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Introduction to the thesis

This thesis is positioned in the research area represented by the intersection of
macroeconomics, monetary policy and the financial markets. The thesis consists
of three chapters, which make empirical and methodological contributions to the
field of empirical monetary policy analysis and dynamic macro-finance models of

the yield curve.

On a non-technical level, I propose an econometric model to evaluate empirically,
how a surprise change in the US monetary policy instrument (the short-term interest
rate) affects a large set of key macroeconomic variables. This enables us to assess the
typical macroeconomic outcome, following an unexpected change in the monetary

policy instrument.

In the above monetary policy analysis, I do not analyze potential determinants
of the interest-rate setting by the central bank. This would require the monetary
policy instrument to be expressed as a function of relevant macroeconomic variables;
a so-called policy rule. However, questions of what should be and appears to be the
economic determinants of the monetary policy rate have been discussed in a large
volume of papers. In a widely cited paper, Taylor (1993) estimates a particular
simple policy rule, which can be characterized as a "lean against the wind" policy.
Intuitively, the central bank increases the interest rate if economic activity expands
beyond its natural or potential level, or if inflation exceeds some desired rate of
inflation, or both. Accordingly, measures of inflation and economic activity should

be included in the set of candidate explanatory variables for the short-term interest
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rate.

The short-term interest rate is a crucial component in modern no-arbitrage yield
curve models; aka dynamic term structure models. However, until recently macro-
economic determinants of the short-term interest rate have been largely absent in
standard dynamic term structure models. As such, these models do not reflect
how central banks implement their monetary policy. Consequently, I propose to de-
scribe the bond market behavior, in terms of bond pricing, by an econometric model
that includes macroeconomic determinants of the bond yields. This model is then
evaluated in terms of how surprises to the included macroeconomic determinants

(variables) affect the yield curve.

The policy makers at the Federal Reserve Bank and the bond market participants
have one thing in common: They have an abundant amount of information at their
disposal, and as such the information set on which they condition the interest rate
setting, and bond pricing respectively, is large. Consequently, a recurrent theme
of this thesis is the approximation of the large information sets by a large panel
of macroeconomic and financial time series. In particular, this thesis advances the
use of dynamic factors, to approximate the conditioning information set in both
monetary policy analysis and in an affine macro-finance model of the term structure.
By construction, only a few of these factors are able to summarize the bulk of the

information of potentially hundreds of observed time series.

In the first chapter entitled "Estimating US Monetary Policy Shocks Using a
Factor-Augmented Vector Autoregression: An EM algorithm Approach” the economy-
wide effects of shocks to the US monetary policy instrument (the federal funds rate)
are estimated using an iterative maximum likelihood estimation method. The data
description of the US economy is confined to a large cross-section of 120 macro-
economic and financial time series and the comovement of these time series over
time is shown to be adequately described in terms of a few dynamic latent driving
forces (dynamic factors) and the US federal funds rate. Technically, the 120 time
series constitute the measured part in a state space system. The state transition
part of this system contains the dynamics of the driving forces and is represented
as a vector autoregression of the federal funds rate augmented by a few dynamic
factors extracted from the large cross-section of time series. The complete state
space system in turn allows for an empirical study of the response of each of the

120 observed variables following a shock to the federal funds rate. The methodolog-



ical contribution of this chapter is the one-step fully parametric estimation of the
Factor-Augmented VAR (FAVAR) by means of the EM algorithm as an alternative
to the two-step principal component method and the one-step Bayesian method in
Bernanke et al. (2005). I demonstrate empirically that the same impulse responses
but better fit emerge robustly from a low order FAVAR with eight correlated factors
compared to a high order FAVAR with fewer correlated factors, for instance four
factors. This empirical result accords with one of the theoretical results from Bai &
Ng (2007) in which it is shown that the information in complicated factor dynamics

may be substituted by panel information

The dynamic factors estimated in the first chapter capture reasonably well the
observed time series associated with the most dominant loading on the particular
factor. A standard procedure in the literature amounts to inferring the economic
interpretation of a particular dynamic factor from the dominant factor loading.
However, this approach neglects the non-dominant (but possibly significant) loadings
and hence does not generate unambiguous and well-defined interpretations of the

factors.

The second chapter "Identification of Macroeconomic Factors in Large Panels"
is written jointly with Hans Dewachter and Romain Houssa. In this paper we
address the ambiguous economic interpretation of the exactly identified dynamic
factors by using a procedure that imposes a specific and well-defined interpreta-
tion of the factors. The economic interpretation of the extracted factors is based
on a set of overidentifying restrictions on the factor loadings. This model is still
a Factor-Augmented Vector Autoregression, but it is now subject to linear loading
restrictions. However, we show how the estimator for the loadings subject to linear
restrictions can be stated in closed form within the EM algorithm. We apply this
framework to the same panel of US macroeconomic series as in the first chapter of
this thesis. In particular, we identify nine macroeconomic factors and discuss the
economic impact of monetary policy shocks. We find that the results are theoreti-

cally plausible and in line with other findings in the literature.

In the third chapter entitled "A multifactor Affine Term Structure Model with
Macroeconomic Factors from Large Panels" 1 approximate the potentially large in-
formation set of the bond market by the large panel of macroeconomic and financial
time series used in the former chapters. The main motivation for the use of an

expanded information set is the fact that the financial markets monitor and respond
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to a large set of macroeconomic variables in the process of filtering the underlying
development in key macroeconomic variables. I propose to solve the bond mar-
ket’s filtering problem by a large panel dynamic factor analysis to derive a small
set of macroeconomic state variables. In fact, these macroeconomic state variables
are a subset of the well-defined macroeconomic factors derived in chapter 2. A
discrete-time dynamic term structure model is then augmented with these filtered
macroeconomic state variables. The focus in the chapter is primarily on bond risk
premia and a forecast error variance decomposition shows that shocks to inflation

and in particular unemployment are important for the risk premia on long-term

bonds.
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Abstract”

Economy-wide effects of shocks to the US federal funds rate are estimated in a
state space model with 120 US macroeconomic and financial time series driven by
the dynamics of the federal funds rate and a few dynamic factors. This state space
system is denoted a factor-augmented VAR (FAVAR) by Bernanke et al. (2005). I
estimate the FAVAR by the fully parametric one-step EM algorithm as an alterna-
tive to the two-step principal component method and the one-step Bayesian method
in Bernanke et al. (2005). The EM algorithm which is an iterative maximum likeli-
hood method estimates all the parameters and the dynamic factors simultaneously
and allows for classical inference. I demonstrate empirically that the same impulse
responses but better fit emerge robustly from a low order FAVAR with eight cor-
related factors compared to a high order FAVAR with fewer correlated factors, for
instance four factors. This empirical result accords with one of the theoretical re-
sults from Bai & Ng (2007) in which it is shown that the information in complicated

factor dynamics may be substituted by panel information.

JEL classifications: E3, E43, E51, E52, C33.
Keywords: Monetary policy, large cross-sections, factor-augmented vector autore-

gression, EM algorithm, state space.
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1.1 Introduction

This paper estimates the "economy-wide" response to shocks to the US federal funds
rate using an iterative maximum likelihood estimation method. The data descrip-
tion of the US economy is confined to a large cross-section of 120 macroeconomic
and financial time series and the comovement of these time series over time is shown
to be adequately described in terms of a few dynamic latent driving forces (dynamic
factors) and the US federal funds rate. Technically, the 120 time series constitute
the measured part in a state space system. The state transition part of this system
contains the dynamics of the driving forces and is represented as a vector autore-
gression of the federal funds rate augmented by a few dynamic factors extracted
from the large cross-section of time series. The complete state space system in turn
allows for an empirical study of the response of each of the 120 observed variables

following a shock to the federal funds rate.

This setup is what Bernanke et al. (2005) denote a factor-augmented vector
autoregressive (FAVAR) approach and this paper is closely related to both their
approach and the data used. While Bernanke et al. (2005) estimate their FAVAR
using both a two-step semi-parametric principal component method and a one-step
Bayesian likelihood method, this paper contributes to the literature by estimating
the FAVAR by a one-step fully parametric iterative maximum likelihood method, the
Expectation Maximization (EM) algorithm. In fact, several of the future research
issues that Bernanke et al. (2005) address in their conclusion are cited below and

discussed in this paper:

"Future work should investigate more fully the properties of FAVARs, alternative
estimation methods and alternative identification schemes. In particular, further
comparison of the estimation methods based on principal components and on Gibbs
sampling is likely to be worthwhile. Another interesting direction is to try to interpret

the estimated factors more explicitly”. Bernanke et al. (2005) page 415, §3.

Specifically, the issue of alternative estimation methods is adressed by the above-
mentioned EM algorithm and the issue of alternative identification schemes is ad-
dressed by allowing for correlated dynamic factors in contrast to the typical ap-

plication of uncorrelated dynamic factors!. Finally, a thorough investigation of the

' The issue of interpretation of the estimated factors is addressed in Bork et al. (2008) in which
the EM algorithm is also applied.



properties of the FAVARs is undertaken by estimating a large number of econometric
specifications of FAVARs and subsequently evaluating these in terms of statistical
fit, specification tests, and implications for monetary policy analysis. Consider each

of these three contributions in turn.

Similar to the one-step Bayesian method, the EM algorithm estimates all the
parameters and the dynamic factors simultaneously in contrast to the two-step
principal component method. The last-mentioned method extracts the factors non-
parametrically from the data without imposing any dynamic properties on the fac-
tors in the first step. The second step estimates the dynamic properties of the factors
through a vector autoregression treating the factors as observed?. One complication
in the principal component method is how to separate the observed federal funds
rate from the latent factors in the extraction of these factors, which in contrast is
handled in a straightforward manner in the one-step method. However, the advan-
tage of the principal component method is its computational simplicity. Finally,
the fully parametric likelihood approach of the EM algorithm allows for classical

inference.

The alternative identification scheme allows the factors to be correlated, which
is relevant if macroeconomic interpretation is to be attached to these latent factors.
For instance, if the first factor is interpreted as an industrial production factor and
the second is interpreted as an unemployment factor, then we would expect these
factors to be negatively correlated. The correlated factor approach in this paper

allows for this feature.

