explicitly

specifying a separate process for realized variance, noting that it is not spanned by the other

shocks. The specification of a separate shock to RVt+1 allows us to ask how shocks to both

28For admissibility, we require that 0 < ρQs < 1, ρQl > 0, and vQl > 0. These restrictions ensure that
risk-neutral forecasts of s2

t and l
2
t , hence variance swap prices at various maturities, are strictly positive.
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realized variance and the term structure factors are priced.29

Given the assumption that s2
t = EQ

t [RVt+1], the price of an n-period variance swap V Snt
is

V Snt = EQ
t

[
n∑
i=1

RVt+i

]
= EQ

t

[
n∑
i=1

s2
t+i−1

]
(8)

which can be computed by applying (7) repeatedly, and which implies that V Snt is affi ne in

s2
t and l

2
t for any maturity.

4.3.2 Physical dynamics and risk prices

DefineXt ≡ (s2
t , l

2
t , RVt)

′. We assume thatX follows a VAR(1) under the physical measure:30 s2
t+1

l2t+1

RVt+1

 =

 0

vQl
0

+

 ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0


 s2

t

l2t

RVt

+ εt+1 (9)

εt+1 ∼ N


 0

0

0

 , Vt (Xt+1)

 (10)

In our main results, we follow Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,

and Mancini (2014) and assume that the market prices of risk are proportional to the states,

so that the log SDF, mt+1, is

mt+1 − Et [mt+1] = Λ′tVt (Xt+1)−1/2 εt+1 (11)

where Λt =

 λsst

λllt

λRV st

 (12)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. The term

Vt (Xt+1)−1/2 standardizes and orthogonalizes the shocks εt+1. Λt thus represents the price

29From a continuous-time perspective, it is not completely obvious how to think about a "shock" to realized
variance that is completely transitory. There are two standard interpretations. One is that the innovation in
RVt+1 represents the occurrence of jumps in the S&P 500 price. Alternatively, there could be a component of
the volatility of the diffusive component of the index that has shocks that last less than one month. At some
point, the practical difference between a jump and an extremely short-lived change in diffusive volatility is
not obvious. The key feature of the specification is simply that there are shocks to the payout of variance
swaps that are orthogonal to both past and future information contained in the term structure.
30Admissibility requires that vQl and the feedback matrix in (9) be non-negative, which ensures that the

forecasts of Xt, and hence future volatility, be strictly positive.
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of exposure to a unit standard deviation shock to each component of Xt+1.

To maintain the affi ne structure of the model, we need the product Vt(Xt+1)1/2Λt to be

affi ne in Xt. The specification for Λt in (12) is therefore typically accompanied by a structure

for the conditional variance similar to that of Cox, Ingersoll, and Ross (1985)?,

Vt(Xt+1) =

 σ2
ss

2
t 0 σs,RV s

2
t

0 σ2
l l

2
t 0

σs,RV s
2
t 0 σ2

RV s
2
t

 (13)

which guarantees that Vt(Xt+1)1/2Λt is affi ne in Xt.31

4.3.3 Empirical results

The estimation uses standard likelihood-based methods. The appendix describes the details.

We use both Dataset 1 and Dataset 2, meaning that the number of variance swap prices

used in the estimation varies over time depending on availability.

Model fit Table ?? reports the means and standard deviations of the variance swap prices
observed and fitted by our model together with the corresponding root mean squared errors

(RMSE). The average RMSE across maturities up to 24 months is 0.73 annualized volatility

points (i.e. the units in Figure ??).32 For maturities longer than 24 months, since we do not
have time series of variance swap prices with fixed maturities for the entire sample, we cannot

report the sample and fitted moments for any fixed maturity. Instead, we stack all contracts

with more than 24 months to maturity into one single series and compute the RMSE from

the observed and fitted values of this series. The corresponding RMSE is reported in the last

row of Table ??. At 0.87 percentage points, it compares favorably with the RMSE for the
shorter maturities. Table ?? suggests that our models with two term structure factors plus

