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Abstract

Long-run forecasts of economic variables play an important role in policy, plan-

ning, and portfolio decisions. We develop methods to quantify the uncertainty about

long-horizon average growth forecasts of a univariate time series under the assumption

that first differences are second-order stationary. The main contribution is the con-

struction of predictive sets with asymptotic coverage over a wide range of data gener-

ating processes, allowing for stochastically trending mean growth, slow mean reversion

and other types of long-run dependencies. We illustrate the method by computing

predictive sets for 10 to 75 year average growth rates of U.S. real per-capita GDP,

consumption, productivity, price level, stock prices and population.
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1 Introduction

This paper is concerned with quantifying the uncertainty in long-run predictions of economic

variables. Long-run forecasts and the uncertainty surrounding them play an important role

in policy, planning, and portfolio decisions. For example, in the United States, an ongoing

task of the Congressional Budget Office (CBO) is to forecast productivity and real GDP

growth over a 75-year horizon to help gauge the solvency of the Social Security Trustfund.

Uncertainty surrounding these forecasts is then translated into the probability of trust fund

insolvency.1 Inflation “Caps” and “Floors” are option-like derivatives with payoffs tied to the

average value of price inflation over the next decade; their risk-neutral prices are determined

by the probability that the long-run average of future values of inflation falls above or below

a pre-specified threshold.2 And, there is a large literature in finance discussing optimal

portfolio allocations for long-run investors and how these portfolios depend on uncertainty

in long-run returns.3

To be specific, let  denote a time series, and suppose that data on  exists for time

periods  = 1   . Let +1:+ = −1
P

=1 + denote the average value of the series

between time periods  + 1 through  + . We are interested in the date  uncertainty

about the value of +1:+, as characterized by prediction sets that contain +1:+ with

a pre-specified probability (such as 90%). We structure the problem so that these prediction

sets can be calculated using asymptotic approximations based on the central limit theo-

rem. In particular we suppose that both  and  are large, and construct the prediction

sets as a function of a relatively small number of weighted averages of the sample values of

. We apply a central limit theorem to the variable of interest (+1:+) and the predic-

tors, and study an asymptotic version of the prediction problem based on the multivariate

normal distribution. Were all the parameters of this normal distribution known (or consis-

tently estimable), the prediction problem would be a straightforward application of optimal

prediction in the multivariate normal model.

The problem is complicated by unknown parameters that characterize the stochastic

process for  and hence also the normal distribution in the large-sample problem. We

assume that the first differences ∆ =  − −1 are covariance stationary. Because we

are interested in a long-run prediction (+1:+, for  large) the parameters that matter

are those that characterize the (pseudo-) spectrum of  near frequency zero. Because of

1See Congressional Budget Office (2005).
2See Kitsul and Wright (2012).
3See, for example, Campbell and Viceira (1999), Pastor and Stambaugh (2012), and Siegel (2007).
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the paucity of information in the sample about these low-frequency parameters, uncertainty

about their values is an important component of the uncertainty about +1:+. Much of

the paper is devoted to the problem incorporating uncertainty about these parameter values

into the construction of prediction sets for +1:+. We begin by constructing a flexible

parametric framework to characterize the long-run properties of the  process and then

translate uncertainty about the true parameter into uncertainty about +1:+.

The low-frequency properties of  are parameterized by {  } where  describes the
long-run level of the process,  the long-run scale, and  the shape of the spectrum around

frequency zero. We show how uncertainty about  and  can be accounted for by considering

predictions sets that are scale and location invariant. To motivate our parameterization

of the local-to-zero frequency spectral shape, we consider three well-known models: the

fractionally integrated model, parameterized by  (where  = 0 denotes the (0) model and

 = 1 denotes the (1) model); the local-level model, which is the sum of independent (0)

and (1) processes and is parameterized by , which measures the relative importance of

the (1) process; and the diffusion (or local-to-unity AR) model parameterized by , which

measures the degree of mean reversion in the process. We construct a three parameter model,

 = (  )0, which nests these models and provides additional flexibility to characterize the

low-frequency shape of the spectrum.

We use both Bayes and frequentist methods to construct prediction sets that reflect

uncertainty about . The Bayes procedure is conceptually straightforward: given a prior for

 and the Gaussianity of the limiting problem, the predictive density for +1:+ follows from

Bayes rule, so that prediction sets are readily computed. The frequentist procedure instead

constructs a prediction set that, by definition, controls coverage uniformly over all values

. We show how frequentist prediction sets with small expected volume can be constructed

using a “least favorable distribution” for . As constructed these frequentist prediction sets

have attractive properties over repeated samples from the same data generating process.

To also guarantee a sensible description of uncertainty conditional on any given sample, we

modify these frequentist sets using insights from Müller and Norets (2012).

The existing econometric literature mostly stresses the difficulty of constructing good

long-term forecasts under uncertainty about the long-run properties of the process. Granger

and Jeon (2007) provide a mostly verbal account. Elliott (2006) compares alternative ap-

proaches to point forecasts and compares their mean squared errors. Kemp (1999), Phillips

(1998) and Stock (1996, 1997) show that standard formulas for forecast uncertainty break

down in the long-horizon local-to-unity model, but they do not provide constructive alterna-
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tives. In the related problem of estimating long-run impulse responses Pesavento and Rossi

(2006) construct confidence sets that account for uncertainty about the local-to-unity para-

meter. Chapter 8.7 in Beran (1994) discusses forecasting of fractionally integrated series, and

Doornik and Ooms (2004) use an ARFIMA model to generate long-run uncertainty bands

for future inflation, but without accounting for parameter estimation uncertainty. Pastor

and Stambaugh (2012) compute predictive variances of long-run forecasts of stock returns

that account for parameter uncertainty in a Bayesian framework. For a recent discussion of

long-run population forecasts and estimates of uncertainty see, for instance, Lee (2011). In

this context, Raftery, Li, Sevcíkova, Gerland, and Heilig (2012) employ a Bayesian approach

to describing uncertainty about future fertility rates.

To make better sense of the remainder of the paper, it is useful to consider following sim-

ple “baseline” approach to constructing prediction sets: assume a pure fractional Gaussian

process with parameter −12    32 for , that is,  = +  with

(1− ) =  for − 12    12

(1− )−1∆ =  for 12    32, and 0 = 0

 ∼ N (0 2)
(1)

and, after specifying some prior on the three parameters (  ), construct a predictive set

as the 1 −  highest posterior predictive density set for +1:+. This simple approach

suffers from five drawbacks, which we address as follows. First, model (1) imposes an ex-

tremely tight restriction on the (pseudo) spectrum of , with both low- and high-frequency

properties jointly governed by the single parameter . In Section 2, we discuss how to

extract the relevant low-frequency information about  using a small number of trigono-

metrically weighted averages. By making our predictions sets depend on  only through

these low-frequency transforms, we avoid having to model the higher frequency properties

of . Second, one might question the choice of prior for the location and scale parameters 

and . This will be addressed by imposing appropriate invariance restrictions on the predic-

tive sets, also discussed in Section 2. Third, the Gaussianity of the driving disturbances 

in (1) is a strong assumption. We address this issue by deriving a joint central limit theorem

for the low-frequency transforms of the observed data and the future values in Section 3. A

fourth concern about model (1) is the restrictive nature of its single parameter description

of low-frequency properties. This is addressed by the flexible three-parameter -model,

also developed in Section 3. A fifth and crucial concern about the baseline prediction sets

concerns their Bayes nature: the credible sets for +1:+ have coverage 1− by construc-

tion only if the parameters are drawn from the prior distribution. This issue is taken up in
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Section 4, where we discuss frequentist prediction sets that achieve coverage uniformly over

the relevant parameter space. Section 5 discusses implementation details, and quantifies the

loss in prediction accuracy associated with using a small number of low-frequency weighted

averages as predictors. Finally, in Section 6 we apply the methods to construct long-run

prediction sets for several U.S. macroeconomic time series including real GDP, consumption,

productivity, population growth rates, price inflation and stock market returns. We conclude

in Section 7 with a short discussion of the small sample effect of heteroskedasticity on the

coverage of the suggested prediction sets, as well as the challenges in extending the methods

to multiple time series.

2 The Prediction Problem

We assume that  can be represented as

 = +  (2)

for  = 1  +, where  is the unconditional expectation of , so that () = 0. Interest

focuses on the average value of  from periods  + 1 to  + 

+1:+ = −1
X
=1

+. (3)

Our goal is to construct a prediction set for +1:+, denoted by , with the property that

 (+1:+ ∈ ) = 1− , where  is a pre-specified constant.

Cosine transformations of the sample data. It will turn out to be convenient to

transform the sample data {}=1 into the weighted averages (1:   ), with  =

( (1)     ( − 1))0, and where  () is the th cosine transformation

 () =

Z 1

0

Ψ()[ ]+1 = 
−1

X
=1

Ψ

µ
− 12



¶
 (4)

with Ψ() =
√
2 cos() and  = (2) sin(2 ) → 1. We make two remarks

about this transformation. First, because the Ψ weights add to zero,  () is invariant to

location shifts of the sample. Second, the transformation isolates variation in the sample

data corresponding to different frequencies: 1: captures 0-frequency variation and  ()

captures variation at frequency  .
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Truncating the information set. We will construct prediction sets based on a truncated

information set that includes 1: = −1
P

=1  and the first  elements of  (denoted by

1:) and where  is much smaller than −1, so that = (1:  1:). We do this for two

reasons. The first is tractability: with a focus on this truncated information set, the analysis

involves a small number of variables (the (+2) variables (+1:+ 1: 1:)), and because

each of these variables is a weighted average of {}+=1 , a central limit derived in the next

section allows us to study a limiting Gaussian version of the prediction problem that is much

simpler than the original finite-sample problem. The second motivation for truncating the

information is robustness: we use the low-frequency information in the sample data (1: and

the first  elements of  ) to inform us about a low-frequency, long-run average of future

data, but we do not use high frequency sample information (the last  − 1−  elements of

 ). While high frequency information is informative about low-frequency characteristics

for some stochastic processes (for example, tightly parameterized ARMA processes), this is

generally not the case, and high-frequency sample variation may lead to faulty low-frequency

inference. Müller and Watson (2008, 2012) discuss this issue in detail. In Section 5 below

we present numerical calculations that quantify the efficiency-robustness trade-off in the

long-run prediction problem considered here.

Invariance. In our applications it is natural to restrict attention to prediction sets that

are invariant to location and scale, so for example, the results will not depend on whether

the data are expressed as growth rates in percentage points at an annual rate or as percent

per quarter. Thus, we restrict attention to prediction sets with the property that if  ∈
(1: 1:) then  +  ∈ ( + 1:  1:) for any constants  and  6= 0 (where
the transformation of 1: does not depend on  because 1: is location invariant).