Finally, the robustness of the preferred econometric model is evaluated against
several model specifications in terms of the number of factors included in the FAVAR
and the number of lags of these factors using various information criteria. Specif-
ically, careful model selection leads to a preferred model characterized by eight
factors with a particular parsimonious factor dynamics. This model yields an eleven
percentage point better fit of the panel and reaches the same conclusions from the
empirical monetary policy analysis as the benchmark model with four factors but
a complicated VAR(13) factor dynamics. This finding accords with one of the the-
oretical results from Bai & Ng (2007) in which it is shown that complicated factor

dynamics may be substituted by panel information (in terms of more factors). The

2The difference between the estimated factors and the true factors vanishes as the cross-section
dimension and the time series dimension approach infinity, cf. Bai & Ng (2002).
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eight correlated factors are found to be closely related to observed variables; for
instance, the first and most important latent factor is interpreted as an industrial
production factor, the second as an unemployment factor, the third as a NAPM?

factor, and so on.

Factor models have a long tradition in applied economics, finance, and other
sciences and hence only a few observations may be needed to motivate why we
should continue to be interested in variants of factor models.

Firstly, factor models enable a reduction in the number of explanatory variables
(factors) when the variation of a cross-section of variables can be decomposed into a
low-dimensional common component reflecting the common sources of variation and
a variable specific idiosyncratic component; cf. Ross (1976), Chamberlain (1983),
Chamberlain & Rothschild (1983) and Geweke & Zhou (1996) for cross-section ap-
plications within finance. Macroeconomic variables tend to comove over the business
cycle and therefore their common variation over time may be explained by a few
dynamic factor(s); cf. Geweke (1977), Sargent & Sims (1977) and Geweke & Single-
ton (1981) for the first generation of the dynamic factor (index) models estimated
by spectral density maximum likelihood methods. Engle & Watson (1981) propose
a time domain maximum likelihood method and Watson & Engle (1983) and Quah
& Sargent (1993) apply the Expectation Maximization (EM) algorithm introduced
by Dempster et al. (1977).

Secondly, large cross-sections of time series are nowadays available to researchers
and policy makers, including central bankers that "follow literally hundreds of data
series", as expressed by Bernanke et al. (2005). The potential gains of using large
information sets are more precise forecasts and a better understanding of the dy-
namics of the economy. In the context of the FAVAR, a much richer information
set is utilized in the econometric model than in the standard vector autoregressive
(VAR) model, leaving less scope for the omitted variable problem. Moreover, be-
cause macroeconomic data are prone to measurement errors®, dynamic factor analy-
sis of large panels may help to filter out the observed counterpart of a theoretical
variable, like "inflation", which may not be well represented by a single observed

time series.

Recently, a considerable amount of research has been devoted to the econometric

3Related to surveys by National Association of Purchasing Management.
4Sargent (1989) shows how the existence of measurement error leads to a dynamic factor index
model.



theory and empirical analysis of large dimensional approximate® dynamic factor
models, notably the generalized dynamic factor model by Forni et al. (2000, 2004,
2005) and the static representation of the dynamic factor model by Stock & Watson
(2002a,b). Both approaches allow for a general error structure and facilitate dynamic
factor analysis of large panels through a few dynamic factors that are extracted from
the panel X using non-parametric dynamic and static principal component methods,
respectively®. A vector autoregression of the factors may be considered as a second
step treating the factors as observed if one is interested in structural VAR analysis;
see for instance Stock & Watson (2005).

Note at this stage that in the FAVAR of Bernanke et al. (2005), the common
variation of the panel dataset is not limited to being explained by a set of latent
dynamic factors, as in the Stock & Watson model, but also observed variables (the
federal funds rate) may enter into this set and accordingly interact dynamically with

the factors.

Econometric theory of the determination of the number of factors has recently
been developed, notably by Hallin & Liska (2007), Stock & Watson (2005) and Bai
& Ng (2007) for the Forni, Hallin, Lippi & Reichlin class of models and by Bai & Ng
(2002) for the class of dynamic factor models in the static representation. Including
more factors in the factor model increases the statistical fit of the panel but at the
cost of parsimony, whereas choosing too few factors means that the factor space
is not sufficiently spanned by the estimated factors. The papers propose various
information criteria to guide us in the selection of the number of factors but they
do not provide information about the number of lags in the VAR. Consequently,
the model selection problem in this paper is solved using the above-mentioned in-
formation criteria, and for a given number of factors, also the standard Akaike and

Schwartz information criteria.

Since the initial work of Forni, Hallin, Lippi & Reichlin and Stock & Watson, dy-

namic factor models have been used in an increasing number of applications’ starting

5In the first generation eract factor models like Ross (1976) or Geweke (1977), Sargent & Sims
(1977) and Geweke & Singleton (1981), the idiosyncratic components are orthogonal. However, the
approximate factor models allow for some "local" correlation among the idiosyncratic components.

6Stock & Watson (2002a) show that the space spanned by the true number of factors, F, can be
consistently estimated by the non-parametric principal component method when the cross-section
dimension (N) and the time dimension (T') of the panel are large and the number of principal
components is at least as large as the true number of factors.

TA detailed account of empirical applications can be found in Reichlin (2003) and Breitung &
Eickmeier (2006).



with the construction of coincident indicator indices as in Forni et al. (2001), fore-
casting where dynamic factors enter the forecasting equation, cf. Stock & Watson
(2002a,b, 2006), and very recently nowcasting as in Giannone et al. (2008) where
dynamic factor analysis of large panels is used to assess the current-quarter eco-
nomic conditions. The use of dynamic factors in financial asset pricing applications
includes the estimation of the conditional risk-return relation in Ludvigson & Ng
(2007) and bond market applications by Monch (2008) and Ludvigson & Ng (2008).
Finally, a number of papers to which this paper is particularly related adopt the
factor approach for monetary policy analyses with at least two advantages over the
traditional VAR.

Firstly, the curse of dimensionality in the VAR is turned into a "blessing" of
dimensionality in the factor models as expressed by Stock & Watson (2006) which is
particularly useful for representing the data-rich environment in which central banks
and professional forecasters actually operate.

Secondly, to assess the current and expected future state of the economy in pol-
icy decision making, the central banks are faced with a variety of data in different
frequencies, with missing observations and in a preliminary or revised form. There-
fore, it can be argued that empirical policy analysis researchers should look at the
real-time data that the central bank had at its disposal instead of the revised data
and this can be achieved by the dynamic factor model, cf. the approach by Giannone
et al. (2008).

Giannone et al. (2004) perform a real-time monetary policy study and find that
the US economy is driven by two stochastic shocks (real and nominal) which im-
plies that the federal funds rate should mainly track these two shocks, they argue.
Bernanke & Boivin (2003) also consider a real-time dataset in addition to a larger
cross-section of revised time series. They find that the scope of the dataset (the
number of variables in the cross-section, V) is more important for the forecasting
performance of expected inflation and real activity in the forward-looking Taylor
rule than the real-time feature. In a similar setup, Favero et al. (2005) study a
revised cross-section of US and Euro area data. Common for these studies is the es-
timation of the factors by principal component methods which are then included in a
low-order VAR in the second step to allow for impulse response analysis of monetary
policy shocks and these responses are found to be more in line with the predictions
from theory. However, a critical step in the empirical monetary policy analysis is a

proper disentanglement of the federal funds rate from the estimated factors and the
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paper by Bernanke et al. (2005) is particularly clear about this identification issue.

As an alternative to the two-step principal component estimation method, one-
step Bayesian estimation techniques are applied in Bernanke et al. (2005) as well as in
Banbura et al. (2008). The former choose thirteen lags in their FAVAR specification
while the latter also estimate this variant in addition to lag specifications deter-
mined by the BIC criterion. The fully parametric one-step EM algorithm method
has recently been applied to large panels in Jungbacker & Koopman (2008) that
estimate a dynamic factor model with a VAR(1) in the orthogonal factors and in
Reis & Watson (2008) that estimate pure inflation with a VAR(4) in absolute-price

and relative-price components.

Based on this selective literature overview there seems to be a need for exploring
the consequences of model selection for not only policy evaluation but also in terms
of statistical significance of parameters and statistical fit of the various components
in the economy such as inflation, employment, production etc. This issue is taken
up in this paper and consequently several model specifications ranging from a few
correlated factors with only one lag to many correlated factors with rich factor dy-
namics are estimated in an EM algorithm setup. I show how identifying restrictions
can easily be imposed on the parameters including restrictions on the VAR para-
meters, if needed. This is in contrast to the Bayesian approach where these kinds
of restrictions seemingly lead to excessive computational cost, cf. Bernanke et al.
(2005).

Furthermore, though the EM algorithm finds the vicinity of the maximum quickly,
the convergence to the maximum is almost excruciatingly slow (linear convergence
rate) and consequently hybrid methods combining the EM algorithm and the BFGS
have been proposed in the literature. Therefore, I also apply the hybrid EM-BFGS
as described by Jungbacker & Koopman (2008) in order to speed up the convergence.

The rest of the paper is organized as follows. The factor-augmented VAR is
presented in section 1.2 while identification issues and the estimation method are
presented in section 1.3. Section 1.4 details the empirical results and section 1.5
concludes. The appendices contain details on the Kalman filter and smoother as
well as the EM algorithm.



1.2 Model framework: The factor-augmented VAR

Two ingredients need to be combined to set up the FAVAR. The first ingredient
is the dynamic factor model and the second ingredient is the standard VAR with
observed variables. Before mixing the ingredients, one thing is important to note:
the federal funds rate (FFR) is both part of the observed variables in the panel (the
measured part of the state space system) and also part of the state variables (the
state transition equation in the state space system) which include the dynamic latent
factors. Therefore, to allow for this feature the standard dynamic factor model is

modified and this is described in detail below.

This section will center around the static representation of the dynamic factor
model in state space form which can be seen as a special case of the large dimen-
sional generalized dynamic factor model; see Bai & Ng (2007) for a clear exposition.
Following the presentation of the dynamic factor model, the FFR is properly iden-
tified in the panel and then added to the state transition variables. This may sound
like a backward description of the factor-augmented VAR but nevertheless I find
this the most intuitive route towards the FAVAR.

The key implication of the dynamic factor model is that the variation of each of
the N observed variables in the panel X can be decomposed into two orthogonal
components, that is a component y common to all variables and an idiosyncratic
component ¢ specific to each variable. The common component is driven by a few
common factors and this component accounts for the covariation of the observed
variables at all lags and leads. Consequently, the ith variable in the panel X® at

time ¢ can be written as:
Tit = Xi + it (1-1)

fort=1,..,Nandt=1,..,T with FE [Xitgjs] =0V i, j,t s but with a potentially
limited amount of correlation among the idiosyncratic components in the new gener-
ation of dynamic factor models. The following description encompasses the dynamic
factor model, which is characterized by the dynamic loading on the common factors
as well as the static representation of the dynamic factor model characterized by
the static loadings. The distinguishing features of the models will become useful in

later discussions.