RV are capable of pricing the cross-section of variance swap prices for an extended range of

maturities. Even when maturities as long as 14 years are included in estimation, the data

does not seem to call for extra pricing factors.
31It is important to note that the specifications of Λt in (??) and Vt(Xt+1) in (13) introduce tight re-

strictions on the difference Et(Xt+1) − EQt (Xt+1). In the appendix, we therefore consider two alternative
specifications for the variance process Vt (Xt+1) and the risk prices Λt that are more flexible in certain di-
mensions. The results, both in terms of point estimates and standard errors, are essentially identical across
the various specifications that we consider, so we report results for this specification here since it is most
common in the literature.
32When we exclude the financial crisis, using a sample similar to that of Egloff, Leippold, and Wu (2010),

we obtain an RMSE of 0.33 percentage points, which is nearly identical to their reported value. The increase
in fitting error in the full sample is, not surprisingly, brought about by the large volatility spikes that occurred
during the crisis.
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Risk prices The steady-state risk prices in the model are reported in Table ?? along
with their standard errors. As in the previous analysis, we find clearly that it is the purely

transitory shock to realized variance that is priced (RV -risk). The Sharpe ratio associated

with an investment exposed purely to the transitory RV shock —analogous to the pure RV

shock above —is -1.70.

In the VAR analysis in the previous section, the pure RV shock had no immediate impact

on the level and slope factors, but it could potentially indirectly affect future expected

variance through the VAR feedback. In the no-arbitrage model, that effect is shut offthrough

the specification of the dynamics. That is, the RV shock here is completely transitory —it

has no impact on expectations of volatility on any future date. The other two shocks are

forced to account for all variation in expectations. The fact that the results are consistent

between the no-arbitrage model and the reduced-form analysis in the previous section helps

underscore the robustness of our findings to different modeling assumptions.

The short- and long-term factors earn risk premia of only -0.11 and -0.18, respectively,

neither of which is significantly different from zero. The lack of statistical significance is not

due to particularly large standard errors; the standard errors for the risk prices for the s2
t

and l2t shocks are in fact substantially smaller than that for the RV shock. Moreover, Sharpe

ratios of -0.11 and -0.18 are also economically small. For comparison, the Sharpe ratio of

the aggregate stock market in the 1996—2013 period is 0.43. So the risk premia on the short-

and long-term components of volatility are between 25 and 42 percent of the magnitude of

the Sharpe ratio on the aggregate stock market. On the other hand, the Sharpe ratio for

the RV shock is nearly four times larger than that for the aggregate stock market and 10 to

15 times larger than the risk prices on the other two shocks. Our no-arbitrage model thus

clearly confirms the results from the previous sections.

Time-series dynamics The estimated parameters determining the dynamics of the state

variables under the physical measure are (equation 9): s2
t+1

l2t+1

RVt+1

 =

 0

0.99∗∗∗

0

+

 0.82∗∗∗ 0.16∗∗ 0

0 0.98∗∗∗ 0

0.75∗∗∗ 0 0


 s2

t

l2t

RVt

+ εt+1

The key parameter to focus on is the persistence of l2t . The point estimate is 0.9814,

with a standard error of 0.0013. At the point estimate, long-term shocks to variance have

a half-life of 37 months. That level of persistence is actually higher than the persistence

of consumption growth shocks in Bansal and Yaron’s (2004) long-run risk model, and only

slightly smaller than the persistence they calibrate for volatility, 0.987. Our empirical model
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thus allows us to estimate risk prices on exactly the type of long-run shocks that have been

considered in calibrations. As we discuss further below, the fact that we find that the

long-term shock to volatility is unpriced is strongly at odds with Epstein—Zin preferences.

5 Economic interpretation

The key message of our empirical analysis is that the average investor in the variance swap

market is not willing to pay for protection against news about high future volatility. In other

words, they do not hedge volatility intertemporally. That fact immediately suggests that

models based on Epstein—Zin (1991)? preferences, where intertemporal hedging effects are
central, will struggle to match the data. To confirm that intuition, we simulate two models

with Epstein—Zin preferences. The first is the long-run risk model proposed by Drechsler

and Yaron (2011)?, and the second is a discrete-time version of the model with time-varying
disaster risk proposed by Wachter (2013)?. In both cases, we show that the models imply
that the Sharpe ratios earned from rolling over long-term zero-coupon variance claims are

nearly as negative as those earned from holding just the one-month variance swap, counter

to what we observe empirically in Figure ??.
The evidence we provide that there is no intertemporal hedging runs counter to many

models beyond Epstein—Zin. Merton’s ICAPM, for example, implies that shocks to expected

volatility should be priced since volatility affects the investment opportunity set.33 The

variance swap market thus is not well explained by the ICAPM. Similarly, in models with

value-at-risk or leverage constraints, the constraint on financial intermediaries depends on

expected volatility, rather than realized volatility.34 In general, then, it is forward-looking

volatility that is relevant in most asset pricing models.