Invariance allows us to restrict attention to prediction sets that depend on functions of the

sample data that are scale and location invariant; in particular we can limit attention to

constructing prediction sets for  
 given 

1:, where 

 = 

q
 0

1:1: with  =

+1:+ − 1: and 
1: = 1:

q
 0

1:1:.
4

4Setting  = −1:
q
 0
1:1: and  = 1

q
 0
1:1: implies that for any invariant set ,

 ∈ (1: 1:) if and only if ( − 1: )
q
 0
1:1: ∈ (01:

q
 0
1:1:), and thus also

+1:+ ∈ (1: 1:) if and only if 

 ∈ (0

1:).
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3 Large-Sample Approximations and a Low-Frequency

Parameterization

The last section laid out the finite-sample prediction problem, and this section develops a

large-sample approximation to the problem. We do this in three steps. First, we discuss

conditions on the stochastic process for  that yield a limiting normal distribution for ap-

propriately scaled versions of (1:  ), and we show how the covariance matrix of this

limiting normal distribution depends on the low-frequency characteristics of the process ,

specifically the shape of its spectrum near frequency zero. The second step is to parameterize

this covariance matrix in terms of the shape of this “local-to-zero spectrum”. We do so in a

way that three important benchmark models, the (), local level and local-to-unity models

emerge as special cases. In the final step we present the implied asymptotic distribution of

the maximal invariants  
 and 

 that define the prediction problem under location and

scale invariance.

3.1 Asymptotic Behavior of (1:  )

To derive the asymptotic behavior for (1:  ), note that each element can be written

as a weighted average of the elements of {}+=1 (where  vanishes because the weights

sum to zero). Thus, let  : [0 1 + ] 7→ R denote a generic weighting function, where

 = lim→∞( )  0, and consider the weighted average of {}+=1

 =  1−
Z 1+

0

()[ ]+1

where  is a suitably chosen constant.5 In our context, the elements of 1: are cosine

transformations of the in-sample values of , so that () =
√
2 cos() for 0 ≤  ≤ 1 and

() = 0 for   1;  is the difference between the out-of-sample and in-sample average

values of , so that () = −1 for 0 ≤  ≤ 1 and () = −1 for 1   ≤ 1 + 

In the appendix we provide a central limit theorem for  under a set of primitive

conditions about the stochastic process describing  and these weighting functions. We

will not list the technical conditions in the text, but rather give a brief overview of the

key conditions before stating the limiting result and discussing the form of the limiting

covariance matrix. In particular, the analysis is carried out under the assumption that ∆

5For the (0) model  = 12, for the (1) model  = 1, and so forth. Because of scale invariance, the

limit distribution of (
1: 

) does not depend on .
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has the moving average representation ∆ = (), where  is a possibly conditionally

heteroskedastic martingale difference sequence with more than 2 unconditional moments.

The moving average coefficients in () are square summable, so that ∆ has a spectrum,

denoted by  ().6 Let () =  ()|1 − −|2 denote the spectrum of  if it exists and

the pseudo-spectrum otherwise.

Under these and additional technical assumptions, Theorem 1 in the appendix shows

that  has a limiting normal distribution, and as an implication

−
"
 :1:



#
⇒
"
1:



#
∼ N (0Σ) (5)

with 1: = (1 · · ·  )
0. The limiting covariance matrix Σ in (5) depends on the autoco-

variances of ∆ and the weighting functions  associated with the elements of (1:  ).

3.2 The Local-to-Zero Spectrum

The appendix derives Σ and shows that it depends exclusively on the low-frequency prop-

erties of . To see why, consider a special case of our analysis in which  is stationary

with spectrum (). The ’th element of Σ is the limiting covariance of the two weighted

averages  and  , where

 =  1−
Z 1+

0

()[ ]+1 = −
[(1+) ]X
=1

̃

with ̃ = 
R 
(−1) (). Thus, recalling that the th autocovariance of  is given byR 

− ()
−i, where i =

√−1, we obtain

Σ = ( )

= −2
[(1+) ]X
=1

µZ 

−
−i(−)()

¶
̃̃

= −2
Z 

−
()

⎛⎝[(1+) ]X
=1

̃
i

⎞⎠⎛⎝[(1+) ]X
=1

̃
−i

⎞⎠ 

6In the appendix we assume that {∆} is generated by a triangular array, but we ignore the dependence
of , () , and  () on  here for notational convenience.
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=  1−2
Z 

−
( )

⎛⎝−1
[(1+) ]X
=1

̃
i( )

⎞⎠⎛⎝−1
[(1+) ]X
=1

̃
−i( )

⎞⎠ 

→
Z ∞

−∞
()

µZ 1+

0

()
i

¶µZ 1+

0

()
−i

¶
 (6)

where

() = lim
→∞

 1−2( )

is the ‘local-to-zero spectrum’ of . The appendix shows that covariance stationarity of  is

not required for (6) to hold as long as ∆ is covariance stationary, in which case  becomes

the local-to-zero limit of the pseudo-spectrum  of .

The limit (6) shows that the elements of the covariance matrix of (1:  )
0 are simply

weighted averages of the local-to-zero spectrum . Note that since  is an even func-

tion and  and  are real valued, (6) can be rewritten as 2
R∞
0

()(), where

() = Re[
³R 1+

0
()

−i
´³R 1+

0
()

i
´
]. Figure 1 plots (·) for some se-

lected values of  and  and  = 12. The figure plots the weights for 7 variables,

(123101112  ) organized into a symmetric matrix of 9 panels. The first panel

plots the weights for (123), where the weights for the variances are shown in bold and

the weights for the covariances are shown as thin curves. (Because () = 0 for  + 

odd, only 13(·) is visible.) The second panel plots the weights associated with covariances
between (123) and (101112), and so forth. A straightforward calculation shows

that covariance weights ,  6= , integrate to zero, which implies that for a flat local-to-

zero spectrum , Σ is diagonal. From the first and second diagonal panel in the figures, the

variance of the predictor  is mostly determined by the values of  in the interval ± 2.
Further, as long as  is somewhat smooth, the correlation between  and  is very close

to zero for | − | large. The final panel in the figure shows the weight associated with the
variance of  , the variable being predicted. Evidently the unconditional variance of  is

mostly determined by the shape of  on the interval  ∈ [0 4], and its correlation with 

is therefore small for  large even for smooth but non-constant  (a calculation shows that

max |+1()| decays at the rate 1 as  →∞). The implication of these results is that
the conditional variance of  given 1: depends on the low-frequency spectrum, with the

shape of  for, say,   12, essentially determining its value, even for large . In terms of

the original time series, frequencies of ||  12 correspond to cycles of periodicity 6. For
instance, with 60 years worth of data (of any sampling frequency), the shape of the spectrum

for frequencies below 10 year cycles essentially determines the uncertainty of the forecast of
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mean growth over the next 30 years.

Since the local-to-zero spectrum  determines Σ, the salient feature of the stochastic

process for  for long-run forecasts is the shape of the local-to-zero spectrum. Tomotivate our

parameterization of , it is useful to consider three benchmark models that have been proven

useful to model low-frequency phenomena in other contexts: the fractional () model7, the

local-level model8, and the local-to-unity model9. The () model has a (pseudo-) spectrum

proportional to ||−2 for  close to zero, so that () ∝ ||−2, −12    32. In

particular  is constant for the (0) model and is proportional to −2 for the (1) model.

The local-level model expresses  as the sum of an (0) process and an (1) process, say

 = 1 + ( )
P

=1 2, where {1} and {2} are mutually uncorrelated (0) processes

with the same long-run variance. In this case () ∝ 1 + 22. Finally, in the local-to-

unity model  = (1 −  )−1 + , where  is an (0) process, and a straightforward

calculation shows that () ∝ 1(2 + 2). (Note that ( ) → (0∞) and ( ) → (∞ 0)

recover the (0) and (1) model, respectively). Note that these three models are nested in

the parameterization

() ∝ 1

||2 + 2
+ 2 (7)

where  =  = 0 for the () model,  = 1,  = 0, and  = −2 for the local-level model, and

 = 1,  = , and  = 0 for the local-to-unity model.

In the construction of our prediction sets, we assume  to follow this “-model”, with

−12    32 and  and  unrestricted. This parameterization allows us to capture a wide

range of monotone shapes for the low frequency (pseudo-) spectrum of , including, but not

limited to, the three benchmark models discussed above. Figure 2 shows the logarithm of

the local-to-zero spectra for the three benchmark models for selected values of ,  and ,

and for several values of    in the -model. Each of the benchmark models can capture

(1) and (0) shapes, and the () model can capture more than than (1) and less than (0)

persistence. The last panel in the figure shows that the -model captures a wide range of

low-frequency shapes.10

7See Baillie (1996) or Robinson (2003) for an introduction.
8In the terminology of Harvey (1989).
9See Chan and Wei (1987) and Phillips (1987).
10Note that the relative large values of log(()) for || small in many parameter configurations imply an

extreme loading on very low frequencies of . The corresponding Σ can nevertheless be computed by the

integral of the product of the implied  and the weight functions  of Figure 1, Σ = 2
R∞
0

()()

(as we show in the appendix, it suffices that
R
2()  ∞, which holds as long as −12    32 in

the -model).
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3.3 The Limiting Density of (
1: 


 )

The limiting density of the invariants 
1: = 1:

q
 0

1:1: and  
 =


q
 0

1:1: follows directly from (5) and the continuous mapping theorem,"


1:

 


#
⇒
"


 

#
where  = 1:

p
 0
1:1: and   = 

p
 0
1:1: (we omit the dependence of 

 on

 to ease notation). Let  be the surface measure of a  dimensional unit sphere, and 1

Lebesgue measure on R. Setting   = (0  )0, the densities of  and   relative to 

and  × 1, respectively, are given by

() = 1
2
Γ( 

2
)−2|Σ |−12(0Σ−1 )−2 (8)

 () = 1
2
Γ( +1

2
)−(+1)2|Σ|−12(0Σ−1)−(+1)2 (9)

where Σ = [1:
0
1:]. The result for

 is well-known (see Kariya (1980) or King (1980)),

and the density of   is derived in the appendix.

An important special case of this result is when  is (0). In this case  is constant and

Σ(0) ∝
"
 0

0 1 + −1

#
,

so that  () ∝ (1 + ()2(1 + −1))−(+1)2. In the (0) model,  and   are thus

independent, and 12(1 + −1)−12  is distributed Student-t with  degrees of freedom.

4 Bayes and Frequentist Prediction Sets

Section 2 set up the prediction problem for +1:+, and Section 3 derived the limiting

version of the problem in terms of (  ). In this section we discuss Bayes and frequentist

approaches for constructing prediction sets for   as functions of. We consider a standard

formulation of the problem (Pratt (1961)), namely, construction of a set () that has

smallest expected volume subject to a coverage constraint

min


(vol(())) subject to  (  ∈ ()) ≥ 1− 

where vol() denotes the volume of the set . The Bayes and frequentist versions of the

problems use different distributions to compute the expected value in the objective function
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and coverage probability in the constraint and therefore yield different solutions to the

problem.