8 All variables in the panel are transformed into stationary variables with mean zero and unit
variance. See section 1.4.1.



Consider as in Forni et al. (2005), the specification of the N x 1 vector of the
common component at time ¢ to be dynamically explained by the ¢ common factors
fi such that y, = A" (L) f,, where A (L) is a ¢ x N matrix polynomial in the lag-
operator L of finite order s°. To facilitate an interpretation of the panel being driven
entirely by ¢ primitive iid shocks, the common component is sometimes written as
X: = B (L) &, where § (L) represents the impulse-response functions and accordingly
for each variable records the responses in terms of sign, magnitude and lag-structure
following a shock to the underlying primitive shocks, ;. Inserting the specification
of the common component in (1.1) results in a dynamic factor model driven by ¢

dynamic factors:
zie = N (L) fi + & (1.2)

where \; (L) = X\io + Xi1L + -+ - + A\ sL°. Stacking contemporaneous and s lagged
values of f; in the ¢ (s + 1) dimensional vector F; and the matching values of \; in
q (s + 1) dimensional vector A; results in the static representation of the dynamic

factor model in (1.2), which is driven by r = ¢ (s + 1) factors, F; :

z = N F+& (1.3)
T
)\i,O ft
)\i,l ft—l
= . . + fz’t
)\i,s .ft—s

Notice how the dimension of F;,r = ¢ (s 4+ 1) depends on the heterogeneity in the
response of the data to the factors f; through A (L) or equivalently to the primitive
shocks ¢; through 5 (L).

Furthermore, F; is governed by a dynamic process which depends on how compli-
cated the process governing f; is relative to the response heterogeneity of the panel.
Assuming that f; is an AR(h) process, Bai & Ng (2007)!! show that F; can be rep-
resented as a VAR(p) process with p = max (1, h — s). Intuitively, if the dynamic
process of f; is particular simple then a VAR(1) should be sufficient. Interestingly,
a sufficiently heterogeneous dynamic response of the data may substitute for some

otherwise complicated dynamics of f;, cf. the term (h — s) in max (1,h —s). I will

Infinite order of the lag-polynomiums is considered in the generalized dynamic factor model of
Forni et al. (2000).

10Rewrite the factors in terms of the primitive shocks, f; = a(L)e; and as a result 3 (L) =
A(L)a(L). See Forni et al. (2007) for a thorough discussion.

UThey also discuss MA(h) and ARMA processes.
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refer to this result later in the discussion of the empirical results.
The static representation of the dynamic factor model is now closed and can be

written in state space form:

Xt = AFt+§t

(1.4)
Fy=® (L) Fy + T

where X, = (214, s 2ng) & = (€ Exy) | iSLLA N (0, R)2 and A = (Ay, ..., Ay)"
is a N x r loading matrix. The state transition equation is stationary so that the
eigenvalues of the pth order matrix polynomial ® (L) are less than 1 in modulus,
T is a r X ¢ matrix and ¢; is i.i.d N (0,Q). The unknowns in this Gaussian state
space model are the parameters in © = {A, R, ® (L), Y, Q} and the latent dynamic

factors Fj.

The final step towards the FAVAR is the inclusion of the FFR in both X; and
F, (FFR is added to and ordered last in F}). Specifically, the FFR in X; loads with
unity on the last factor in F; and zeros on the remaining latent factors, such that
the corresponding row in A for FFR is [0,...,0,1]. In principle, an idiosyncratic
error could be attached to the FFR to capture the transition between discretionary
changes in the policy rate. In line with Bernanke et al. (2005), I argue that the FFR
is indeed measured without error whereas the other variables may be measured with
error. Applying these minor changes to the state space form in (1.4) leads to the
preferred FAVAR specification. However, some identifying restrictions need to be
imposed on the econometric formulation to achieve distinct factors, which, together

with the estimation procedure is the topic of the following section.

1.3 Identification and estimation by the EM al-
gorithm

This section starts with a discussion of identification schemes and then proceeds

to a brief description of the estimation procedure, that is the EM algorithm. I

12Note that the assumption of i.i.d idiosyncratic components in (1.4) defines an ezact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
where local cross-sectional correlation within a group of similar variables should be expected. As
such, equation (1.4) represents a misspecified model. However, Doz et al. (2006) generate data
under the assumption of an approrimate factor model and show, for large N and T, that the exact
factor model consistenly estimates the factors by a Gaussian (quasi)maximum likelihood method.
Specifically, they propose to use the EM algorithm.
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also demonstrate how linear parameter restrictions can easily be imposed. Finally,
a hybrid estimation method that combines the EM algorithm and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method with analytical derivatives is described.

The state space model in (1.4) is not econometrically identified as it is possible to
form observationally equivalent models by arbitrary rotations of the latent factors,
F}, and the loadings A. For any non-singular matrix H we can form a model that
is observationally equivalent to (1.4) by a rotation of the factors F;, = HF; and
loadings A = AH ™! :

X, = AF+¢,
F = ®F , +5

where the dynamics of the factors are simplified to a VAR(1) with T = I. Moreover,
g, = He;. Consequently, it is not possible to estimate a unique set of parameters
© with the data unless identifying restrictions are imposed on ©. This is a well-
known problem of classical factor analysis and the principal component approach
to dynamic factor analysis by Stock & Watson. Typically, these models are iden-
tified by restricting the factors to be orthogonal or alternatively the loadings to be
orthogonal. However, neither of these identification schemes are sufficient in the
one-step estimation of the state space model because the factors are identified by
both the measurement equation and state transition equation in (1.4). Therefore,
more restrictions are needed to obtain an econometrically identified model and this

issue is addressed by the following three requirements:

1. Ensure invariance of the model under invertible linear transformation of the

factors.

2. Ensure that the number of moments in the data, 3N (N + 1) exceeds the

1
2
number of free parameters in ©.

3. The loading matrix A must have full rank in order to avoid identification
problems; see Geweke & Singleton (1981) and Aguilar & West (2000). Under
the assumption that the number of factors is known and equal to r the rank

of A must be r.

The second requirement is easily satisfied because the cross-sectional dimension

N is very large compared to the number of factors. The third requirement is the-
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oretically satisfied!® from the parameter restrictions I impose to satisfy the first

requirement. Consequently, I focus on the first requirement in the following.

Generally, the first identification requirement is about separating the contribu-
tions of the different latent factors to the variation in the panel X. The predominant
starting point is uncorrelated factors which implies that the identification of the
sources of variation in X is then a matter of imposing an identifying structure on
the loading matrix; in particular a structure that embodies the separation of the con-
tribution of the factors to the variation in X. Alternatively, the assumption about
uncorrelated factors can be relaxed by allowing for correlated factors. However, less
restricted factor dynamics would have to be paid by a more restrictive structure on
the loading matrix in order to be able to separate the sources of variation. In other
words, the specific identification scheme applied is a matter of choice but it does not
change the underlying idea that the factors are the sources of common variation in
X either the variables in X covary because they load differently on a set of common
uncorrelated factors or because they load on different factors which are themselves

correlated.

In the case of uncorrelated factors, the "hierarchical" structure of the loading
matrix in Geweke & Zhou (1996), Aguilar & West (2000) and chapter 8 of Harvey
(1989) is a popular identification scheme that uniquely identifies the loadings and
the factors by imposing a lower triangular structure on the loading matrix A. More
specifically, () is assumed to be an identity matrix and the upper r x r block of
A is lower triangular with r positive diagonal elements. The term "hierarchical"
stems from the lower triangular form, where the first element in X only loads on
the first factor, the second variable on the first and second factor, etc'*
& West (2000) further restrict the diagonal of the r x r block of A to unity and

then allow for a diagonal covariance matrix for the factors. It should be noted that

. Aguilar

this "hierarchical" approach is in fact similar to the identification scheme stated in
Proposition 1 in Geweke & Singleton (1981) in their frequency domain analysis of a

first generation dynamic factor model.

In the case of correlated factors, a more restricted and "simple" structure of the

loading matrix needs to be imposed to ensure identification. Specifically, the upper

13The rank condition is never violated in the empirical application detailed in section 1.4.

14The ordering may potentially influence the statistical fit. However, I do not find such sensitivity
of the empirical results in this paper to the ordering. This issue is further discussed in the empirical
section. Aguilar & West (2000) present a similar discussion.
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r X r block of A is an identity matrix. This means that up to some measurement
error the first variable in X is assumed to be a direct measure of the first factor,
the second variable a direct measure of the second variable, etc. Notice, that the
unit restrictions do not guarantee that the specific factor turns out to explain the
restricted variable well. On the contrary, the other of variables in X may be far
better explained by a factor that is fairly different from the restricted variable and
consequently the restricted variable will have a large measurement error. Interest-
ingly, Proposition 2 in Geweke & Singleton (1981) can be used when the factors are

correlated and corresponds to the identity matrix restriction on the loadings.

In this paper, the identification scheme with correlated factors is preferred. The
reason for this preference is that if economic interpretation is to be attached to the
estimated factors, for instance a "real activity factor" or an "employment factor",
then it makes more sense to have correlated factors because theoretically but also
empirically such economic quantities should be correlated and not orthogonal. Yet
another argument for correlated factors is found in the typical view of the monetary
transmission mechanism, which is investigated empirically in section 1.4. According
to this view, a contractionary monetary policy shock is expected to decrease produc-
tion and employment with some time lags and then even later also inflation. More
precisely, the inclusion of more correlated factors in a low order VAR in the state
transition equation combined with different loadings on these factors in the mea-
surement equation is able to produce an empirically plausible monetary transmission

mechanism.

The identifying restrictions in this paper can be summarized as follows. Consider
the panel X with the rows reordered such that the restricted variables are found in
the top r rows of X. In this case, the loading restrictions simply amount to imposing
an identity matrix in the top r x r block of A. In the current application, the rows

of X are not reordered so the loading restrictions are imposed as follows:

1. The FFR in X; with row index /, in A loads only on the last dynamic factor
in F; which is a monetary policy factor (the FFR itself). Hence, for the r

columnwise elements in row £, in A, the restricted loading is:

5 =10,..,0,1].

2. The remaining (r — 1) latent dynamic factors ordered before the monetary pol-

icy factor in the VAR each load with unit restriction on a single "slow-moving"
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variable (see below), which is assumed to respond with a lag to changes in the
FFR. Let the selected slow-moving variables with restricted loadings be in-
dexed by row {/(1,..,¢,_1} of X, which means that the restricted rows of A

can be written as:
Ay = [ 111 1><(972) 0 }

Ay, = (1.5)

[ 0 1 0 }
1x(j—1) 1X1 1x(r—j)

Azr—l = [ 1X(9_2) 1&1 0 ]

whereas the remaining elements of A are left free.