The lack of intertemporal hedging in the variance swap market suggests a myopic model

of investors. We therefore consider a simple model in which investors have power utility.

While it is well known that the power utility model fails to match many asset pricing facts

when consumption follows a process with low volatility, Rietz (1988)?, Barro (2006)?, Martin
(2013)?, and others show that allowing for a small probability of a large decline in consump-
tion can render the power utility model consistent with standard asset pricing moments.

Gabaix (2012)? extends the disaster model to allow for a time-varying exposure of the stock
market to disasters. We find that Gabaix’s model is able to match both the qualitative and

33This is true even if volatility does not predict returns. If volatility rises but expected returns remain
constant, then the investment opportunity set has deteriorated.
34For example, financial intermediaries might be limited in the total amount of risk they may take. When

expected volatility is higher, their demand for risky securities will fall.
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quantitative features of the variance swap market. This suggests that investors in the vari-

ance swap market are mostly worried about large negative shocks to the economy in which

returns collapse and variance spikes, and are purchasing variance swaps to hedge these, and

only these, shocks.

5.1 Structural models of the variance premium

5.1.1 A long-run risk model

Drechsler and Yaron (2011) extend Bansal and Yaron’s (2004)? long-run risk model to allow
for jumps in both the consumption growth rate and volatility. DY show that the model can

match the mean, volatility, skewness, and kurtosis of consumption growth and stock market

returns, and generates a large variance risk premium that forecasts market returns, as in the

data. DY is thus a key quantitative benchmark in the literature.

The structure of the endowment process is

∆ct = µ∆c + xt−1 + εc,t (14)

xt = µx + ρxxt−1 + εx,t + Jx,t (15)

σ̄2
t = µσ̄ + ρσ̄σ̄

2
t−1 + εσ̄,t (16)

σ2
t = µσ + (1− ρσ) σ̄2

t−1 + ρσσ
2
t−1 + εσ,t + Jσ,t (17)

where ∆ct is log consumption growth, the shocks ε are mean-zero and normally distributed,

and the shocks J are jump shocks. σ2
t controls both the variance of the normally distributed

shocks and also the intensity of the jump shocks. There are two persistent processes, xt and

σ̄2
t , which induce potentially long-lived shocks to consumption growth and volatility. We

follow DY’s calibration for the endowment process exactly.

Aggregate dividends are modeled as

∆dt = µd + φxt−1 + εd,t (18)

Dividends are exposed to the persistent but not the transitory part of consumption growth.

Equity is a claim on the dividend stream, and we treat variance claims as paying the realized

variance of the return on equities.

DY combine that endowment process with Epstein—Zin preferences, and we follow their

calibration. Because there are many parameters to calibrate, we refer the reader to DY for

the full details. However, the parameters determining the volatility dynamics are obviously

critical to our analysis. Note that the structure of equations (16) and (17) is the same as
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the VAR in our no-arbitrage model in equation (9). The parameters governing volatility in

DY’s calibration and the corresponding values from our estimation are:

DY Estimates

ρσ 0.87 0.82

ρσ̄ 0.987 0.9814

stdev(εσ̄,t) 0.10 0.05

stdev(εσ,t + Jσ,t) 1.10 1.48

The two feedback coeffi cients, ρσ and ρσ̄, are nearly identical to our estimated values.

Their long-term component, σ̄2, has a persistence of 0.987, which compares favorably with our

estimate of 0.9814. Similarly, their calibration of ρσ = 0.87 is comparable to our estimate of

0.82. The calibration deviates somewhat more in the standard deviations of the innovations.

Overall, though, DY’s calibration implies volatility dynamics highly similar to what we

observe empirically. The close match is not surprising as DY’s model was calibrated to fit

the behavior of the (one-month) VIX and realized variance. As a robustness check, though,

in the appendix we also simulate DY setting the standard deviations of the innovations to

match our empirical estimates and obtain implications for variance swap prices that are

essentially unchanged.

Given the high quality of DY’s calibration, if the long-run risk model fails to match the

term structure of variance swap prices, it is not because it has an unreasonable description

of the dynamics of volatility. Rather, we would conclude that the failure is due to the

specification of the preferences, namely Epstein—Zin.