To discuss these solutions and how they differ, it is useful to introduce some generic

notation: let  denote a random variable with probability density  (·|) that depends on
 let Ω denote a probability distribution for , and let

Ω () =

Z
 (|)Ω()

so that Ω is the density of  if  is first drawn randomly from Ω.

4.1 Bayes Sets

In the Bayes version of the problem, the predictive density of   given  =  is used to

compute both the value of the objective function, (vol(())) and the coverage constraint,

 (  ∈ ()) ≥ 1 − . The resulting predictive set is characterized by the “highest

predictive density” set


Bayes
Γ () = { :

Γ( )(
 )

Γ()
 cv()} (10)

where Γ( )(· )Γ() is the Bayes predictive density of   given  =  using the

prior Γ, and cv() is a critical value associated with the coverage constraint (which depends

on  because the constraint is evaluated using the predictive density evaluated at  = ).

An important special case is Bayes forecasting in the (0) model (that is, Γ puts all

weight on the (0) model). Recall from Section 3 that in the (0) model,   is independent

of , and 12(1 + −1)−12  is distributed Student-t with  degrees of freedom. Letting




(1−2) denote the 1 − 2 quantile of this distribution, the (1 − ) Bayes prediction set

for   is therefore { : || ≤ 


(1−2)
−12(1 + −1)12}, which does not depend on .

The corresponding predictive set for +1:+ is 1: ± 


(1−2)(1 + −1)12−12, where

2 = ()
0
1:1: is an estimator of the long-run variance of .

4.2 Frequentist Sets

While the Bayes set enforces the coverage constraint conditional on each , it averages

over possible values of  using the prior Γ. In contrast, the frequentist set enforces the cov-

erage constraint for all values of , but averages over possible values of . The problem of

constructing optimal frequentist prediction sets is analogous to the problem of constructing
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optimal frequentist confidence sets, which in turn is closely related to the problem of con-

structing most powerful tests (Pratt (1961)). It is therefore useful to review the problem

of constructing most powerful tests, as we employ analogous methods to construct optimal

prediction sets.

In the testing problem,  corresponds to a vector of parameters that characterize the

distribution of the observables under the null hypothesis 0 :  ∈ Θ0 and alternative hy-

pothesis 1 :  ∈ Θ1. Two devices are often used to handle composite null and alternative

hypotheses. Under the alternative, the power of the test depends on the value of , and

tests are usefully evaluated by their weighted average power (WAP), where the weights load

on different values of . Thus, let Γ : Θ1 7→ R denote the weight function used to compute

WAPΓ where the dependence on Γ is made explicit. (While we have used the same notation

Γ for this weight function as for the prior in the Bayes problem, these represent conceptually

different distributions.) For a level  test, the test’s rejection frequency must be less than 

uniformly over all values of  ∈ Θ0. This uniform size constraint can sometimes be enforced

by assuming that  is drawn from a “least favorable distribution,” say Λ, on Θ0. When

this is the case, the Neyman-Pearson lemma implies that the optimal (that is, the highest

WAPΓ) test can be constructed from the likelihood ratio, where the likelihood under the

null is computed using Λ and the likelihood under the alternative is computed using Γ. El-

liott, Müller, and Watson (2012) discuss numerical methods for computing an approximate

least favorable distribution Λ̃, which yields a value ofWAPΓ that is approximately equal its

highest achievable value.

The prediction set analogue for these testing results is as follows. The objective function

changes frommaximizing power to minimizing expected volume, and because the distribution

of (  ) depends on , the expected volume depends on . LetWAVΓ denote the weighted

average expected volume using the weight function Γ. The level constraint in the testing

problem changes to the coverage constraint in the prediction set problem, and this is enforced

uniformly over all values of . Like the testing problem, this can sometimes be achieved using

a least favorable distribution for , and we therefore apply numerical procedures like those

proposed in Elliott, Müller, and Watson (2012) to construct an approximate least favorable

distribution for , Λ̃, that guarantees uniform coverage. This allows us to construct an

approximate optimal frequentist prediction set as the solution to the problem of minimizing

WAVΓ subject to Λ̃(
 ∈ ()) ≥ 1−, where Λ̃ means that the probability is computed

by first drawing  from Λ̃, and then (  ) conditional on that value of . The resulting
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optimal prediction set is


freq
Γ () = { :

 Λ̃

( )
( )

Γ()
 cv}. (11)

(Additional details are provided in the appendix.)

As a practical matter, the frequentist prediction set differs from the Bayes set in two ways.

First, the Bayes set uses the same distribution of  (the prior Γ) to evaluate the marginal

densities of  and ( ), while the frequentist set uses different distributions (Γ is used

for the density of  because this term arises from the expected volume calculation, and

Λ̃ is used for (  ) because this term arises from the coverage constraint). Second, the

Bayes set uses a critical value that depends on  (which enforces the coverage constraint

conditional on  = ), while the frequentist set uses a fixed critical value (which enforces

the coverage constraint averaging over all values of  under Λ̃).

In the (0) model,  is fixed, so the prior and weighting functions Γ and Λ̃ are absent. In

addition, the Bayes critical value does not depend on  (because   and  are indepen-

dent). Thus, in the (0) model, the Bayes and frequentist prediction sets are identical.

4.3 Bet-proof Frequentist Prediction Sets

On average, frequentist prediction sets (11) have attractive properties: they cover   with

a prespecified probability for all possible values of , inf∈Θ (
 ∈ 

freq
Γ ()) ≥ 1 − ,

and they are as short as possible in a well defined sense. Conditional on a specific draw of

 = , however, they do not necessarily provide a compelling description of uncertainty

about  . To see this, consider the special case where  = 0 is known (so that Γ and Λ̃

in (10) and (11) put all mass at  = 0), but the conditional density of 
 given  = 

depends on  In our context, this would arise, for instance, if the  process is known

to be (1). A reasonable description of level 1 −  uncertainty about   after observing

 =  then arguably requires that the set covers (at least) 1 −  of the mass of the

conditional density of   given  = . The Bayes set 
Bayes
Γ in (10) does so by choosing

the shortest such set. In contrast, since cv in (11) is fixed, 
freq
Γ does not have this property

in general: for some realizations  = , 0(
 ∈ 

freq
Γ ()| = )  1− , for others,

0(
 ∈ 

freq
Γ ()| = )  1−, and only the overall average over, (  ∈ 

freq
Γ ()),

equals 1 −  by construction. In fact, 
freq
Γ () might even by empty for some  = .

While this makes sense in the context of the frequentist problem–an empty set has no

volume leading to a small value of the objective function, and coverage can be enforced by
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averaging over other values of –it does not yield a reasonable measure of uncertainty

about   after observing  = .

Müller and Norets (2012) take up this issue in the context of frequentist confidence inter-

vals. They consider a game where an inspector may bet that the realized confidence interval

does not contain the true value, with a payoff that corresponds to the odds implied by the

confidence level. Müller and Norets (2012) call a confidence set “bet-proof” if it is impos-

sible for the inspector to generate positive expected winnings uniformly over the parameter

space. It is easy to see that confidence sets that are empty with positive probability for all

parameter values cannot be bet-proof, as the inspector could bet against empty realizations,

and always be right. More generally, bet-proofness rules out descriptions of uncertainty that

do not make sense conditionally, such as in the known parameter example above: whenever

0(
 ∈ 

freq
Γ ()| = )  1 − , the inspector bets that   ∈ 

freq
Γ (), which yields

positive expected winnings.

It turns out that any bet-proof confidence or prediction set is necessarily a superset of

a Bayes set of the same level, relative to some prior. One way of constructing attractive

bet-proof frequentist sets suggested by Müller and Norets (2012) is thus to exogenously fix

some prior Γ, and to then derive a Γ-weighted average expected volume minimizing set,

subject to inclusion of a Bayes set relative to Γ, and the coverage constraint. We apply this

suggestion here, with the Bayes set chosen as the equal-tailed 1− Bayes predictive interval.
This choice is numerically more convenient than the highest predictive density set (10), and

it induces bet-proofness in the extended game where the inspector may bet that   will be

below (or above) the reported interval at odds corresponding to 2, as discussed by Müller

and Norets (2012).

The numerical determination of such a bet-proof Γ-weighted average volume minimizing

set is not much harder than what is described in Section 4.2 above, as the solution (11)

is “realization by realization”, and the additional constraint of the inclusion of the Bayes

set just restricts 
freq
Γ in (11) to be a superset of equal-tailed Bayes predictive set. The

approximately WAVΓ minimizing bet-proof frequentist prediction set is thus of the form


Γ () = [Γ2(

); Γ1−2(
)] ∪ { :

 Λ̃

( )
( )

Γ()
 cv} (12)

where Γ2(
) and Γ1−2(

) are the 2 and 1 − 2 quantiles of the Bayes predictive

density Γ( )(· )Γ(), and Λ̃ and cv are generally different from their values in the

unconstrained solution (11). By construction, the 
Γ prediction sets have a frequentist

interpretation (that is, they provide coverage of at least 1−  averaged over  for all values

16



of ), but as supersets of Bayes sets, they also have coverage of at least 1−  conditional on

 =  when  is randomly drawn from the prior Γ. In the special case where  is known,


Γ reduces to the equal-tailed predictive set [Γ2(

); Γ1−2(
)], since unconditional cov-

erage is implied by the conditional coverage of [Γ2(
); Γ1−2(

)] for all  = . Further,

since the conditional distribution of   given  =  and  = 0 is symmetric around zero

in our prediction problem, it is then also equal to the Bayes highest predictive density set,


Bayes
Γ .

5 Empirical Implementation

In this section, we bring together the results of the previous sections and discuss our choices

for the weighting function Γ and the number of predictors  in the suggested empirical

implementation.

In our context, the parameter space consists of the possible values of  = (  )0, the

parameter that describes the local-to-zero spectrum  introduced in Section 3 above. We

specify −04 ≤  ≤ 14, and leave  and  unrestricted. The implementation of 
Bayes
Γ and


Γ requires the choice of a prior/weight function Γ on this parameter space. We choose

Γ so that it puts all mass on models with  =  = 0, and with a uniform distribution on

 ∈ [−04 14]. Thus, we effectively construct the prediction sets that are, on average, as
short as possible in the fractional model, and with guaranteed frequentist coverage in the

unconstrained -model. The uniform weighting over  ∈ [−04 14] makes the prediction
sets informative over the whole range of anti-persistent (  0) to very persistent ( ≥ 1)
processes .

As discussed in Section 2, the choice of  may usefully thought of as a trade-off between

efficiency and robustness. In principle, the central limit theorem for ( 0
1:  )

0 discussed in

Section 3 and presented in the appendix holds for any fixed , at least asymptotically. And

the larger , the smaller the (average) uncertainty about  . This suggests that one should

pick  large to increase efficiency of the procedure.

At the same time, one might worry that approximations provided by the central limit

theorem for ( 0
1:  )

0 become poor for large . The concern is not only that the high-

dimensional multivariate Gaussianity might fail to be an accurate approximation; more

importantly, any parametric assumption about the shape of the local-to-zero spectrum be-

comes stronger for larger . In particular, for a given sample size  , the assumption that

the spectrum of  over the frequencies [−  ] is well approximated by the spectrum
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of the -model becomes less plausible the larger .