This identification scheme allows for correlated factors and the zero restrictions
on A ensure that the factors explain distinct parts of the variation in the panel. A
separate identification issue, which is relevant for the identification of the monetary
policy shocks in the VAR by a recursive identification scheme requires the factors
to be associated with slow-moving variables such that ¢; € {¢y,..,¢,_1} should be
chosen from this group of variables. Therefore, Bernanke et al. (2005) propose to
categorize the variables into "slow-moving" variables such as production and unem-
ployment variables and "fast-moving" variables like financial market variables'®; see

section 1.4.1 for more details.

1.3.1 The EM algorithm

The linear Gaussian state space model in (1.4) with its latent factors F} is well repre-
sented in a Kalman filter setting. However, the Kalman filter needs the parameters
© ={A,R,®(L),Y,Q} as input and therefore does not estimate these. Building
on the seminal work by Dempster et al. (1977), Shumway & Stoffer (1982) introduce
the Expectation Maximization (EM) algorithm to estimate the parameters in state
space models as the model above. Essentially, the EM algorithm is an iterative
maximum likelihood procedure applicable to models with "missing data", which in

this context are the unobserved factors.

15Notice, that if the factors also are allowed to be fast-moving then a simultaneity problem arise
in the identification of the monetary policy factor in the sense that both the monetary policy factor
and the fast-moving factor(s) should be allowed to respond contemporaneously to either of these
shocks. Bjgrnland & Leitemo (2009) solve this by long-run restrictions.
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The complete data likelihood of the Gaussian state space model in equation (1.4)
is given in equation (1.19) in Appendix B.3. However, the complete data likelihood
cannot be calculated due to the unobserved F}, but it is possible to calculate the
expectation of the complete data likelihood conditional on the observed data and
input of parameter estimates (denoted ©)); see Appendix B.3. Essentially, this
expectation depends on smoothed moments of the unobserved variables from the
Kalman smoother and hence on the data and ©U). The Maximization step results

in the following closed form estimators at iteration j

vec (A(j)) = vec(DC™) (1.6)
RY = %(E—DC"lDT) (1.7)
vec (<I>(j)) = vec(BA™) (1.8)
Q) = L[C-BATB] (L9)

where the following moments are available from the Kalman smoother (indicated by
subscript ¢|7T'):

A= Zthl (thl\TFtTfl\T + pt71|T> B = Zthl (Ft\TFttl\T + p{t7t71}|T>
¢ = 23:1 (ﬁt\TﬁtTT + pt|T> D= Zf:l Xtﬁt\TT
E= Zthl XithT

and where F} is approximated by Ft‘T = E[F| Xr]. Xr = {Xy,.., X1} denotes the
information set, ]3t|T = var (Fy| Xr) is the variance and P{t,t—1}|T = cov (Fy, Fy_1] Xr)
is the lag-one covariance.

These estimates can then be used in the Expectation step to compute a new set
of moments from the Kalman smoother. Subsequently, the estimates are supplied

to the maximization step above and the procedure continues until convergence of
the likelihood.

In practical implementation, a VAR(1) usually does not pose any problem and
neither should a VAR(p) because any lags of F; can be included in an augmented
state vector if the autoregressive parameters in ® (L) are represented in a first order
form (companion matrix) as in Hamilton (1994) chapter 10. The autocovariances
in the B matrix needed in the ® estimate should then follow automatically from

the first order form; cf. Watson & Engle (1983). However, this paper follows a
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slightly different route similar to Koopman et al. (1999) but with an implementation
in MATLAB'®, where the smoothed autocovariance matrix of the state variables is
constructed directly and explicitly through recursions, cf. de Jong & Mackinnon
(1988), de Jong (1989) and Koopman & Shephard (1992). For instance, the lag-
one covariance smoother needed for the ®; estimate in a VAR(1) is defined in the

latter-mentioned paper as:
Pyy e = [I - ptff_th—l] Lt—lpfw_z

and the lag-two covariance smoother needed for the ®, estimate in a VAR(2) is:

p{t,t72}|T = [I - pt|t71Nt—1] Lt—lLt—2ptf2|t73

where N;_; and L;_; in Appendix B.2 are matrices defined recursively in the Kalman
smoother and Kalman filter, respectively. Furthermore, the state smoothing recur-

sions are also stated in the appendix.

Parameter restrictions in the EM algorithm

In order to implement the identifying restrictions in (1.5), the estimators in (1.6) —
(1.9) subject to linear restrictions need to be derived. Shumway & Stoffer (1982)
and Wu et al. (1996) present the restricted ®*!7 and Bork et al. (2008) show how
the restricted A* estimator subject to a linear restriction in the form Hy vec A = Ky

can be derived:

vec (A*) = vec (DC™)
+(C @ R)HY [Hy (CT @ R) H{] " {ra — Hyvec (DC™)}
(1.10)

where K, is a 7 X 1 vector and the restriction matrix H, is of dimension n x Nr.
Notice that the unrestricted estimator in (1.6) appears if 7 = 0 restrictions are

imposed.

16 A small dynamic factor model with N = 12 observed variables, r = 2 factors and p = 4 lags,
was simulated and subsequently estimated with noisy initial estimates of the parameters to check
the code.

17shown in the appendix.
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1.3.2 The hybrid EM-BFGS optimization method

The EM algorithm is known to converge rather slowly due to its linear convergence
rate. However, the EM algorithm robustly finds the vicinity of the maximum quickly
and therefore it has been proposed by for instance Lange (1995) to combine the
good properties of the EM algorithm in the early stage of the optimization process
with the fast convergence properties of quasi-Newton methods in the late stage
of the optimization process. This hybrid requires analytical derivatives and in an
application by Jungbacker & Koopman (2008), these are derived. Moreover, whereas
I often experience computing time in hours for the heavily parameterized models
presented here, they report computing time in minutes. The analytical derivatives
from Jungbacker & Koopman (2008) in terms of Kalman smoothed quantities are

given Appendix C.

The performance of this hybrid method is here somewhat mixed. Often it is
found that the EM algorithm has to get very near the optimum before it is reliably
to shift to the BFGS method; otherwise the BFGS method fails to find an optimal
solution. However, when the hybrid is succesful, it is indeed relatively fast and

therefore continued research into this hybrid is worthwhile.

1.4 Empirical results

In this section, I present empirical evidence that a factor model with more factors
but fewer lags performs equally well, if not better, in terms of statistical fit (increased
R?). Moreover, the empirical monetary policy analysis results in equally plausible
impulse responses. For instance, the price puzzle is almost eliminated and compara-
ble to Bernanke et al. (2005). Moreover, unemployment responds more negatively to
contractionary monetary policy shocks but still reverts to the baseline within four
years (similar to Bernanke et al. (2005)). Finally, I also show that the empirical
evidence accords with the theoretical insight from section 1.2: that complicated fac-
tor dynamics (many lags) may be substituted by cross-sectional information (more

factors).

Throughout this section, I compare the results that I obtain from various model
specifications with the principal component FAVAR and the Bayesian FAVAR by

Bernanke et al. (2005).'® The differences in the empirical results may then be

18] use exactly the same dataset as these authors.
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attributed to the differences in the estimation methods, i.e. the EM algorithm
versus the methods of the Bernanke et al. (2005)' as well as the factor configuration
in terms of the number of factors, r, and the number of lags, p. Accordingly, an
EM algorithm equivalent to the preferred model by Bernanke et al. (2005) with
four factors including the monetary policy factor and thirteen lags is calculated
(abbreviated BBE-EM ) and makes up a first step in the comparison. The second
step in the comparison is then made with reference to the preferred model in this
paper with eight factors and three lags, a model choice that is explained below.
I find that the results from the BBE-EM model are comparable to the results by
Bernanke et al. (2005) in the sense that a similar overall R? for the panel seems to
be achieved as well as similar and equally plausible impulse responses. Furthermore,
the preferred eight factor model with three lags improves the results significantly
in the sense that a ten percentage point increase in the overall R? for the panel is

achieved without compromising the plausibility of the impulse responses.

It should be emphasized that the empirical analysis in this paper focuses on
the identification of monetary policy shocks and the economy-wide responses to
these shocks while remaining agnostic about other structural shocks. Furthermore,
I impose that the number of static factors equals the number of dynamic factors,
i.e. 7 = ¢ and that T = I, which generates a structural shock to each of the factors.
Hence, the focus is on the determination of the number of static factors including the
monetary policy factor, which amounts to r = 8 factors in this paper, rather than

on the determination of the ¢ dynamic factors driven by ¢ < r structural shocks.?’

The preferred model with eight factors and three lags is the outcome of a careful
model selection process where a large number?! of estimated FAVAR models were
evaluated in terms of information criteria, test statistics, and model parsimony con-

siderations to be detailed below. The motivation for evaluating a large number of

19 Although seemingly unreported by the authors, it seems that they employ uncorrelated factors
in contrast to the correlated factors employed in this paper.

20For example, f1; and fi ;1 count as r = 2 static factors in the static representation of the
factor model whereas in the dynamic factor model, they represent the contemporanenous and
lagged values of ¢ = 1 dynamic factor driven by one structural shock. Accordingly, r is the rank of
the covariance matrix of the common component x whereas ¢ is the rank of the spectral density
matrix of x. For further discussion of structural factor models, refer to Forni et al. (2007) and
Stock & Watson (2005).

21T programmed the estimation procedure as a MATLAB function that takes the dataset, r and
p as arguments and then looped over this function from r = 3,..,10 and p = 1,..,13. To make
this excercise computationally feasible, a maximum of 10,000 iterations in the EM algorithm were
allowed, which explains the few missing factor models.

19



models is twofold: 1) What is the sensitivity of the empirical policy analysis to
the number of lags included in the VAR? The monthly frequency of the data asks
for several lags, but is the thirteen lags chosen by Bernanke et al. (2005) necessary
across different number of factors? Fortunately not. Nearly identical impulse re-
sponses emerge from a factor model with eight factors and three lags and from a
factor model with four factors and thirteen lags®?. I ascribe this observation to the
theoretical result mentioned previously, that complicated VAR dynamics in terms of
many lags can be substituted by cross-section information in terms of more factors.
2) Obviously, more factors imply a better statistical fit of the panel, but what is
the optimal number of factors for this panel and which part of the panel gains from
including more factors? Price indices for instance are far better explained when
more than five factors are added, at least in this paper. That more factors need
to be included for a proper explanation of the price indices seems to be a special
feature of the correlated factor approach in this paper in contrast to the orthogonal
factor approach. The reason is that although the fit is not inferior, it involves more

correlated factors before the model picks up to the price dimension in the dataset.