5.1.2 Time-varying disaster risk

The second model we study is a discrete-time version of Wachter’s (2013) model of time-

varying disaster risk. In this case, consumption growth follows the process,

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (19)

where ε∆c,t is a mean-zero normally distributed shock and Jt is a disaster shock. The prob-

ability of a disaster in any period is Ft, which follows the process

Ft = (1− ρF )µF + ρFFt−1 + σF
√
Ft−1εF,t (20)

The CIR process ensures that the probability of a disaster is always positive in the continuous-

time limit, though it can generate negative values in discrete time. We calibrate the model
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similarly to Wachter (2013) and Barro (2006). Details of the calibration are reported in the

appendix. The model is calibrated at the monthly frequency. In the calibration, the steady-

state annual disaster probability is 1.7 percent as in Wachter (2013). σF is set to 0.0075 (εF
is a standard normal), and ρF = 0.871/12, which helps generate realistically volatile stock

returns and a persistence for the price/dividend ratio that matches the data. If there is no

disaster in period t, Jt = 0. Conditional on a disaster occurring, Jt ∼ N (−0.30, 0.152), as in

Barro (2006). Finally, dividends are a claim to aggregate consumption with a leverage ratio

of 2.8.35

Wachter (2013) combines this specification of disasters with Epstein—Zin preferences.

One of her key results is that a model with time-varying disaster risk and power utility has

strongly counterfactual predictions for the behavior of interest rates and other asset prices.

She thus argues that time-varying disaster risk should be studied in the context of Epstein—

Zin preferences. We follow her in assuming the elasticity of intertemporal substitution is 1,

and we set risk aversion to 3.6.36

5.1.3 Time-varying recovery rates

The final model we study is a version of Gabaix’s (2012) model of disasters with time-

varying recovery rates. Because the probability of a disaster is constant, power utility and

Epstein-Zin are equivalent in terms of their implications for risk premia. We use power utility

in our calibration, which eliminates the intertemporal hedging motives present in the two

previous models. In this model, the expected value of firms following a disaster is variable.

Specifically, we model the consumption process identically to equation (19) above, but with

the probability of a disaster, Ft, fixed at 1 percent per year (Gabaix’s calibration). Following

Gabaix, dividend growth is

∆dt = µ∆d + λε∆c,t − Lt × 1 {J∆c,t 6= 0} (21)

λ here represents leverage. 1 {·} is the indicator function. Dividends are thus modeled as
permanently declining by an amount Lt on the occurrence of a disaster. The value of L is

35The occurrence of a disaster shock implies that firm value declines instantaneously. To calculate realized
variance for periods in which a disaster occurs, we assume that the shock occurs over several days with
maximum daily return of -5 percent. For example, a jump of 20% would occur over 4 consecutive days, with
a 5% decline per day. This allows for a slightly delayed diffusion of information and also potentially realistic
factors such as exchange circuitbreakers. The small shocks ε∆c,t are treated as though they occur diffusively
over the month, as in Drechsler and Yaron (2011).
36Given the calibration of the endowment, if risk aversion is raised any higher the model does not have

a solution. The upper bound on risk aversion is a common feature of models in which the riskiness of the
economy varies over time.
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allowed to change over time and follows the process

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (22)

We calibrate L̄ = 0.5 and ρL = 0.871/12 as in the previous model, and εL,t ∼ N (0, 0.16).

We set the coeffi cient of relative risk aversion to 7 to match the Sharpe ratio on one-month

variance swaps. Other than the change in risk aversion, our calibration of the model is nearly

identical to Gabaix’s (2012), which implies that we will retain the ability to explain the same

ten puzzles that he examines. He did not examine the ability of his model to match the term

structure of variance claims, so this paper provides a new test of the theory.

5.2 Results

We now examine the implications of the three models for the zero-coupon variance curve.

Figure ?? plots population moments from the models against the values observed empiri-

cally. The top panel reports annualized Sharpe ratios for zero-coupon variance claims with

maturities from 1 to 12 months. Our calibration of Gabaix’s model with time-varying recov-

ery rates matches the data well: it generates a Sharpe ratio for the one-month claim of -1.3,

while all the forward claims earn Sharpe ratios of zero, similarly to what we observe in the

data.

The two models with Epstein—Zin preferences, on the other hand, both generate Sharpe

ratios for claims on variance more than one month ahead that are counterfactually large,

especially when compared to the Sharpe ratio of the 1-month variance swap. For both the

long-run risk and the time-varying disaster model, the Sharpe ratio on the three-month

variance claim is roughly three-fourths as large as that on the one-month claim, whereas the

three-month claim actually earns a slightly positive return empirically.