We are thus faced with a classic efficiency and robustness trade-off. Recall from the dis-

cussion of Figure 1 in Section 3, however, that the object of interest–the variability of long-

run forecasts, as embodied by the conditional variance of  given 1:–is a low frequency

quantity that is essentially governed by properties of  over frequencies [−12 12 ].
Since the predictors  () provide information for frequency  , this suggests that the

marginal benefit of increasing  beyond  = 12 is modest, at least with the spectrum known.

With the spectrum unknown, 1: with larger  provides information about its scale and

its shape. The scale effect is most easily understood in the (0) model. As discussed above,

the (0) prediction set is 1: ± 


(1−2)(1 + −1)12−12, where 2 = ()
0
1:1:.

The average asymptotic length of this forecast is thus 2−
(1−2)(1+−1)12

q
 0
1:1:

with 1: ∼ N (0 ), which decreases in , since 


(1−2)
q
 0
1:1: is a decreasing func-

tion of .11 But the benefit of increasing  is modest: for a 90% interval, the average length

for  ∈ {24 48∞} is only {300% 442% 577%} shorter than for  = 12, for instance.
When the shape of the spectrum is unknown but parametrized, as in the -model,

increasing  beyond 12 provides additional information about the shape of the spectrum

over the crucial frequencies [−12 12 ]. Table 1 quantifies the combined scale and
11This is perfectly analogous to the wider confidence intervals that arise from the use of inconsistent HAC

estimators; see Kiefer, Vogelsang, and Bunzel (2000), Kiefer and Vogelsang (2002, 2005) and Müller (2012)

for a review.
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shape effect by reporting the Γ-average of the expected length of forecasts of 
p
 0
1:121:12

based on observations 1: for  ∈ {12 24 48}. As a point of comparison, it also reports
this average length for  known, where reductions for larger  are solely driven by the scale

effect.12 From panel (a), for  = 040, there is an 8% decrease in average length as  increases

from  = 12 to  = 24 and further reduction of 5% for  = 48, and where (from panel (b))

approximately one-fourth of the decrease comes from the unknown scale effect. Much of

our empirical analysis uses 65 years of post-WWII data, so that a choice  = 12 relies on

periodicities below 108 years, while  = 24 and  = 48 use periodicities below 54 and

27 years. The marginal benefit of increasing  beyond  = 12 is modest, and  must be

chosen very much larger to substantially reduce forecast uncertainty overall. In our view, a

concern about substantial spectral misspecification outweighs these potential gains, so that

as a default, we suggest constructing the predictive sets with  = 12.

6 Prediction Sets for U.S. Macroeconomic Time Series

In this section we present prediction sets for eight U.S. economic time series for forecast

horizons ranging from 10 to 75 years. These series include growth rates of per-capita values

of real GDP and consumption, population, productivity, prices (as measured by the CPI

and PCE deflator), and real stock returns. We construct prediction sets using post-WWII

quarterly samples, and for several series, samples that extend into the early 20th century. We

also examine prediction sets for inflation in Japan as a contrast to results for U.S. inflation.

Sources and details of construction of the data are presented in the Data Appendix.

Prediction sets are constructed using the low-frequency transformations of the series with

a benchmark value of  = 12, although we also investigate the robustness of these sets to

larger and smaller values of . We begin by discussing forecast intervals that arise in the

(0) model, then turn to the empirical evidence for and impact of alternative () models,

and finally present the Bayes and frequentist sets for the -model discussed in Sections 4

and 5.

The data are shown Figure A.1 of the Appendix, which plots each time series together

with its low-frequency component extracted by 1:12, that is the series’ projection on

{cos((− 12) )}12=0. Table 2 shows summary statistics and (0) prediction sets for the

25-year forecast horizon. As discussed in Section 4, the (0) Bayes and frequentist prediction

sets are identical and equal to 1:±12(1−2)(1+−1)12−12 where 12(1−2) is the (1−)th
12The parameter of the -model cannot be consistently estimated even as  →∞.
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quantile of the Student-t distribution with 12 degrees of freedom, 2 = ()
0
1:121:12

is an estimate of the long-run variance, and  =  is forecast horizon expressed as a

fraction of the sample size. For example, from the first row of the table, the growth rate of

real per-capita GDP averaged 19% (at an annual rate) over the 1947:Q2-2012:Q2 sample

period, with an estimated long-run standard deviation of  = 51%. Over the next 25

years per-capita GDP is forecast to grow at an average rate between 15% and 23% with

probability 50%; that is the 50% prediction set is (15 23). The 80% and 90% prediction

sets are wider, (11 27) and (08 30), respectively.

While the (0) prediction sets for real GDP are plausible, the prediction sets for inflation

seem implausible. In the U.S., CPI inflation averaged 36% over the sample period with a

long-run standard deviation of 104%. This yields a 25-year ahead 50% prediction set of

(28 45). This suggests that over the next 25 years the U.S. will experience significantly

higher average values of inflation than those experienced over the past decade and well

above the Federal Reserve’s inflation target. Even more problematic is the 50% prediction

interval for Japanese inflation of (19 45), a range comfortably above the very low levels of

inflation that Japan has experienced over the past two decades. One problem with these (0)

prediction sets is that they are centered around the in-sample means for for inflation (36%

for U.S. CPI inflation and 32% for Japanese inflation). However, inflation is very persistent

(Figure A.1, panels g and h), so that this centering is problematic. The remaining tables

and figures study the persistence properties of the various time series and present prediction

sets that allow persistence to differ from (0).

Table 3 summarizes the persistence properties of the time series in terms of the value

of  in the () model. It shows the log-likelihood values for various values of , where

the log-likelihood is based on 
1:12, and log-likelihood of the (0) model is normalized to

zero. The post-WWII U.S. inflation data yield log-likelihoods with maxima around  = 06

with corresponding log-likelihood values that are between 19 and 29 times larger than the

(0) model. The log-likelihood values for inflation suggests two conclusions: first, inflation

is more persistent than the (0) model (so that the (0) prediction intervals in Table 2 are

likely to be invalid), and second, there considerable uncertainty about the exact degree of

persistence. For example, the MLE of  is approximately b ≈ 07 for post-war U.S. PCE
inflation, but values of  ranging from  = 03 to  = 11 reduce the log-likelihood by less

than 1. This reflects the limited long-run information in a the 65-year sample. Looking at

post-WWII real per-capita GDP suggests that persistence is not large for this series (values

of   06 have log-likelihood 3 points lower than the (0) model), but values of  ranging
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from −04 (suggesting some reversion to a linear trend in the level of GDP, so that the
growth rate is overdifferenced) to 02 (slight persistence in the GDP growth rates) all fit the

data reasonably well.

Figure 3 shows how uncertainty about  translates into prediction uncertainty. It shows

25-year ahead predictive densities constructed using four different values of  for four of the

series listed in Table 2. Panel (a) shows results for real per-capita GDP, and the predictive

densities are shown for  = −04, 00, 02 and 05, a plausible range of values from Table

2. As  increases, the variance of the predictive density increases (because more persistence

leads to larger variability in future average growth) and the mode of the density shifts to

the left (reflecting the persistent effect of the slow growth experienced at the end of sample).

Also plotted in the figure is the Bayes predictive density constructed using a flat prior on

−04 ≤  ≤ 14. For real GDP, because (from Table 2) negative values of  fit the data

somewhat better than the (0) model, the Bayes predictive density is shifted to the right

of the (0) density, reflecting low-frequency anti-persistence in the forecast period following

a decade of lower-than average growth at the end of the sample. Table 2 suggests that

total factor productivity may be somewhat more persistent than the (0) model and this is

reflected in panel (b) of Figure 3 in a Bayes predictive density that is more disperse than the

(0) density; the Bayes density is very close to the density computed using  = 04. Panel

(c) shows results for CPI inflation, where the Bayes density is much more disperse than the

(0) model, but much less disperse than the (1) model. Finally, panel (d) of Figure 3 shows

results for post-WWII real stock returns. From Table 2, real returns may be somewhat more

persistent than an (0) process, and thus the Bayes predictive density in Figure 3 is more

disperse than the (0) density.

Table 4 and Figure A.2 show prediction sets for other horizons. These show Bayes

prediction sets constructed using the () model with flat prior for  ∈ [−04 14] together
with 

Γ frequentist prediction sets that have guaranteed coverage in the -model, as

discussed in Section 6. Figure A.2 plots prediction sets for horizons ranging from 10 to 75

years, and Table 4 shows the sets for four forecast horizons, 10, 25, 50, and 75 years. The

prediction sets were computed separately for each horizon, so coverage is pointwise in the

forecast horizon. In Figure A.2 the boundary of the Bayes sets are plotted as solid curves

and the frequentist sets as dashed curves. In many cases the sets coincide, so that only

one curve is visible in the plot. In Table 4 the Bayes sets are shown in parentheses, the

corresponding frequentist set is shown in brackets when it differs from the Bayes set.

We now discuss the results for specific series in more detail.
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Real per capita GDP. The Bayes predictive sets for per-capita GDP narrow as the fore-

cast horizon increases, consistent with the reduction in variance of the sample mean for an

(0) process. At the 75-year horizon the 80% Bayes prediction interval is 14 to 25, which

coincides with the interval reported by the Congressional Budget Office (2005) for 75-year

forecasts beginning in 2004. The coincidence of the Bayes/CBO sets arises despite impor-

tant differences in the way they are computed. The CBO interval is based on simulations

computed from an estimated VAR model which (for large  ) corresponds to constructing

an interval using an (0) model ignoring parameter uncertainty and using a long-run stan-

dard deviation computed from the VAR. This interval differs from the Bayes interval in two

important respects. First, because the VAR simulations are carried out using fixed values

of the VAR parameters, the CBO method ignores the parameter uncertainty in 1: (as an

estimate of ) and 2 (as a an estimate of the long-run variance). Ignoring this uncertainty

leads the CBO interval to underestimate uncertainty in the predictions. Second, the CBO

method models GDP growth as an (0) process, while the Bayes method allows values of 

that differ from  = 0. The results in Table 3 and Figure 3 suggest that GDP growth is plau-

sibly characterized by a process with some low-frequency anti-persistence, and this translates

into less forecast uncertainty than the CBO’s (0) model. Thus, the CBO methods tends to

understate forecast uncertainty because it ignores parameter uncertainty in the estimated

mean and long-run variance, and overstate forecast uncertainty because a (short-lag) VAR

cannot capture long-run anti-persistence associated with negative values of . Apparently

these two errors cancel, so that the CBO prediction interval coincides with the Bayes set.