The rest of this section now presents detailed results behind some of the conclu-
sions stated above. Firstly, the data and the transformation of the data are described
followed by an account of how the identifying restrictions are imposed. Secondly, a
number of panel information criteria from Bai & Ng (2002) are calculated as well
as the usual AIC/SIC information criteria and a multivariate Portmanteau test tai-
lored to latent variables in a VAR. Moreover, the autocorrelation function for the
VAR residuals and an average R-square for each factor model are plotted. All these
measures guide me in the model selection choice. Thirdly, impulse responses and

forecast error variance decompositions are calculated.

1.4.1 Data description and data transformation

The dataset used in this paper is exactly the same as the dataset that Bernanke
et al. (2005)?* analyze. The data consist of N = 120 monthly time series covering
a large part of the US economy over the period 1959:1 to 2001:8; see Appendix A.1

page 162 for a description of the dataset and in particular the classification into

22Notice that both models involve approximately the same number of autoregressive coefficients
in the VAR.

23] thank Jean Boivin for kindly making the data set available on his website, HEC Montréal,
Canada
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slow-moving variables and fast-moving variables. The time series in the panel are
transformed into stationarity by taking logs and/or differencing?*. The next step
involves standardizing the transformed data so that all series have mean zero and
unit variance, which is typical especially for principal component analysis. Denote by
X; the transformed and standardized data at time ¢ consistent with equation (1.4)
page 11. However, when studying impulse responses, the interest centers around
the observed variables in levels (e.g. the price level) rather than the transformed
variables (e.g. inflation) and therefore a reverse transformation of the responses is
required, denoted by D (L) such that the reverse-transformed data X, = D (L) X;5.

1.4.2 The imposition of the identifying restrictions

A number of identifying restrictions need to be imposed on r rows of the loading
matrix A as explained in equation (1.5). However, the specific set of r rows in A
which are jointly restricted to an identity matrix needs to be determined. In other
words, this amounts to choosing a set of r variables assumed to be a direct measure

of the r factors.

I propose a two-step procedure to determine the specific set of r variables in the
panel X which should be a direct measure of the r factors. The first step involves
principal component analysis (PCA) where r principal components are calculated
from the panel X. This choice is based on the insight that principal components
consistently estimate the space spanned by the (independent) factors; cf. Bai &
Ng (2002) and Forni et al. (2000, 2005). Subsequently, each of the N variables is
regressed on the r principal components resulting in a N x r matrix of individual
R?. The dominant R?’s for each factors is then used to infer the characteristics of
each factor. Typically, this approach reveals that the first factor can be interpreted
as an industrial production factor. In the second step, I impose the exactly identi-
fying restrictions on the inferred dominant factors and filter the factors with very
weak priors on the initial parameter estimates. In particular, the loading matrix
was filled with with zeros except for the exactly identifying unit restrictions and a

complete estimation by the EM algorithm is undertaken. Finally, another evaluation

21The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Bernanke
et al. (2005) for details on the data set and on the transformation which results in a sample size
of T = 511. The data transformation decisions are similar to Stock & Watson (2002b) and based
on judgemental and preliminary data analysis of each series, including unit root tests.

2 For instance, if the data in X; are in growth rates, the diagonal elements of D (L) would need
to be multiplied by ﬁ in order to have the data in levels in X;.
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of the dominant factors from the EM algorithm is undertaken as the factors are now

correlated. 2’

Consequently, this pre-study reveals that the first factor is robustly associated
with industrial production. The second factor is related to unemployment, the third
factor is associated with NAPM indices (production or employment), the fourth
factor with production hours, and the fifth factor with price indices. Based on these
findings, the restrictions are imposed on the following list of variables in increasing

order of the number of factors included:
{l1,0s, .., 0o} = {11,27,18,47,112,23,17,50, 16}

where numbers refer to the variable number listed in Appendix A.1 page 162. No-
tice that the restrictions are not imposed on variables that are deemed a priori to
be particularly important variables such as the unemployment rate for all workers
(#26), the consumer price index all items (#108) etc. Instead, a variable that is
closely related or correlated with this variable is selected such that the potentially

most important variables are maximally explained and minimally restricted.

Admittedly, an alternative restriction index, ¢4, .., ¢,_; may improve the overall
fit although the improvement is deemed modest because of the performed two-step
procedure. Finally, it should be noted that the particular characteristics of an
estimated factor are not determined by the single unit restriction in a particular
column in A but rather by how important this factor is for the fraction of variance
explained. Table 1.1 supports the argument that the imposition of unit restrictions
on an arbitrary set of variables does not change the underlying characteristics of
the factors and the statistical fit. Hence, the statistical fit of the preferred model is

robust to an alternative set of restrictions.

1.4.3 Model selection: information criteria and test statis-
tics
An important choice in factor analysis concerns the unknown number of factors

r that span the factor space. A number of papers mentioned in the introduction

address this challenge and in this paper different panel information criteria developed

26 Finally, to use a somewhat more informed starting values I use PCA of r subsets of the dataset
where the principal component of each subset represents an initial estimate of one of the r factors.
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by Bai & Ng (2002) are applied. Essentially, the proposed information criteria reflect
the usual trade-off between model parsimony and statistical fit using a penalty
function. However, this penalty function depends on both 7" and N so that the
usual AIC/SIC cannot readily be applied and furthermore the information criteria
should also take account of the fact that the factors are unobserved. However,
the criteria by Bai & Ng (2002) do not address the number of lags in the VAR
and therefore the AIC/SIC will have a comeback when the VAR order needs to be
determined.

Principal component analysis with r factors extracted from dataset in X allows
for the calculation of the sum of squared residuals V (r) = (NT) ' 3.1, é’tf: , where
ét is a N x 1 vector of the estimated idiosyncratic errors. Based on this quantity
Bai & Ng (2002) suggest a number of information criteria of which some of the most

popular are shown below:

: N+T
meIC’pg (r) = In(V(r))+r ( NT ) InC3p
1 2
min/Cp3 (r) = In(V (r)) +r (—n gNT)
" Cyr

where the sequence of constants C%, = min { N, T'} represents the convergence rate
for the principal component estimator. Furthermore, the following panel information

criteria are also calculated:

. o (N+T
mrmPCpg (ry = V(r)+ré? ( NT

) InC%p

minPCs (r) = V (r)+ré” (h;&)
" NT
where 2 = (NT) ' 2N, o7, E[¢,])7 is a penalty function scaling term and usually
calculated using some maximum number of factors ry.x.

Application of the IC),; and IC),3 however points towards a large number of
factors (r = 16), which is similar to what Bernanke & Boivin (2003) and Forni
et al. (2007) experience with this criterion. Nevertheless, instead of relying on the
estimation of the sum of squared residuals from principal component analysis, I
calculate V (1) , 6% from the actually estimated models using the EM algorithm and

7

then calculate the above information criteria®”’. These calculations point strongly

towards r = 8 which can be seen in figure 1.1. I1C),, PC) and PC)3 lead to exactly

27T used C% to represent the imperfect convergence rate for the EM algorithm estimator.
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the same result and are therefore not shown.

[Insert Figure 1.1]

An alternative and less formal method consists of calculating the average ex-
plained variation of the variables in the panel relative to the total variation, the
average R? measure, which is primarily influenced by the number of factors and less
by the number of lags in the VAR. Based on the average R? measure adjusted for
degrees of freedom, denoted R?, this alternative measure could be used to evaluate
the incremental value of adding more factors. Figure 1.2 shows R? for each estimated
model and it can be seen that the incremental value of R? diminishes as more and
more factors are included in the FAVAR. A decision on when to stop adding factors
is subjective, but based on these results, I maintain that » = 8 seems to be a good

choice.

[Insert Figure 1.2]

The R? weights each variable equally in the panel so that for instance industrial
production, e.g. mining (#14), receives the same weight as the total industrial
production index (#16) even though the former is probably of less interest. In other
words, improved fit for some variables does not show up clearly in R?. The purpose
of Figure 1.3 is to show that the fit of some variables such as unemployment and
inflation, improves dramatically when more factors are added whereas others such
as industrial production, e.g. mining and foreign exchange rates, are never well

explained. More details about the preferred model are provided later.

[Insert Figure 1.3]

Towards a well-specified VAR

Ultimately, the preferred model is to be used for impulse response analysis of shocks
to the monetary policy factor and therefore a well-specified VAR is sought for. In
the previous paragraphs, I argue for eight factors but the number of lags in the VAR
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also needs to be determined. For this purpose, the Akaike (AIC), Schwarz (SIC)
and Hannan & Quinn (HQIC) information criteria are calculated in Tables 1.2, 1.3
and 1.4 respectively. The maximum number of lags to be included does not exceed
six, which is somewhat surprising. An alternative procedure would be to test if the
pth autoregressive coefficient matrix is significant in terms of a likelihood ratio test.
Apparently, for the preferred model with eight factors, the number of lags should

be either three or six.

[Insert Tables 1.2, 1.3 and 1.4]

Given the different {r, p} factor model specifications, the VAR residuals are also
inspected to see if they are approximately white noise by tailoring the multivariate
Portmanteau test to latent variables and by inspecting the VAR residuals visually.
Consider the multivariate Portmanteau test which tests whether the hth order resid-
ual autocorrelation is zero. However, recall that we approximate the true factors F;
by the smoothed factors ]:}|T, ie I} = Ft\T + (Ft — FﬂT), which means that it is
the residuals of the true factors that interest centers around. Accordingly, I modify
the standard Portmanteau test to use smoothed quantities instead. The standard

multivariate Portmanteau test statistic (see Liitkepohl (2007)) is:
h
Q(h)=T> tr (Cl-T 510100*1) ~ Xy i=1h
i=1

where the (auto)covariances of the VAR residuals are:

T
A 1
“=7 2;1 (&= E) Groi— Eleed)", i=0,1,..,h

which are replaced by the (auto)covariances of the smoothed residuals from the

Kalman smoother, cf. (1.18) page 36:
C« A AT €
0 = Eyréyr + Bir
i = ét\Té;rfi\T + Ppi—ayr-

The upper panel of Table 1.5 shows that all factor models reject the null hy-
pothesis of absence of residual autocorrelation when the smoothed quantities from

a VAR(1) are used. However, the lower panel of the same table shows that when a
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VAR(2) is considered, the null is not rejected when a sufficient number of lags is em-
ployed (r > 8). Table 1.6 shows that whiteness of the residuals is further improved
when a VAR(3) is considered and that the null of absence of residual autocorrelation
cannot be rejected for a FAVAR model with eight factors, whereas a model with four
factors is rejected. However, when a VAR(4) is considered, also r = 4 cannot be
rejected for most h. An overall conclusion from these tests, is that the number of
lags needed in the VAR seems to be decreasing in the number of factors. This is
particularly pronounced for » > 8 where a maximum of three lags is needed. For
the benchmark FAVAR with four factors, a VAR with six or seven lags seems to do
well, which is also what Bernanke & Boivin (2003) find.