The economic intuition for the result is straightforward. If investors are risk-averse, then

periods of high volatility are periods of low utility. And under Epstein—Zin preferences,

periods with low lifetime utility are periods with high marginal utility. Investors thus desire

to hedge news about future volatility, and forward variance claims allow them to do so.

Moreover, volatility in all future periods affects lifetime utility symmetrically (discounted

by the rate of pure time preference), which is why investors in these models pay the same

amount to hedge volatility at any horizons.

The expected returns on the variance claims are closely related to the average slope of the

term structure. The bottom panel of Figure ?? reports the average term structure in the data
and in the models. The figure shows, as we would expect, that neither model with Epstein—

26



Zin preferences generates a curve that is as concave as we observe in the data. Instead, the

DY model generates a curve that is too steep everywhere (including on the very long end),

while the time-varying disaster model generates a curve that is too flat everywhere.37 On

the other hand, the average term structure in the model with time-varying recovery rates

qualitatively matches what we observe in the data —it is steep initially and then perfectly

flat after the first month.

The comparison between the calibrated models and the data reported in Figure ?? does
not take into account the statistical uncertainty due to the fact that we only observe variance

swap prices in a specific sample. To directly test the models against the data, we simulate the

calibrated models and verify how likely we would be to see a period in which the variance

swap curve looks like it does in our data. In particular, the left-hand column of Figure

?? plots results from 10,000 215-month simulations of the models. In each simulation, we

calculate the average term structure of the variance curve, and normalize the value at the

third month to 1 (so that we are sampling the shape of the term structure rather than its

level). We then plot the median and 95-percent sampling interval of the term structure from

the simulations.

Both the long-run risk model and time-varying disaster risk model have a hard time

in matching the empirical shape of the variance term structure in the simulations, and

particularly producing a steep slope at the short end of the curve and a small slope for higher

maturities. Gabaix’s model with time-varying recovery rates performs qualitatively better:

the 1-month variance swap is priced significantly higher than average realized volatility, but

the slope is zero for all the rest of the curve. The long-run risk and time-varying disaster

models are statistically rejected at the short end of the curve, while the long-run risk model

is rejected at the long end of the curve.

The right-hand column of figure ?? simulates variance swap prices in the models out to
maturities of 10 years. The sampling intervals are wider because our sample with 10-year

maturities only runs for 70 months. The story is similar to that in the right-hand column

though: all three models fail quantitatively, but the time-varying recovery model is the one

that best matches the qualitative features of the term structure.

DY’s long-run risk model is calibrated in such a way that it nearly exactly matches

our estimated volatility dynamics and it still fails to match the basic features of the term

structure of variance claims. We therefore conclude from Figures ?? and ?? that models
with a major intertemporal hedging motive, such as Epstein—Zin preferences, do not match

the features of the variance swap market. On the other hand, a model in which investors

37The models have similar Sharpe ratios but different slopes of the term structure because the latter
depends on the expected return, not the Sharpe ratio.
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have power utility, and hence make investment choices myopically, is able to better match

our data.

The main features of the models that affect their ability to match our data can be

summarized as follows. In models with Epstein—Zin preferences, investors will pay to hedge

shocks to expected future volatility, especially at long horizons. Long-term zero-coupon

variance claims should thus have large negative returns because they provide such a hedge.

But in the data, we observe shocks to future expected volatility and find that their price is

close to zero. Models with power utility, or where the variation in expected stock market

volatility is independent of consumption volatility, solve that problem since investors are

myopic and shocks to future expected volatility are not priced. However, the models also

need to explain the high risk price associated with the realized volatility shock. In a power

utility framework, this can be achieved if states of the world with high volatility are associated

with large drops in consumption, as in a disaster model.

5.3 The behavior of volatility during disasters

In order for variance swaps to be useful hedges in disasters, realized volatility must be high

during large market declines. A number of large institutional asset managers sell products

meant to protect against tail risk that use variance swaps, which suggests that they or their

investors believe that realized volatility will be high in future market declines.38

In the spirit of Barro (2006), we now explore the behavior of realized volatility during

consumption disasters and financial crises using a panel data of 17 countries, covering 28

events. We obtain two results. First, volatility is indeed significantly higher during disasters.

Second, the increase in volatility is not uniform during the disaster period; rather, volatility

spikes for one month only during the disaster and quickly reverts. It is those short-lived but

extreme spikes in volatility that make variance swaps a good product to hedge tail risk.