The frequentist set coincides with the Bayes set for 50% coverage and for (relatively) short

horizons for higher coverage. However, at longer horizons the 80% and 90% frequentist sets

differ from Bayes sets and include smaller values of average GDP growth rates. Apparently,

to guarantee high coverage uniformly in the -model at long horizons, the frequentist sets

allow for the possibility of more persistence in the GDP process, so that the slow-growth rates

of the past decade are predicted to persist into the future. A comparison of the prediction

sets constructed using the post-WWII data and the long-annual (1901-2011) series shows

that the pre-WWII data tend to widen the predictions sets, presumably because of the higher

(long-run) variance in the pre-WWII data evident in Figure A.1.

Productivity. Table 2 indicates that productivity (TFP and average labor productivity)

may have somewhat greater than (0) persistence. This translates into prediction sets that

are wider than (0) sets (see Figure 3 for a comparison of (0) and Bayes predictive densities

for TFP), particularly for frequentist sets at large forecast horizons. Figure A.2 shows that
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the Bayes intervals are essentially flat as the forecast horizon increases (unlike in an (0)

model, where the intervals narrow), while the frequentist sets widen (the unmodified Bayes

intervals systematically undercover for larger values of , forcing the frequentist intervals to

more heavily weigh the possibility of larger ).

Population. Figure A.1 shows considerable low-frequency variability in U.S. population

growth over the 20th century and the post-WWII period.13 Immigration and fertility dy-

namics are presumably at the source of these long swings. Table 3 indicates that b

is very close to unity over both sample periods, with the (1) likelihood more than 7-log

points higher than the (0) model. Figure A.2 shows prediction intervals that widen as the

forecast horizon increases, a familiar characteristic of (1) predictive densities. Frequentist

and Bayes prediction sets are similar, as the Bayes sets already put sufficiently large weight

on large values of . There is little difference in the sets constructed using the post-WWII

samples and long-samples.

Inflation. As discussed above, the inflation process is characterized by more than (0)

persistence, and this is reflected in the prediction sets in two ways. First, they are not

centered at the sample mean of the series, but rather at a level dictated by the values near

the end of sample period, and second, the prediction sets widen with the forecast horizon.

The prediction intervals indicate considerable uncertainty in inflation even at relatively short

horizons; this is true for Bayes and frequentist sets (which essentially coincide). For example,

while the 10-year 50% predictive set for U.S. CPI inflation is (13 42), the 80% set widens

to (−01 56), and the 90% set widens further to (−11 65).
These predictions sets may strike some readers as too large, but it is instructive to con-

sider the history of Japan where the 10-year moving average of CPI inflation was less than

zero from 2003 through the end of the sample. Moreover, they are in line with predictive

densities derived from asset prices. For example, Kitsul and Wright (2012) use CPI-based

derivatives to compute market-based risk-neutral predictive densities for 10-year ahead aver-

age values of inflation. They find deflation (average inflation less than 0%) probabilities that

averaged approximately 15% over 2011 and “high inflation" (average inflation greater than

4%) of 30%.14 The corresponding probabilities computed from the Bayes predictive density

constructed using the post-WWII data are 11% for deflation and 28% for high inflation.

Stock Returns. Table 3 indicates that post-WWII real stock returns exhibit slightly more

13The quaterly post-WWII population series is not seasonally adjusted and shows substantial seasonal

variation. Because we focus on low-frequency transformations of the series, this seasonality does not affect

the empirical results.
14See Kitsul and Wright (2012), Figures 3 and 4.
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persistence than is implied by the (0)model, and this translates into prediction sets are that

are wider than implied by the (0) model. For example, at the 25-year horizon, the (0)

80% prediction set (from Table 2) is (19 115) while the corresponding Bayes prediction

set (from Table 4) is (−09 127) and the frequentist set is wider still (−11 127). The
longer-span data suggest somewhat less persistence (b = 00 for the 1926-2001 sample)

yielding Bayes and frequentist prediction intervals that are somewhat narrower than those

constructed using the post-WWII data.

Pastor and Stambaugh (2012) survey the large literature on long-run stock return volatil-

ity and construct Bayes predictive densities using models that allow for potentially persistent

components in returns and incorporate parameter uncertainty. While their results rely on

more parametric models than ours–they use all frequencies and exact Gaussian likelihoods–

our empirical conclusions are similar. Using our notation, Pastor and Stambaugh (2012) are

concerned with the behavior of variance of
√
+1:+ and how this variance changes with

the forecast horizon . If the variance of
√
+1:+ is unchanged as  increases, and if the

predictive density is Gaussian, then the width of prediction intervals for +1:+ will be

proportional to −12. Pastor and Stambaugh find that the variance of
√
+1:+ is not

constant, but rather increases with . In our results,the Bayes predictive sets narrow as 

increases as  increases, but more slowly than −12, consistent with the Pastor-Stambaugh

findings.

Results for different values of q. As discussed in Sections 3 and 5, the choice of  =

12 involved an efficiency/robustness trade-off, where a larger value of  results in more

information about the scale and shape parameter, but potential misspecification because the

higher-frequency spectrum may not be well-described by the same model and parameter. It

is therefore interesting to see how the prediction sets vary with , and this is reported in Table

5, which shows the 80% prediction sets for the 25-year ahead forecasts for  = 6 9 12 24

and 48. Looking across all of the entries, the prediction sets behave roughly as expected,

in the sense that they remain centered at roughly the same value but tend to narrow as

 increases. For example, averaging across the 14 series, the  = 48 prediction set is 2%

narrower than the  = 12 prediction set. There are two noteworthy exceptions. First, both

per-capita GDP and consumption (quarterly post-WWII) show a lower bound for the  = 6

prediction sets that is more than one percentage point lower than corresponding value for

the  = 12 sets. This arises because the  = 6 log-likelihood functions for  are much flatter

than the  = 12 functions summarized in Table 3. Thus, when  = 6, the prediction sets

account for the possibility of more persistence in the series and this includes an extrapolation
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of the low-growth levels experienced by the U.S. economy over the past decade. The second

exception is quarterly U.S. inflation. Here the lower bounds of the  = 24 and  = 48

prediction sets are more than one percentage point higher than for  = 12. This arises

because the  = 24 48 likelihood values suggest less persistence than  = 12 value. (When

 = 24 48 the likelihood peaks at values of  around 04 while the peak is around  = 07

for  = 12.)

7 Additional Remarks

We conclude by discussing two issues. First, we analyze the robustness of our prediction sets

relative to data generating processes with pronounced second moment variability, and then

we briefly discuss the challenges of extending our framework to a multivariate setting.

7.1 Heteroskedasticity

The large-sample results presented in Section 3 allow for processes with conditional het-

eroskedasticity that may be persistent, but that eventually vanishes in the sense of assump-

tion (i) of Theorem 1 in the Appendix. That said, these large-sample results may provide

poor approximations in samples of the size considered in the last section (65 years of quar-

terly data) for series with persistent changes in second moments. We investigate this in this

subsection with a simulation experiment focusing on the (0) model, which approximately

describes stock returns, and the local-level model, which approximately describes the U.S.

inflation rate. The (0) model with stochastic volatility has the form

 =  (13)

where

ln(2 ) = (1− ) +  ln(2−1) +  (14)

and where {} and {} are independent with  ∼ N (0 1) and  ∼ N (0 2). For the
simulations we calibrate 2 using the quarterly post-war stock returns from Section 6, the

value of  does not matter because of scale invariance, and we investigate coverage for several

values of , keeping the unconditional variance of ln(2 ) fixed at the sample analogue. The

local-level model with stochastic volatility has the form

 = 1 + −1
X

=1

2
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where ln() follows the AR(1) process in (14) and where {1} and {2} are mutually
independent and independent of {} and distributed  ∼ (0 2),  = 1 2. In this

local-level model, stochastic volatility is present in the (1) component but not in the (0)

component, consistent with the evidence for U.S. inflation provided in Stock and Watson

(2007). The values of , , , and  are calibrated using the estimated inflation stochastic

volatility estimated for CPI inflation from Stock and Watson (2010), and simulations are

carried out for several values of  (again keeping the unconditional variance of ln(2 ) fixed

at a sample estimate). In the simulations we set  = 240 to correspond with our post-WWII

empirical analysis.

The results are shown in Table 6. Each row of the table corresponds to a different

forecast horizon, , and the various columns correspond to different values of  over four sets

of experiments. In the first experiment  = 0, so volatility is white noise, resulting in non-

normal i.i.d. disturbances. Coverage rates for 90% Bayes and MN-frequentist prediction sets

are shown in the second column of the table. The Bayes prediction sets tend to over-cover

in the (0) model and under-cover in the local-level model. (Recall that the the Bayes sets

are designed to have asymptotic 90% coverage in the () model when  ∼  [−04 14]).
In contrast, the MN-frequentist sets over-cover in the (0) model when  is large, but have

coverage of nearly 90% in the local-level model. (Recall that the MN-frequentist sets are

designed to have asymptotic coverage of at least 90% for −04 ≤  ≤ 14 and all values of 
and .) The next three columns of the table show coverage rates for  = (075 090 099).

Relative to coverage rates for  = 0 there is little change in the (0) model for either the

Bayes of MN-frequentist prediction sets. In the local-level model the largest difference is 4%,

which occurs with  = 099 and  = 140. Thus, even highly persistent stochastic volatility

has only a small effect on coverage in these experiments.

A possible explanation for this robustness is that these results hold "on average" over

the realizations of the volatility process, but that coverage may differ considerably over in-

sample realizations of ln(2 ). That is, one might conjecture that when ln(
2
 ) is smaller

than the unconditional volatility coverage exceeds 90%, but when ln(2 ) is larger than the

unconditional volatility coverage is less than 90%. Thus the other columns of the table

investigate the sensitivity of coverage to the realized value of ln(2 ). Columns 5-10 show

coverage rates conditional on ln( ) being one standard deviation above or below its uncon-

ditional value. While these conditional coverage rates differ from the unconditional rates as

expected, the effects are relatively small. For example, the conditional coverage rates for the

MN-frequentist sets differ from the unconditional rates by 6% in the local-level for short run

33



34



predictions ( = 005) and persistent stochastic volatility ( = 099), but these differences

fall to 2% as the forecast increases to  = 14.

7.2 Multivariate Prediction Sets

In a number of contexts it would be desirable to extend the analysis to a multivariate frame-

work, where several time series are modelled and forecast jointly. One motivation would be

that allowing for the richer information set from several variables might increase forecast

accuracy. Another, perhaps even more compelling motivation is an interest in studying the

joint uncertainty of long-run forecasts of several variables. For instance, one might want to

forecast several components of GDP growth jointly (such as population growth, employment

growth and productivity growth), and then use them for ‘uncertainty accounting’ purposes,

that is to identify the major contributors to overall long-run GDP growth uncertainty.15

Another application would be the joint uncertainty about long-run stock returns and con-

sumption, which features prominently in asset pricing models that focus on long-run risk

(Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008)).

Conceptually, it is fairly straightforward to extend our framework to the multivariate

setting. With   ̄1: and 1: now 1 ×  and  ×  matrices, with each column repre-

senting the transformations of Section 2 for one series, one would expect that under suitable

conditions, the analogue of the central limit theorem presented in the appendix to hold so

that

 1− vec

Ã


1:

!
⇒ N (0Σ) (15)

where the elements of Σ are now functions of some  dimensional local-to-zero spectrum.