[Insert Tables 1.5 and 1.6]

Finally, a visual inspection of the autocorrelation functions of the smoothed
residuals is also performed and combined with the multivariate Portmanteau test,
and R? the best FAVAR specification among r = {3, 4, ..,10} is selected. Attention
to model parsimony influences the choice when competing FAVAR specifications
are encountered?®. This selection of best specifications will be used in an evalua-
tion of the robustness and sensitivity of different factor model specifications for the

empirical monetary policy analysis.

To facilitate the interpretation of the following results, I introduce some short-
hand notation for the various models. The notation r8p3 means r = 8 factors
including the monetary policy factors with p = 3 lags in the FAVAR. The notation
r8p3 (2) indicates a special focus on factor number two among the total of eight
factors. Likewise, r4pl3(4) indicates a special focus on the last factor among the
four factors each with thirteen lags; in fact, this is the monetary policy factor as this
is always the last factor. The best specifications model among r = {3,4,..,10} is
{r3p7,rdp7,r5p6, répd, r7p5, r8p3, r9p3, r10p2} with the overall preferred model in
bold. Figure 1.4 shows the autocorrelation functions for best specifications versus
their VAR(1) counterpart. These autocorrelation functions are calculated for the

monetary policy factor residuals and it should be noted that the improvement for

28For instance the specification with eight factors and three lags is preferred to the specification
with eight factors and six lags. Similarly, the specification with six factors and four lags is preferred
to the specification with six factors and eight lags.
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the other variables in the VAR is often more pronounced than for the policy factor
itself.

[Insert Figure 1.4]

The list of best FAVAR specifications is shortened marginally by removing r3p7
because of inferior fit and because of less plausible impulse responses. Also r10p3 is
removed because of computational complexity and because this model does not add
anything in terms of fit or interpretation.

The revised list {r4dp7, r5p6, r6p4, r7p5, r8p3, r9p3} is now used in the empirical
monetary policy analysis against the benchmark BBE-EM model denoted r4p13.

Figure 1.5 illustrates the gain in terms of increased fit for each obserserved vari-
able of using the preferred model versus the BBE-EM and the preferred model by
Bernanke et al. (2005).

[Insert Figure 1.5]

For the sake of brevity, the parameter estimates are not presented in detail.
However, it should be mentioned that the estimates of the loadings are generally
as expected in terms of signs and magnitude. For instance, the industrial produc-
tion variables all load positively on the first "industrial production" factor with a
coefficient close to unity. The unemployment variables generally load positively on
the second "unemployment" factor whereas the largest loadings for the employment
variables are generally negativ. For the monetary policy factor, it should be noted
that the bond yields are positively related to this factor with loadings for the short-
duration bonds close to unity, as expected. For the autoregressive parameters in ¢
it should be noted that all eigenvalues of ® are less than 1 in modulus.implying that

the system is stationary.

1.4.4 A look at the factors

Given the choice of the preferred model that involves eight factors, the following
offers some description and "labeling" of these latent dynamic factors. Figures 1.6
and 1.7 show the time series properties of the factors. Figures 1.8, 1.9, 1.10 and 1.11

show the correlation coefficients with the panel.

27



[Insert Figures 1.6, 1.7, 1.8, 1.9, 1.10 and 1.11]

Factor one is clearly an industrial production factor with a correlation with
industrial production variables often exceeding 85%. Factor two is primarily related
to unemployment with a correlation often exceeding 70% and secondarily related
to Moody’s BAA yield spread. Factor three is labeled a NAPM factor because it
is primarily related to NAPM production, PMI, NAPM employment and NAPM
orders, where correlation often exceeds 80%. Factor four is an "(overtime) hours
in production" factor that is negatively related to dividend yield (proxy for risk
aversion) and positively related to consumer expectations. Factor five is an inflation
factor with correlation with inflation variables often exceeding 80%. Factor six is
an employment factor closely related to help-wanted ads. and of course negatively
related to unemployment, though this factor picks up something different from the
unemployment, which can be seen from the correlations in Figure 1.10. Factor seven

is a capacity utilization factor? and factor eight is the monetary policy factor.

1.4.5 Impulse response analysis

Having estimated the FAVAR model, we would like to study the dynamic responses
of the variables in the panel following a shock to the federal funds, i.e. a shock to the
VAR innovation for the monetary policy factor. However, to identify this innovation
as a structural monetary policy shock, identifying restrictions need to be imposed
and I follow Bernanke et al. (2005) by applying a recursive identification scheme
proposed by Sims (1980). The recursive identification scheme (sometimes called
a Wold causal ordering) implies that the first factor in the VAR is only affected
by its own shock. The second factor is affected by its own shock and the first
shock and so on. The monetary policy shock is influenced by all r shocks, so that
if we for a minute interpret the first factor as output, the second as employment
and so on, then output and employment shocks affect the monetary policy shock
contemporaneously. However, monetary policy shocks do not affect output and
employment shocks contemporaneously because monetary policy affects these with

a lag.

29This factor is quite correlated with the employment factor number six. Although the correlation
coefficient is 0.83 the capacity utilization factor is still different from factor six, which is apparent in
the beginning of the period. Admittedly, this may be a weakness of the correlated factor approach,
that factors can become quite correlated.
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This recursive structure can be achieved by specifying the VAR innovations ¢; in
terms of a new set of orthogonal residuals multiplied by a lower triangular matrix,
such that ¢, = Pe;. This particular example corresponds to a Cholesky decomposi-
tion of the covariance of &, i.e. Q = PP'. However, shocks of size one rather than
size one standard deviation are sought for, so consider instead the decomposition
Q = WEWT, where &, = DD7 is diagonal and W = PD~! has ones along the
diagonal. Accordingly, for the VAR in F' the response of the jth element of F' at

time t 4+ ¢ due to a change in the kth element of I’ at time ¢ is:

O [FysilFuss Fios, Fioay o] _ OB (Bl Fioas g o] Oz _
8Fk,t 8Fk7t 86]“ v
forv=1,.2,...... h, where 1, is the VAR moving average coefficient matrix and w;,

is the jth column of the matrix W. 1, can be calculated recursively®® from & (L)
in the stationary system in (1.4), and monetary policy shocks corresponding to 25
basis point are now simply a matter of multiplying w; by this (standardized) shock
size. However, interest centers around the observed variables in levels X rather than
the transformed and standardized variables in X and therefore a multiplication of
the loadings A is required, followed by a reverse transformation of the responses,
ie. D (L)[AyY,wj], cf. section 1.4.1. Consequently, the figures in the following
correspond to a plot of {D (L) [A%wj]}?:l which tracks the dynamic responses of
the observed variables measured in standard deviation units to a 25 basis point
shock to the FFR.

Figure 1.12 shows that the FAVAR model estimated by the EM algorithm de-
livers robust results in terms of impulse responses. Impulse responses for each of
the best specifications in {rdp7, r5p6, r6pd, r7p5, r8p3, rIp3} are plotted against the
benchmark BBE-EM (r4p13) for key macroeconomic variables. Moreover, the re-
sponses are very much in line with the results of Bernanke et al. (2005), although
including confidence intervals around the impulse responses would further sharpen

the conclusions.

[Insert Figure 1.12]

Each model delivers the same shape of the impulse response functions, i.e. the

industrial production decreases by 0.6-0.7 standard deviations within one year fol-

W09, =Y ¥, ;®; for i =1,2,.... and ¥y = I. See Liitkepohl (2007) chapter 2.
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lowing a contractionary monetary policy shock, and it can be seen that the preferred
model r8p3 returns more quickly to the starting point than BBE-EM. However, the
speed of reversion is similar to the results in Figure II in Bernanke et al. (2005). For
the price index, we see that the price puzzle noted by Sims?! is almost eliminated, as
there is a pronounced decrease in the price level following a contractionary monetary
policy shock. The response is similar for all models but the preferred model has a
particularly small initial positive effect and a pronounced negative response after
one year, which is in line with Bernanke et al. (2005). The unemployment increases
more than in the aforementioned example and most in the preferred model after one
year but reverts to the starting point within four years. Furthermore, the response
of NAPM commodity prices, capacity utilization rate, and average hourly earnings

is also more pronounced than in Bernanke et al. (2005).

To summarize the impulse response analysis, I conclude that the FAVAR models
deliver robust results across different specifications. Moreover, the preferred model
eliminates the price puzzle and yields plausible impulse responses as in Bernanke
et al. (2005). Compared to the aforementioned result some differences in the impulse
responses following a contractionary policy shock can be noted. Firstly, the NAPM
variables such as commodity price index, employment, new orders, and also capacity
utilization rate are comparably affected more negatively, i.e. the impulse response
shapes are "deeper". Similarly, unemployment peaks at a comparably higher level.
However, comparably the same magnitude of the responses is seen for industrial

production, CPI and the federal funds rate.

1.4.6 Forecast error variance decomposition

An alternative way of evaluating monetary policy shocks is to consider what role
these shocks play in forecast errors. Specifically, in a forecast error variance decom-
position, I calculate for a given forecast horizon what fraction of the total forecast

error variance for a particular variable is due to a specific shock, for instance the

31 A typical finding in standard VAR analysis of monetary policy is an increase in the price level
following a contractionary monetary policy shock - hence the notion of a price puzzle, because we
would expect a decrease. This can be explained as follows. Consider a simple policy rule that is
linear in current inflation, current output gap and the Fed’s expectations about future inflation.
If the Fed expects future inflation to rise, it will accomodate this partly by increasing the federal
funds rate. Consider now a VAR in the federal funds rate, inflation and output gap. Here, the
information about the Fed’s expectations is for obvious reasons not included in the VAR and is left
in the residuals as a positive shock which happens alongside an increase in the price level (under
the assumption that the Fed predict the rise in the price level correctly.)
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monetary policy shock. Hence, the forecast error variance decomposition is similar
to the R? measure but for forecast errors at different horizons. The proportion of
the forecast error variance at horizon h of variable X; due to the kth innovation ey,
is given by:

_ A3y Z?:_ol (‘I’?k,o + U+t qj?k,h—l)

MSE (Xjeim) + R

wji, ()

where the N X r matrix U;;; is the (j, k) element of (A;4;,1V) as a function of
horizon i € h, d3, is the (k, k) element of the diagonal matrix DD, MSE ()A(j7t+h|t>

~

is the mean square error of (Xj7t+h — Xj,t+h|t> and R;; is the variance of the jth

idiosyncratic term. Details about the derivation are given in Appendix A.