We collect daily market return data from Datastream for a total of 37 countries since

1973. We compute realized volatility in each month for each country. To identify disasters,

we use both the years marked by Barro (2006) as consumption disasters and the years marked

by Schularick and Taylor (2012)?, Reinhart and Rogoff (2009)? and Bordo et al. (2001)?
as financial crises.39 Given the short history of realized volatility available, our final sample

contains 17 countries for which we observe realized volatility and that experienced a disaster

during the available sample. Table ?? shows for each country the first year of our RV sample
38In particular, see Man Group’s TailProtect product (Man Group (2014)?), Deutsche Bank’s ELVIS

product (Deutsche Bank, 2010?) and the JP Morgan Macro Hedge index.
39See Giglio et al. (2014)? for a more detailed description of the data sources.
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and the years we identify as consumption or financial disasters.

The first three columns of Table ?? compare the monthly annualized realized volatility
during disaster and non-disaster years. Column 1 shows the maximum volatility observed in

any month of the year identified as a disaster averaged across all disasters for each country.

Column 2 shows the average volatility during the disaster years, and column 3 shows the

average volatility in all other years.

Comparing columns 2 and 3, we can see that in almost all cases realized volatility is indeed

higher during disasters. For example, in the US the average annualized realized volatility is

25 percent during disasters and 15 percent otherwise. Column 1 reports the average across

crises of the highest observed volatility. Within disaster years there is large variation in

realized volatility: the maximum volatility is always much higher than the average volatility,

even during a disaster. Disasters are associated with large spikes in realized volatility, rather

than a generalized increase in volatility during the whole period.

To confirm this result, in Figure ?? we perform an event study around the peak of

volatility during a disaster. For each country and for each disaster episode, we identify the

month of the volatility peak during that crisis (month 0) and the three months preceding

and following it. We then scale the volatility behavior by the value reached at the peak, so

that the series for all events are normalized to 1 at the time of the event. We then average

the rescaled series across our 28 events.

The figure shows that indeed, the movements in volatility that we observe during disasters

are short-lived spikes, where volatility is high for essentially only a single month. In the

single months immediately before and after the one with the highest volatility, volatility is

40 percent lower than its peak, and it is lower by half both three months before and after

the worst month.

Table ?? and Figure ?? show that an asset that provides protection for news about high
future volatility provides only weak protection against market crashes since volatility is not

particularly high on average during crashes. The asset that provides the best tail protection

is one that provides protection against high realized volatility, rather than high expected

volatility. That said, though, it is important to note that not all periods of high volatility

coincide with large declines in consumption. The 1987 stock market crash is the prime

example of an episode with high volatility in financial markets that had little or no effects on

real activity. So while variance swaps clearly provide a hedge against crashes, their returns

are not perfectly correlated with crashes.40

[This last paragraph is not very convincing. Does this section rally show that

40That fact also implies that there must be assets with even larger Sharpe ratios than one-month variance
swaps, and thus the annual Hansen—Jagannathan (1991?) bound must be greater than 1.5.
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a claim to expected volatility wouldn’t provide a hedge?]

6 Conclusion

This paper shows that it is only the transitory part of realized variance that is priced.

That fact is not consistent with a broad range of structural asset pricing models. It is

qualitatively consistent with a model in which investors desire to hedge rare disasters, but

even that model does not match all the quantitative features of the data. Interestingly, the

data is not consistent with all disaster models. The key feature that we argue models need in

order to match our results is that variation in expected stock market volatility is not priced

by investors, whereas the transitory component of volatility is strongly priced.

The idea that variance claims are used to hedge crashes is consistent with the fact that

many large asset managers, such as Deutsche Bank, JPMorgan, andMan Group sell products

meant to hedge against crashes that use variance swaps and VIX futures. These assets have

the benefit of giving tail protection, essentially the form of a long put, but also being delta

neutral (in an option-pricing sense). They thus require little dynamic hedging and yield

powerful protection against large declines.

In the end, we conclude that the variance swap market is well described as a set of assets

that investors use to hedge crashes. They do not seem to desire to hedge changes in the

probability of a crash (or any other sort of volatility). That fact is at odds with models that

imply that investors hedge intertemporally. An investor who does have an intertemporal

hedging motive and wants protection against increases in future volatility would be well

served to purchase that protection, essentially for free, from financial markets.
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