The natural analogs of the location and scale invariance amounts to the requirement that if

 ∈ (1: 1:), then also +  ∈ (+ 1: 1:), for any  ∈ R and full rank

×  matrix . It is not hard to see that under this invariance, one can restrict attention to

the problem of forecasting  
 =  (


1:)

−1 from 
 = 1:(


1:)

−1, where 
1: are

the first  rows of the  ×  matrix 1:. Thus, with some parametric assumption on the

shape of the spectral density, one could in principle proceed as in the univariate problem.

As a practical matter, though, there are two substantial difficulties. First, even with

moderate values of , the number of parameters describing the multivariate local-to-zero

spectrum becomes fairly large. For instance, with  = 3, even the strong assumption that

15For example, Gordon (2003) provides a seven—way decomposition of the 75-year ahead forecast of GDP

growth.
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under some rotation, the three variables are independent with a local-to-zero spectrum in the

-family, yields a 9-dimensional parameter space. The numerical determination of weighted

expected volume minimizing prediction sets then becomes computationally challenging.

These numerical difficulties are compounded by the form of the density of  and  

that is induced by the normal distribution (15). In the scalar case considered in this paper

these densities are in closed form. But in the multivariate setting, Theorem 1 of Müller and

Watson (2011) yields an expression for the density that involves an integral of dimension 2

unless Σ has a specific Kronecker form. It is an interesting question for future research how

to overcome these two computational challenges.
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8 Appendix

8.1 Central Limit Theorem Used in Section 3

Theorem 1 Let ∆ =
P∞

=−∞ −. Suppose that
(i) {F} is a martingale difference sequence with [2 ] = 1, sup[||2+]  ∞ for some

  0, and

[2 − 1|F−] ≤  (16)

for some sequence  → 0.

(ii) For every   0 the exists   0 such that lim sup→∞ −1
P∞

=+1

³
 sup||≥ ||

´2


.

(iii)
P∞

=−∞ 2 ∞ (but not necessarily uniformly in  ). The spectral density of ∆ thus

exists; denote it by  : [− ] 7→ R.
(iii.a) Assume that there exists a function  : R 7→ R such that  7→ 2() is integrable, and

for all fixed , Z 

0

| (

)− 2()| → 0. (17)

(iii.b) For every diverging sequence  →∞

−3
Z 

 

 ()
−4 =

Z 



 ( )
−4 → 0 (18)

(iii.c)

−32
Z 

1

 ()
12−2 = −12

Z 

1

 ( )
12−2 → 0 (19)

(iv) For some fixed integer , the bounded and integrable function  : [0] 7→ R satisfiesR
0

() = 0, and with () =
R 
0
(), for some constant , |P

=1 
−i( −1


)| ≤ −2−1

uniformly in  and 

Then

−12
Z 

0

()[ ]+1⇒ N (0
Z ∞

−∞
()

¯̄̄̄Z 

0

−i()
¯̄̄̄2
) (20)

where  =
P

=1∆.

Remarks: Note that the linear process ∆ is not restricted to be causal. The m.d.s. struc-

ture of the driving errors  in assumption (i) allows for some departures from strict stationarity.

It also accommodates conditional heteroskedasticity, with the second order dependence limited by

the mixingale condition (16).

With the pseudo-spectrum of  defined as  () =  ()|1 − −i|2, assumption (iii.a) is
equivalent to

 2
Z 

0

2|−2 (



)− ()| → 0 (21)
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since for any fixed , sup0≤≤ |−2 2

|1−−i |2 − 1|→ 0. Thus, (iii.a) is equivalent to the conver-

gence of the pseudo-spectrum of {} to  in a −1 neighborhood of the origin in the sense of
(21).

To better understand the role of assumptions (ii) and (iii), consider some leading examples.

Suppose first that ∆ is a causal and weakly dependent with exponentially decaying , || ≤
0

−1 for some 0 1  0, as would arise in causal and invertible ARMA models of any fixed

and finite order. Then −1
P∞

=+1

³
 sup||≥ ||

´2
→ 0 for any   0, 2() is constant and

equal to the long-run variance of∆, and (18) and (19) hold, since  is bounded,
R∞


−4 → 0

for any  →∞ and
R∞
1

−2 ∞.
Second, suppose ∆ is fractionally integrated with parameter  ∈ (−12 12) (corresponding

to  being fractionally integrated of order +1). With ∆ scaled by 
−,  ≈ 0

−−1,

so that −1
P∞

=+1

³
 sup||≥ ||

´2
→ R∞


2−2, which can be made arbitrarily small by

choosing  large. Further, for  close to zero,  () ≈ 20( )
−2, so that 2() = 20

−2, and
(18) and (19) are seen to hold under weak assumptions about higher frequency properties of ∆.

For instance, even integrable poles in  for frequencies other than zero can be accommodated.

Third, suppose  is an AR(1) process with local-to-unity coefficient  = 1 − 

and unit innovation variance. Then 0 = 1 and  = −(1 −  )

 ,   0. Thus

−1
P∞

=+1

³
 sup||≥ ||

´2
→ 2

R∞


−2, which can be made arbitrarily small by choos-

ing  large. Further,  () = |1 − −i|2|1 −  
−i|2, which is seen to satisfy (17) with

() = 1(2 + 2). Conditions (18) and (19) also hold in this example, since  () ≤ 1.
As a final example, suppose ∆ =  − −1 (inducing  to be i.i.d. conditional

on 0). Here  () =  2|1 − −i|2 = 4 2 sin(2)2, so that () = 1, and (18) evaluates

to 4
R 


 2 sin(2 )2−4 ≤ R 


−2 → 0, and (18) to 2−12
R 
1

 sin(1
2
 )−2 ≤

−12
R 
1

−1 → 0, where the inequalities follow from sin() ≤  for all  ≥ 0.
The implication of Theorem 1 that is of interest for Section 3 follows from the following Lemma

and Corollary.

Lemma 1 For some 0     − 1, let 0 : [0] 7→ R equal 0() = −1[0 ≤  ≤ 1] + −11[1 
 ≤ 1 + ] and let  : [0] 7→ R equal to () = 1[ ≤ 1]

√
2 cos() for  = 1     . Then for

any fixed and real , () =
P

=0 () satisfies assumption (iv) of Theorem 1.

Proof. It is clearly sufficient to show that each  satisfies the assumption. This follows from

a direct computation.
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Corollary 1 Suppose 0      are as in Lemma 1. Then under the assumptions of Theorem 1,

−12
Z 

0

⎡⎢⎢⎢⎢⎣
0()

1()
...

()

⎤⎥⎥⎥⎥⎦[ ]+1⇒ N (0Σ)

where Σ =
R∞
−∞ ()

³R
0

−i−1()
´³R

0
i−1()

´
 for   = 1 · · ·   + 1.

Proof. Follows from Theorem 1, Lemma 1 and the Cramer-Wold device via¯̄̄̄
¯̄Z 

0

−i

⎛⎝ X
=0

0()

⎞⎠ 

¯̄̄̄
¯̄
2

=

X
=0



µZ 

0

−i()
¶µZ 

0

i()

¶
.

Assumption (iv) of Theorem 1 can be shown to hold for the functions  of interest in the application

discussed in Section 3.

We now introduce some notation that is used in the proof of Theorem 1, and in auxiliary

Lemmas. We first state these Lemmas and then the proof of Theorem 1.

Notation: Define 2 = Var[
−12 R

0
()[ ]+1]. Note that with ̃ = 

R 
(−1) ()

and ̃ = −1
P−1

=1 ̃ =
P−1

=1

R 
(−1) () =

R (−1)
0

() = ( −1

), we find using

summation by parts

−12
Z 

0

()[ ]+1 = −32
X
=1

̃

= −12̃+1 − −12
X
=1

̃ ( )∆

= − 12
X
=1

(
− 1


)∆

since ̃+1 = () = 0.

Lemma 2 2 → 2 =
R∞
−∞ ()

¯̄̄R
0

−i()
¯̄̄2
.

Proof. Let  be the autocovariances of ∆. We find

Var[−12
X
=1

(
− 1


)∆] = −1
X
=1

 ( − )(
 − 1


)(
 − 1


)
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= −1
X
=1

µZ 

−
i(−) ()

¶
(

 − 1


)(
 − 1


)

= −1
Z 

−
 ()

¯̄̄̄
¯
X
=1

i(
− 1


)

¯̄̄̄
¯
2



Now for any fixed , we will show

−1
Z 

−

 ()

¯̄̄̄
¯
X
=1

i(
− 1


)

¯̄̄̄
¯
2

 =

Z 

−
 (




)

¯̄̄̄
¯−1

X
=1

i(
− 1


)

¯̄̄̄
¯
2



→
Z 

−
()2

¯̄̄̄Z 

0

i()

¯̄̄̄2
 (22)

First note that for any two complex numbers  , | − | ≥ ||| − |||, so that |||2 − ||2| =
|(||+ ||)(||− ||)| ≤ (||+ ||)|− |. Thus,¯̄̄̄
¯̄¯̄̄̄Z 

0

i()

¯̄̄̄2
−
¯̄̄̄
¯−1

X
=1

i(
− 1


)

¯̄̄̄
¯
2
¯̄̄̄
¯̄ ≤

2 sup

|()| ·

¯̄̄̄
¯−1

X
=1

i(
− 1


)−
Z 

0

i()

¯̄̄̄
¯

and ¯̄̄̄
¯−1

X
=1

i(
− 1


)−
Z 

0

i()

¯̄̄̄
¯

≤
Z 

0

|i()− i[ ]([ ] )|

=

Z 

0

|i(()−([ ] )) +([ ] )(i − i[ ] )|

≤
Z 

0

|()−([ ] )|+ sup

|()|

Z 

0

|1− i([ ]−)|

Since for any real , |1−i|  ||, sup||≤ |1−i([ ]−)| ≤  , and also |()−([ ] )| ≤
−1 sup |()|. Thus,

sup
||≤

¯̄̄̄
¯̄
¯̄̄̄
¯−1

X
=1

i(
− 1


)

¯̄̄̄
¯
2

−
¯̄̄̄Z 

0

i()

¯̄̄̄2 ¯̄̄̄¯̄→ 0

and (22) follows from assumption (iii.a) from straightforward arguments.
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Further, since
R 
0

i() = −i R
0

i(),Z 

−
()2

¯̄̄̄Z 

0

i()

¯̄̄̄2
 =

Z 

−
()

¯̄̄̄Z 

0

i()

¯̄̄̄2


Thus, for any fixed , −1
R

−
 ()

¯̄̄P
=1 

i( −1

)
¯̄̄2
 −R

− ()
¯̄̄R
0

i()
¯̄̄2
 → 0. Hence there must exist a sequence  →∞ for which

−1
Z  

− 

 ()

¯̄̄̄
¯
X
=1

i(
− 1


)

¯̄̄̄
¯
2

−
Z 

−

()

¯̄̄̄Z 

0

i()

¯̄̄̄2
 → 0

Finally,

−1
Z 

 

 ()

¯̄̄̄
¯
X
=1

i(
− 1


)

¯̄̄̄
¯
2

 ≤ 2−3
Z 

 

 ()
1

4
→ 0

by assumptions (iii.b) and (iv), and the result follows.