The percentage of the forecast error variance explained by a monetary policy
shock for the group of key macroeconomic variables is shown in Figure 2.3. Gener-
ally, a monetary shock rarely explains more than 10% of the forecast error variance,
except for capacity utilization rate, (un)employment and new orders where forecast
error variance is roughly doubled. The results are in line with similar findings in the

literature, with only minor differences to be explained below.

[Insert Figure 1.12]

As only one structural shock, the monetary policy shock, is identified in this
paper, it makes little sense to comment on impulse responses and variance decom-
positions for the other shocks. Nevertheless, the purpose of the upper panel of
Table 2.3 is to illustrate that the fraction of the total forecast error variance of all
the factors accounts for 40-50% and that the idiosyncratic component accounts for
a significant fraction, on average 50-60%. This is also what Stock & Watson (2005)
report. The difference between employing correlated versus uncorrelated factors as
in the aforementioned result also shows up in the variance decomposition in the
lower panel of Table 2.3. Whereas 93% of all of the forecast error variance for in-
dustrial production is explained by the first out of their seven factors in Stock &
Watson (2005), only 50% shows up in the first correlated factor in this paper and

the remaining 47% is spread evenly between the remaining seven factors.

[Insert Table 2.3]
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Stock & Watson (2005) also estimate a principal component variant of Bernanke
et al. (2005) and despite minor differences in the dataset, some comparisons with the
two aforementioned papers, the closely related paper by Ahmadi & Uhlig (2008),
and this one can be made. Generally, the monetary policy shocks play a larger
role in the forecast error variance in this paper than in Stock & Watson (2005),
except for the FFR and the bond yields; see below. Further, the forecast error
variance decompositions in this paper are generally similar to those in Ahmadi &
Uhlig (2008), although in this paper we see the largest influence of monetary policy
shocks on the forecast error variance of unemployment peaking around 24 months at
35% but also the NAPM related variables such as new orders and employment are
highly influenced. In contrast, the numbers in Stock & Watson (2005) are almost
zero for the same variables, whereas in Bernanke et al. (2005) the corresponding
numbers are somewhere in between. Moreover, in this paper, we see the smallest
influence of the monetary shock on the FFR itself and in particular on the bond
yields, although the variance decomposition in Ahmadi & Uhlig (2008) is roughly
similar. In contrast, Bernanke et al. (2005) report that the fraction of the total
forecast error variance of the FFR explained by its own shock is 45% compared to
3% in this paper, around 5% in Ahmadi & Uhlig (2008) and 7% in Stock & Watson
(2005) for the long horizon. Strikingly, the fraction increases to 20% and 40% for the
three-month T-bill and the five-year T-bond in the last-mentioned result. Finally,
it can be noted that for all four papers, the forecast error variance of consumption

and money supply is generally never explained by more than roughly 5%.

1.5 Conclusion

Three important issues are addressed in this paper. Firstly, an alternative identifi-
cation scheme is applied that allows for correlated factors, which is desirable if one
seeks a macroeconomic interpretation of the latent factors. For instance, in the cor-
related factor approach here, the industrial production factor and the unemployment
factor are allowed to be correlated, and they are estimated to have a correlation of
0.23.

Secondly, I investigate the EM algorithm as an alternative estimation method
to the two-step principal component method and the one-step Bayesian method. In
general, it is easy to impose parameter restrictions on both the measure equation
and the state transition equation, which is illustrated plentifully in Bork et al. (2008)

where explicit interpretation of the factors is achieved through identification.
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Thirdly, the sensitivity of the statistical fit and impulse response analysis to dif-
ferent factor specifications is evaluated as well as a careful model selection. The
combination of the panel information criteria by Bai & Ng (2002) for the number
of factors and the standard Akaike, Schwarz or Hannan-Quinn information criteria
for the VAR order results in a preferred FAVAR model with eight factors and only
three lags. This model naturally delivers a better fit than models with fewer factors
without compromising well-specified factor dynamics or the plausibility of the im-
pulse response analysis. Interestingly, some of the key macroeconomic variables such
as industrial production and employment seem to respond somewhat more in the
preferred model compared to the EM algorithm equivalent of Bernanke et al. (2005)
with four factors and thirteen lags. Furthermore, the NAPM indices (commodity
price, new orders, and employment) as well as unemployment respond somewhat

more to a monetary policy shock than in the aforementioned model(s).

Generally, it is found that the FAVAR models investigated here deliver robust
results in terms of fit, impulse responses and forecast error variance decompositions
across the best-specified models for the different numbers of factors included. I
find that the fewer the factors used in the FAVAR the more lags are needed to
achieve a well-specified model and vice versa. Hence, it seems possible to trade off a
model with a few factors but necessarily many lags for a model with more factor but
fewer lags; specifically, it is possible to trade off a four-factor and seven-lag model
for an eight-factor and three-lag model with the benefit of a ten percentrage point
increase in the overall R2. This observation accords with the theoretical result that
complicated factor dynamics may be substituted by the information in the panel
dataset. One objection might be that more factors are the result of the correlated
factor approach in contrast to the uncorrelated factor approach. However, besides
the above-mentioned theoretical result, it should be noted that the four-factor and
thirteen-lag benchmark model performs equally well in terms of fit and plausibility
of the impulse responses to the uncorrelated factor approach in Bernanke et al.
(2005). On this basis, there is no clear sign that the correlated factor approach

needs relatively more factors to achieve the same fit.
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A Forecast error variance decomposition

Consider the forecast error of the optimal h—step ahead forecast for the jth observed

variable:

T
L
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where e; is the orthogonal residual defined from the VAR residuals, ¢, = Pe;
where P is the Cholesky factor from the decomposition of the covariance of ¢; into
Q = PPT. This covariance matrix is further rewritten as explained in section 1.4.5
as Q = WE,WT, where &, = DD is diagonal and W = PD~! has ones along the
diagonal. Moreover, ¥; = A;1, IV is a N xr matrix and £, , is the jth idiosyncratic
term. The mean square error of (X jitth — X j7t+h‘t> is denoted M SE ( J, t+h|t> and
given by:

K
MSE( jt+h|t> Z \D?k od ]k 1d + . +qjjkh 1d k) +Rj,j
k=1

where d2, is the (k, k) element of the diagonal matrix DDT and R;; is the
variance of the jth idiosyncratic term. The proportion of the forecast error variance

at horizon h of variable X; due to the kth innovation e, is given by:

h—1
dik D isg (\Ij2k0+qj]k1+ A 1)

wik (h) =
MSE ( Jt+h\t) + Ry
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B Kalman filter, Kalman smoother and the EM

algorithm

B.1 The Kalman filter

The Kalman filter is an algorithm for sequentially updating a linear projection for
a dynamic system. Denote the information set X, = {X3, ..., X;} and by Ft+1|t =
E[Fii1| X4] the linear projection of Fyy; on X;. The variance is denoted Pt+1|t =

var (Fi1| X&) . The Kalman filter recursions for ¢ = 1,.., T can then be written as:

Ft+1|t = q)pﬂt—l + K (Xt — AFt\t—l)

i ) (1.11)
Py =Py L] +Q

where
ft =X — AFt|t71
nx1 )
P =AP, AT +R

tlt—1
nxn

~ n -1
Ky = ®Py AT (AP AT + R)

kxn

Lt :®—KtA

kxk

B.2 Kalman smoothing

Kalman smoothing reconstructs the full state sequence {F1, .., Fr} given the obser-
vations { X7, .., Xr}. Smoothing provides us with more accurate inference on the
state variables since it uses more information than the basic filter. The Kalman
smoother recursions are based on the efficient smoother by de Jong & Mackinnon
(1988) and de Jong (1989) which is used in Koopman & Shephard (1992) and given
by:
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“ " N -1
Fur = F1t|t—1+jjt|t—1AT [ij_l} & (1.12)

—i-pﬂt—lLtTTt (1.13)
= Ft|t71 + pt|t717ﬂt—1 (alternatively)
Pyr = Py — PyaNia Py (1.14)
Puiayr = (1= PuciNea) LiaBoses, (1.15)
fort = T—-1,...,1 (1.16)
cov (Ft — By, Fy — FﬂT) — ByaL L., L], [I - Njflﬁm_l] (1.17)
forj > t

where:

T

-1
t|t_1} &+ Lir, for 1<t <Tandry =0

Nt,1 — AT |:p££

tlt—1

-1
} A+LIN,Lfor1<t<T and Ny =0

L = ®—KA=0— 0P A" [Fff

tlt—1

}_1/\.

The smoothed residuals given by Koopman (1993) are used in for instance the

Portmanteau test:

ét|T = K [5t| XT] = Ft|T - (I)thl\T

= QY'r, t=1,...T (1.18)
and variance and covariance:
var (g Xp) = HT
= Q-QY N,TQ
cov <€t — ét|T7 € — éj‘T) = P{Et,j}|T

= QYL - L/ \LIN;YQ, j=t+1,..T

with the convention that L] ---L;. , = I, whent =T and L] --- L] | = L{_,

when t =T — 1.
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B.3 The complete data likelihood and the incomplete data
likelihood

Under the Gaussian assumption including Fy ~ N (14, Py) and ignoring the con-
stant, the complete data likelihood of equation (1.4) page 11 assuming a VAR(1)

for simplicity and ignoring YT is written as:

—2InLrx(©) = In|Py|+ (Fy— pe) Pyt (Fo— po)
T
+T - Q[+ > (F,—®F_1)' Q7' (F, — ®F,4)
t=1
T

+T-In|R|+ ) (X, = AF)" R (X, — AF))
t=1

(1.19)

given that we can observe the states Fr = {Fy, .., Fr} as well as the observations
Xr ={Xi,.., Xr}. However, given X7 and initial values of the parameter estimates
(denoted OV _1)), the conditional expectation of the complete data likelihood can be

written as:

Q (e ™) = E[-2InLrx(0)|Xr, 00 V]

. . T
= In |P()| + tr |:P0_1 {(FOT - MO) (FO\T - MO) + PO|T}:|
+T - |Q|+tr [Q™'{C — B®' — ®B' + ®AD'}]
+7 - 1In|R|

Rt i { (Xt — Aﬁ}w) <Xt — AF):T)T + A]StTAT}
=1

(1.20)

4+ tr

where the following moments can be calculated from the Kalman smoother listed

above:

A= Zthl thl\TFtT—uT + PtfllT> B = Zthl (Ft\TFtT—uT + P{t,t*1}|T>
¢ = ZtT:1 Ft\TFﬂTT + pt|T> D= Zthl Xtﬁt\TT
E= Z;[:l XtXtT

A useful trick to arrive at (1.20) is to consider the decomposition of the true
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state variable F; = FHT + (Ft — ]3}|T) , which explains the terms in for instance C,

where:

~ ~ ~ T
Pyr = E {(Ft ~ Fyr) (F = Fur)

x|

The estimator of ®* subject to linear restrictions is:

vec (®*) = vec (BA™!)
+ (A @ Q) Hy [He (A ® Q) HY] ™ {ke — Hy vec (BA™)}
(1.21)

where kg is a 0 X 1 vector and the restriction matrix Hg is of dimension o x 72.