Lemma 3 −12 sup |
P

=1(
−1

)−|→ 0.

Proof. Recall that for any two real, square integrable sequences {}∞=−∞ and {}∞=−∞,P∞
=−∞  =

1
2

R 
− ̂()̂

∗(), where ̂() =
P∞

=−∞ 
−i and ̂∗() =

P∞
=−∞ 

i .

Thus
X
=1

(
 − 1


)− =
−X
=1−

(
+  − 1


) =

1

2

Z 

−
î ()̂

∗
 ()

where ̂ () =
P∞

=−∞ 
−i and ̂ () =

P
=1 

−i( −1

), so that î () =P

=1 
−i(−)( −1


) =

P−
=1− 

−i( +−1

), and ̂∗ is the complex conjugate of ̂  Now since

 () =
1
2
|̂ ()|2, we find by the Cauchy-Schwarz inequality that

2|
X
=1

(
 − 1


)−| = |
Z 

−
î ()̂

∗
 ()| ≤

√
2

Z 

−
|̂ ()| ()12

Also, since |̂ ()| ≤
P

=1 |( −1 )|, we haveZ 1

0

|̂ ()| ()12 ≤ −1
X
=1

|( − 1


)| ·
Z 1

0

 ( )
12

→
Z 

0

|()| ·
Z 1

0

()12 ∞

where the convergence follows from assumption (iii.a). Furthermore, by assumption (iv),Z 

1

|̂ ()| ()12 ≤ −1
Z 

1

 ()
12−2.

The result follows by assumption (iii.c).
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Lemma 4 For every   0 there exists a   0 such that

Var[−12
Z 

0

()[ ]+1+ −12
X

=−

⎛⎝X
=1

(
 − 1


)−

⎞⎠ ]  .

For this  , 2 = Var[−12
P

=−

³P
=1(

−1

)−

´
] satisfies lim sup→∞ |2 −

2|  .

Proof. We have

−
Z 

0

()[ ]+1 =

X
=1

(
− 1


)∆

=

X
=1

(
− 1


)

∞X
=−∞

−

=

∞X
=−∞

⎛⎝X
=1

(
 − 1


)−

⎞⎠ 

so that, with ̄ = sup
0≤ |()|

Var[−12
Z 

0

()[ ]+1+ −12
X

=−

⎛⎝X
=1

(
 − 1


)−

⎞⎠ ]

= −1
−−1X
=−∞

⎛⎝X
=1

(
 − 1


)−

⎞⎠2 + −1
∞X

=+1

⎛⎝X
=1

(
 − 1


)−

⎞⎠2

≤ ̄2−1
∞X

=+1

⎛⎝X
=1

(|−|+ |+|
⎞⎠2

≤ 42̄2−1
∞X

=+1

Ã
 sup
||≥−

||
!2

= 42̄2−1
∞X

=(−)+1

Ã
 sup
||≥

||
!2

which can be made arbitrarily small by choosing  large enough via assumption (ii).

The second claim follows directly from Lemma 2.

Lemma 5 For any large enough   0, −1
−12P

=−

³P
=1(

−1

)−

´
 ⇒ N (0 1).
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Proof. By the second claim in Lemma 4 and Lemma 2,  = (1) and

−1 = (1). By Theorem 24.3 in Davidson (1994), it thus suffices to show (a)

−12 sup1≤≤ |
P

=1(
−1

)−| → 0 and (b) −1

P
=−

³P
=1(

−1

)−

´2
(2 −

1)
→ 0.

(a) is implied by the Lyapunov condition via Davidson’s (1994) Theorems 23.16 and 23.11.

Thus, it suffices to show that

X
=−

[|−12
⎛⎝X

=1

(
 − 1


)−

⎞⎠ |2+]→ 0

Now

X
=−
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⎛⎝X
=1
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¯̄
2+
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≤ (sup
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(
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¯̄


· −1
X

=−

¯̄̄̄
¯̄X
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(
 − 1
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¯̄̄̄
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2

= (sup
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⎛⎝−12 sup


¯̄̄̄
¯̄X
=1

(
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)−

¯̄̄̄
¯̄
⎞⎠

· 2 → 0

where the convergence follows from Lemma 3.

For (b), we apply Theorem 19.11 of Davidson (1994) with Davidson’s  and  chosen as


 = (

2
 − 1) and  = −1

³P
=1(

−1

)−

´2
. Then 



 = 2 − 1 is uniformly

integrable, since sup[||2+] ∞. Further,

X
=−

 = −1
X

=−

⎛⎝X
=1

(
 − 1


)−

⎞⎠2 = 2 = (1)

and
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⎞⎠4

= sup
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(
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= sup
1≤≤

¯̄̄̄
¯̄−12 X

=1

(
 − 1


)−

¯̄̄̄
¯̄
2

· 2 → 0

where the convergence follows from Lemma 3.

Proof of Theorem 1:

By Lemmas 2, 4 and 5, for large enough  ,

−1−12
Z 

0

()[ ]+1 =



 +






where  ⇒ N (0 1) lim sup→∞[2 ]   and lim sup→∞ |2 − 2|  . Thus, by Slutzky’s

Theorem, as  → 0 the desired convergence in distribution follows. But  was arbitrary, which

proves the Theorem.

8.2 Density of Maximal Invariant of Section 3

Let  = ( 0  )0 and  =
√
 0. Write  for Lebesgue measure on R. For  ∈ R, let  = ,

where  is a point on the surface of a  dimensional unit sphere, and  ∈ R+. By Theorem 2.1.13

of Muirhead (1982), () = −1()1(). Further, for  ∈ R, write  = , so that

1() = 1(
). We thus can write the joint density of (   ) with respect to  ×1×1

as

(2)−(+1)2|Σ|−12 exp[−1
2

Ã




!0
Σ−1

Ã




!
]

and the marginal density of   = (0  )0 with respect to  × 1 is

(2)−(+1)2|Σ|−12
Z ∞

0

 exp[−1
2
2(0Σ−1)]1()

= (2)−(+1)2|Σ|−12 1
2

Z ∞

0

(−1)2 exp[−1
2
(0Σ−1)]1()

= (2)−(+1)2|Σ|−12 1
2
Γ(+1

2
)2(+1)2

¡
0Σ−1

¢−(+1)2
= 1

2
−(+1)2|Σ|−12Γ(+1

2
)
¡
0Σ−1

¢−(+1)2
where the second equality follows from the form of the Gamma density function.

8.3 More Details on the Frequentist Prediction Set

This appendix provides further discussion of the approximate least favorable distributions that

underlie the frequentist confidence sets.
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8.3.1 Approximate Least Favorable Distributions

The problem that underlies the frequentist set is

 ∗ = inf

Γ (vol((

))) subject to inf
∈Θ

(
 ∈ ()) ≥ 1−  (23)

where   0, Γ denotes expectation with respect to Γ and  denotes that the probability is

computed using joint distribution of  and   given . If there exists a finite interval  ⊂ R such
that inf∈Θ (

 ∈ ) ≥ 1− , then  ∗ must be finite. Let Ω solve the problem

min


Γ (vol((
))) subject to Ω(

 ∈ ()) ≥ 1− . (24)

Notice that minΓ (vol(Ω(
))) ≤  ∗ because any  that satisfies the coverage constraint in

(23) also satisfies the constraint in (24). Thus, if Λ is a distribution for , Λ is the set that solves

(24), and if inf∈Θ (
 ∈ Λ(

)) ≥ 1 − , then Λ solves (23). Such a distribution Λ is the

least favorable distribution for this problem (cf. Theorem 3.8.1 of Lehmann and Romano (2005)

and its proof for the corresponding results in hypothesis testing).

The solution to (24) is of the form (11), that is Ω(
) = { : Ω

( )
( )  cv Γ()},

where cv  0 is chosen so that Ω(
 ∈ Ω(

)) = 1 −  (such a cv always exists as

long as Ω
( )

( )Γ() is a continuous random variable under Ω
( )

, as is the

case in our application). To see this, note that any  is equivalently characterized by the

‘test’-function  : R × R 7→ {0 1} defined via ( ) = 1[ ∈ ()]. In this no-

tation, Γ (vol((
))) =

R R
Γ()( )(

)1(
) =

R
()1(

)1(
), and

Ω(
 ∈ ()) =

R R
Ω ( )( )(

)1(
) =

R
()0(

)1(
), where

1(
) = (

) × 1(
). Thus, the program (24) is equivalent to the problem of finding

the best ‘test’ that rejects with probability at least 1−  when the density of   is 0, and mini-

mizes the “rejection probability” when the density of  is 1. This latter density is not integrable,

but the solution still has to be of the Neyman-Pearson form (11), as can be seen by the very ar-

gument that proves the Neyman-Pearson Lemma: Let ∗ correspond to Ω, and let some other

 : R+1 7→ {0 1} satisfy R 01 ≥ 1−  (we drop  as the dummy variable of integration for

convenience). Then

0 ≤
Z
(∗ − )(0 − cv 1)1

≤ cv(

Z
11 −

Z
∗11)

where the first inequality follows from the definition of ∗ and the second from 1− = R ∗01 ≤R
01.

WAV minimizing bet-proof sets as suggested by Müller and Norets (2012) described in the main

text correspond to the program (24) with the additional constraint that the predictions  must

48



contain, for all realizations of , the set [Γ
2
(); Γ

1−2(
)]. The argument for the constrained

optimality of the set (12) follows from the same line of reasoning as above.

Following Elliott, Müller, and Watson (2012) we use numerical methods to approximate the

least favorable distribution Λ by a distribution Λ̃. In the construction of Λ̃, we solve (24) a little

more stringently (that is, the constraint is Λ̃(
 ∈ ()) ≥ 1 −  +  for some small   0) to

facilitate inf∈Θ (
 ∈ Λ̃(

)) ≥ 1 − . Since minΓ (vol((
))) ≤  ∗ for any Ω, we can

numerically assess the cost of   0 by comparing Γ

¡
vol(Λ̃(

))
¢
to the lower bound on  ∗

induced by the approximate least favorable Λ̃ and  = 0.

8.3.2 Numerical Approximations

Determination of approximate least favorable distribution: The algorithm consists of two main

steps: (I) determination of a candidate least favorable distribution Λ̃; (II) numerical check of

inf∈Θ (
 ∈ Λ̃(

)) ≥ 1− .

Both steps are based on a discrete grid of values for , with the grid Θ

for step (II) much finer than the grid Θ for step (I). In particular, with ∆ =

{−04−02 · · ·  12}, ∆ = {−04−03 · · ·  14},  = {0 02 05 2 10 80},  =

{0 005 02 05 2 5 10 40 80 200}  = {0 001 005 02 05 1 2 5 20 80} and  =

{0 0004 001 002 005 01 02 03 05 1 15 2 3 5 10 20 50 80 200}, Θ = {( 0 )0 :  ∈
   ∈ ∆} ∪ {(0  )0 :  ∈ ∆  (8)

2 ∈ } ∪ {(  14)0 :  ∈   ((8)
28 + 2) ∈ }

and Θ = {(  )0 :  ∈    ∈ ∆  ((8)
2 + 2) ∈ }. For each , (

 ∈ Λ̃(
)) is ap-

proximated via Monte Carlo integration using an importance sampling scheme: For Θ ∈ {Θ Θ}
with |Θ| elements, note that

0(
 ∈ Λ̃(

)) = |Θ|−1
X
∈Θ

[LR0(
)1[  ∈ Λ̃(

)]] (25)

where  denoted expectation with respect to   , LR0(
) =

0 (
)(|Θ|−1

P
∈Θ

 ( )), and   is the joint distribution of   = (0  )0 as
in (9) with Σ = Σ() as determined by . The Monte Carlo approximation replaces each 

in (25) by an average over 2000 and 400 independent draws from   in steps (I) and (II),

respectively. The fewer draws for step (II) are compensated by the larger number of points in

Θ . The resulting Monte Carlo standard errors are less than 1.1% for all 0(
 ∈ Λ̃(

)) if

 = 05, and 0.7% for  = (01 02). Draws from   are generated via   =
q
 0
1:1: with

 = ( 0
1:  )

0 ∼ N (0Σ()).
We now discuss Step I of the algorithm in the more complicated case where () is restricted

to contain the Bayes set [Γ
2
(); Γ

1−2(
)], that is  =  in the notation of Section 4.

The prior Γ is approximated by the discrete prior that puts equal mass on all points of the form
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( 0 0)0,  ∈ {−04−02 · · ·  14}. Let () be the corresponding weights on Θ . We initially

draw 2000 independent   under each  ∈ Θ , for a total of 2000|Θ | draws. For each draw
 = (0 )0, we first determine the value of the indicator () = 1[ ∈ [Γ

2
(); Γ

1−2(
)]].

The event () is equivalent to the cdf of the posterior distribution of   given  = , evaluated

at , Γ
 |(

|), to take on a value outside [2 1− 2], and Γ
 |(|) is given by

Γ
 |(

|) =
Z 

−∞

X
∈Θ

()
 ((0 ̃)0)

()
̃ (26)

where (0) = (0)
0
(

)(
P

∈Θ
()()) is the posterior probability of the data being

drawn from parameter value 0. The integral in (26) is evaluated using Gaussian quadrature with

100 points, after the change of variables ̃ = ̃Φ−1(), where Φ−1 is quantile function of a standard
normal and ̃ = 4 

qP
=1 

2
, with 

2
 and 

2
 the diagonal elements of the Σ() from which

 was drawn.

Now for a pair of approximately least favorable distribution Λ̃ and critical value cv, let ̃()

be the corresponding nonnegative weight function on Θ with total mass 1 cv. The event 
 ∈

Λ̃(
) in (12) is then equivalent to

P
∈Θ

̃() ( ) ≥ P
∈Θ

()()( ). Thus

(0 ̃) = 0(
 ∈ Λ̃(

)) = 0(
P

∈Θ
̃() ( ) ≥ P

∈Θ
()()( )) Note

that the least favorable distribution Λ cannot put any mass on points  where (
 ∈ Λ̃(

)) 

1 − , as this would imply that also Λ(
 ∈ ())  1 − , which contradicts the solution to

(24) discussed above. Thus, we seek values for ̃ that satisfy

( ̃) = 1− +  if ̃()  0

( ̃) ≥ 1− +  if ̃() = 0

An appropriate solution is determined iteratively: set ̃()() = exp(()()), where ()() ∈ R for
all  ∈ Θ . Start with (0)() = −9 for all  ∈ Θ . Then set

()() = (−1)()− (( ̃(−1))− (1− + )) for all  ∈ Θ

that is, if ̃() overcovers at  ∈ Θ (( ̃)  1 −  + ), then decrease the value of ()(), and

increase it if it undercovers at . This process is run with  = 2 for 4000 iterations.

The value of the slack parameter  is (0003 0005 001) for  = (01 02 05) for  ∈
{6 9 12 24}, and equal to (0005 002 002), for  = 48. For  = 48 more slack is neces-

sary to ensure coverage under the finer grid Θ . This additional slack leads to predicition

sets that are no more than 1.0-2.5% and 1.0-5.0% longer than any set that achieves uniform

covarage for  ≤ 24 and  = 48, respectively, depending on the horizon . Step (I) of the al-

gorithm is run for  ∈  = {005 0075 01 015 02 03 04 06 08 1 12 14}, and step (II) for
 ∈ {005 01 03 06 1 14}. This takes approximately 72 hours, which most of the time spend on
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step (II). Numerical calculations suggest that all sets 
Λ̃

are intervals. In the empirical work,

prediction intervals for values of  not included in  are computed via linear interpolation.

Computation of Σ in -model:

As discussed in the main text, the elements of Σ are given by 2
R∞
0

()(), where

() = Re[
³R 1+
0

()
−

´³R 1+
0

()


´
] and () is available in closed form for a

given . The functions  are determined in closed form using computer algebra. The integralR∞
0

()() is then split into the sum of the corresponding integral over (0 −1), and the
interval [−1∞) which are evaluated using Gaussian quadrature with 1,000 points each. The first
integral uses the transformation of variables  = exp(−(10 + 1)2),  ∈ [0 1], and relies on a
fourth order Taylor approximation of  around  = 0, and the second integral is approximated

by Gaussian quadrature on the interval [−1 10].
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Data Appendix 
 

Series Sample 
period 

Description Sources and Notes 

Post- WWII Quarterly Series 
GDP  1947:Q1-

2012:Q1 
Real GDP (Billions of Chained 2005 
Dollars) 

FRED Series: GDPC96 

Consumption  1947:Q1-
2012:Q1 

Real Personal Consumption 
Expenditures (Billions of Chained 
2005 Dollars) 

FRED Series PCECC96 

Total Factor 
Productivity  

1947:Q2-
2012:Q1 

Growth Rate of TFP  From John Fernald’s Web Page: Filename Quarterly)TFP.XLSX, series name DTFP. The series is described in Fernald 
(2012) 

Labor 
Productivity 

1947:Q1-
2012:Q1 

Output per hour in the non-farm 
business sector 

FRED Series: OPHNFB 
 

Population 1947:Q1-
2012:Q1 

Population (mid Quarter) 
(Thousands) 
 

Bureau of Economic Analysis NIPA Table 7.1. Adjusted for an outlier in 1960:Q1 

Prices: PCE 
Deflator 

1947:Q1-
2012:Q1 

PCE deflator FRED Series: PCECTPI 
 

Inflation (CPI) 1947:Q1-
2012:Q1 

CPI FRED Series: CPIAUCSL. The quarterly price index was computed as the average of the monthly values 
 

Inflation (CPI, 
Japan) 

1960:Q1-
2012:Q1 

CPI for Japan FRED Series: CPI_JPN. The quarterly price index was computed as the average of the monthly values 
 

Stock Returns 1947:Q1-
2012:Q1 

CRSP Real Value-Weighted Returns CRSP Nominal Monthly Returns are from WRDS. Monthly real returns were computed by subtracting the change in the 
logarithm in the CPI from the nominal returns, which were then compounded to yield quarterly returns. Values shown are 
400×the logarithm of gross quarterly real returns. 

Longer Span Data Series 
Real GDP  1900-2011 Real GDP (Billions of Chained 2005 

Dollars) 
1900-1929: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Ca9: Real GDP in $1996 
1929-2011: BEA Real GDP in $2005. Data were linked in 1929 

Real 
Consumption  

1900-2011 Real Personal Consumption 
Expenditures (Billions of Chained 
2005 Dollars) 

1900-1929: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Cd78 Consumption expenditures, by type, 
Total, $1987  
1929-2011: BEA Real Consumption in $2005. Data were linked in 1929 

Population 1900-2011 Population 1900-1949: Carter, Gartnter, Haines, Olmstead, Sutch, and Wright (2006), Table Aa6 (Population Total including Armed 
Forces Oversees), 1917-1919 and 1930-1959; Table Aa7 (Total, Resident) 1900-1916 and 1920-1929) 
1950-2011: Bureau of the Census (Total, Total including Armed Forces Oversees), 

Inflation (CPI) 1913-2011 Consumer Price Index BLS Series: CUUR0000SA0 
Stock Returns 1926:Q1-

2012:Q1 
CRSP Real Value-Weighted Returns Described above 

 
Generally, the data used in the paper are growth rates computed as differences in logarithms in percentage points at annual rate (400×ln(Xt/Xt−1) if 
X is measured quarterly and 100×ln(Xt/X−1) if X is measured annually).  The exceptions are stock returns which are 400×Xt, where Xt is the gross 
quarterly real return (that is, Xt = 1+Rt, where Rt is the net return), and TFP which is reported in percentage points at annual rate in the source data. 



Additional Figures 
 

Figure A.1: Time Series and Low-Frequency Components 
 

 A. Real Per-Capita GDP                                B. Real Consumption Per Capita 

 
 

C. Total Factor Productivity                                  D. Labor Productivity 

   
 

E. Population                                                    F. Inflation (PCE) 

   
 
  



Figure A.1: Time Series and Low-Frequency Components 
(Continued) 

 
G. Inflation (CPI)                                        H. Inflation (CPI, Japan) 

 
 

I. Stock Returns                                          J. Real GDP per capita (Annual) 

 
 

K. Real Cons. per capita (annual)                          L. Population (Annual) 

 
  



Figure A.1: Time Series and Low-Frequency Components 
(Continued) 

 
M. Inflation (CPI, Annual)                                     N. Stock Returns 

 
 



Figure A.2: Prediction Sets 
(Bayes: Solid and Frequentist: Dashed) 

 
 

 A. Real Per-Capita GDP        
                   (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
                          
 

B. Real Consumption Per Capita 
                   (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 

 



Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
C. Total Factor Productivity 

                  (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
                                  
 

D. Labor Productivity 
                 (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
   

 
  



Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
E. Population 

                  (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 

F. Inflation (PCE) 
                 (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
   
 
  



 
Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
G. Inflation (CPI) 

                   (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

  
                               

H. Inflation (CPI, Japan) 
                (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 
  



Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
I. Stock Returns 

                 (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 

J. Real GDP per capita (Annual) 
                (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 
 
  



Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
K. Real Cons. per capita (annual) 

                 (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 

L. Population (Annual) 
               (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
  



Figure A.2: Prediction Sets (Continued) 
(Bayes: Solid and Frequentist: Dashed) 

 
M. Inflation (CPI, Annual) 

                  (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

  
 

N. Stock Returns 
                  (i) Data                                          (ii) 50%                                      (iii) 80%                                      (iv) 90% 

 
 
 