C Analytical derivatives of the log likelihood func-
tion

The following is primarily from Jungbacker & Koopman (2008) and Koopman &
Shephard (1992). A key result %M’Q:Q* = %&9*) oo is from Louis (1982).
Consider the following derivatives of the log likelihood function for the state

space model with incomplete data:

dlog Ly (©) _02(e[e)
0Q o= 0Q o=

= QST Q@ - Lding (@ (ST Q)Q )

where:

S=C—-Bd" —®B" + AP

and where () is the covariance matrix of the innovation error in the transition equa-

tion:

dlog Ly (©) _ 02(6[o)
oD TR I

where ® contains the autoregressive parameters in the transition equation. More-

— Q7' (B - ®A)

over, the derivative with respect to A is:
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dlogLy(©)|  _ 92(0]6")
N |, OA

T
= R! <Z yeFyfr — AC’)
* t=1

where A is the loading matrix, R is the covariance of the measurement errors, ¥, is

A=A

the data in the panel data set at time ¢ and FJT is the smoothed dynamic factor.

Finally, the derivative with respect to the covariance of the measurement errors is:

d1og Ly (©) 90 (06")
OR OR

R=R* R=R*

1
= R‘l(M—T-R)R‘l—§diag(R‘1(M—T-R)R‘1).

where

M=E—DA" —AD" + ACAT

39



Table 1.1: The statistical fit in the preferred specification is robust to
alternative restrictions and an alternative factor ordering.

mean R? for groups of variables
Preferred restrictions Alternative restrictions
Real output and income (21) 58% 58%
Employment and hours (27) 55% 56%
Price Indexes (16) 58% 57%
Key economic variables (20) 62% 61%

The table supports the argument that a different set of restricted variables does not
significantly change the estimated factors. Moreover, the R?’s are robust to an
alternative factor ordering. Consider for instance a unit restriction imposed on
"Industrial Production: Mining" as an alternative to the a unit restriction on "Industrial
Production: Manufacturing" as in the preferred specification. This alternative restriction
does not lead to a significantly different R? for "Industrial Production: Mining" as R?
stays within 8-9 percent in both specifications.

Notes: "Real output and income", "Employment and hours" and "Price Indexes" in the
left column correspond to the organization of the panel into groups of similar variables;
see the data appendix. The column heading "Key economic variables" corresponds to the
set of variables used in the forecast error variance decomposition (the set is also used by
Bernanke, Boivin and Eliasz (2005)). The numbers in parentheses refer to the number of
variables in the categories. The alternative exactly identifying restrictions are imposed on
variable numbers 109,24,14,46,23,106,19,77.
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Table 1.2: Akaike information criterion for a given number of factors.

—
o
© 00 O UL WNHFHw®m

10
11
12
13

number of factors

3 4 ) 6 7 8 9 10

- 11467  -13.271  -17.625  -24.756 - 22.658 - -30480  -43.801
-11.634 -14.151 - 23.221  -27482 -24.302 -35.706 -35.812 -45.512
-11.616 - 16.646 - 19.462 - - -37.692 -40.605 - 50.218
-11.663  -16.182 - 18.741 - 28.607 - -36.904 -38.251 - 48.553
- 11.562 - -19479  -26.748 - 30.378 - 37.673 - -
-11.904 -15.653 -20.636 -26.683 -24.834 - 38.726 -37.483 -48.733
-11.784  -15918 -19.039 - - -37302 -37.034 -
-10.627  -14.955 - 18.993 - 28.004 - -37.888 - -
-10.671  -15.037 -19.456  -26.212 - 26.262 - - -
-10.670  -15.257  -20.138  -25.987 - 26.582 - - -
-10.898  -15.212  -19.939 - - - - -
-11.459 - 15.112 - - - - - -
- -15.045 -20.121 - - - - -

A bold number represents a minimum.

Table 1.3: Schwarz information criterion for a given number of factors.

—
&
© 00 O Tk Wi —wm

10
11
12
13

number of factors

3 4 5 6 7 8 9 10
-11.392 -13.139  -17418  -24.457 - 22.252 - -29.809 -42.972
-11.485 -13.886 - 22.806 -26.885 -23.490 -34.645 -34.469 -43.854
-11.393 -16.248 - 18.841 - - -36.100 - 38.590 - 47.731
-11.365 -15.651 -17.912 - 27.413 - -34.782  -35.565  -45.237
- 11.189 - -18.443  -25.255 - 28.347 - 35.020 - -
-11.456 - 14.857 -19.392  -24.893 -22.397 -35.543 -33.454 -43.759
-11.262  -14.990 - 17.588 - - -33.588  -32.333 -
-10.030 -13.894 -17.335 - 25.616 - -33.643 - -
-9.999 -13843 -17.590  -23.526 - 22.606 - - -
-9.924 -13930 -18.066 -23.002 - 22.520 - - -
-10.078  -13.753 - 17.639 - - - - -
-10.563 - 13.520 - - - - - -
- -13.320 -17.426 - - - - -

Table 1.4: Hannan and Quinn information criterion for a given number

of factors.
number of factors
lags 3 4 5 6 7 8 9 10
1 -11.438 - 13.219 - 17.544 - 24.639 - 22.499 - - 30.217 - 43.476
2 - 11.576 -14.047 - 23.058 - 27.248 - 23.984 - 35.290 - 35.285 - 44.862
3 -11.529 - 16.490 -19.219 - - -37.068 - 39.815 - 49.243
4 - 11.546 - 15.974 - 18.416 - 28.139 - - 36.072 - 37.198 - 47.253
5 -11.416 - -19.073 - 26.163 - 29.582 - 36.633 - -
6 | -11.729 - 15.341 - 20.148 - 25.981 -23.879 - 37.478 - 35.904 - 46.783
7 - 11.580 - 15.554 - 18.470 - - - 35.846 - 35.191 -
8 -10.393 - 14.539 - 18.343 - 27.068 - - 36.224 - -
9 - 10.408 - 14.569 - 18.724 - 25.159 - 24.829 - - -
10 -10.378 - 14.737 - 19.326 - 24817 - 24.990 - - -
11 - 10.577 - 14.640 - 19.045 - - - - -
12 - 11.108 - 14.488 - - - - - -
13 - - 14.369 - 19.064 - - - - -
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Table 1.5: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(1)

h r=3 r=4 r=>5 r==6 r="7 r=28 r=29 r=10

1 | 140.00* 218.04* 252.36* 304.13* 312.15* 362.92* 360.50* 384.54*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

2 | 161.83* 250.56* 294.05* 363.69* 387.10* 442.70* 450.37* 471.28*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

3 | 181.62* 276.12* 329.30* 419.71* 460.05* 505.91* 532.32* 548.44*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

4 | 188.83* 296.30* 361.72* 480.70* 531.55* 558.04* 623.72* 630.75*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

5 | 210.70* 324.65* 401.96* 535.43* 607.16* 613.96* 731.48* 742.25*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

6 | 230.42* 347.53* 444.24* 593.32* 685.95* 675.11* 825.78* 837.65*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

7| 243.14* 368.32* 482.16* 650.24* 755.09* 734.22* 906.11* 922.48*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

8 | 288.93* 418.07* 540.25* 732.82* 866.36* 799.02* 1,024.43* 1,045.57*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} £0.000}

9 | 308.38* 440.20* 573.01* 782.47* 927.33* 849.77*  1,094.50* 1,123.82*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} £0.000}

10 | 320.56* 459.57* 598.82* 819.95* 991.55* 884.62* 1,182.08* 1,210.20*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} £0.000} {0.000}

12 | 344.19* 497.36* 643.14* 869.03* 1,043.41* 942.27* 1,272.57* 1,302.48*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

13 | 377.01* 539.93* 702.67* 935.97* 1,108.93* 1,011.22* 1,359.05* 1,386.90*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

14 | 404.69* 576.69* 738.00* 990.09* 1,174.94* 1,064.53* 1,442.79* 1,470.31*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.001}

15 | 425.71* 617.82* 788.63* 1,040.62* 1,240.25* 1,122.43* 1,515.66* 1,549.43*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.003}

Test statistics based on smoothed residuals from a VAR(2)

h r=3 r=4 r=2>5 r==6 r="7 r=28 r=9 r =10

1| 58.66*  59.48*  88.26* 88.05* 120.09* 127.29* 150.73* 158.01*
{0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000} {0.000}

2 69.11* 72.03*  105.40* 110.30* 162.96* 178.34* 227.23* 220.72

{0.000} {0.000}  {0.000} {0.003} {0.000} {0.002} {0.001} {0.150}

3| 73.66*  90.34* 138.02* 161.16* 222.99* 240.76* 313.06* 297.66

{0.000} {0.000}  {0.000} {0.001} {0.000} {0.010} {0.002} {0.527}

4| 93.25% 113.36* 180.74* 209.08* 287.91* 303.90* 397.97* 393.07

{0.000}  {0.000} {0.000} {0.000} {0.000} {0.021} {0.003} {0.588}

5 | 118.35* 139.77* 218.54* 250.64* 342.75* 360.20 466.35* 457.32

{0.000} {0.000} {0.000} {0.000} {0.000} {0.060} {0.019} {0.915}

6 | 128.73* 154.08* 244.03* 284.04* 391.37* 402.32 519.99 526.91

{0.000} {0.000} {0.000} {0.001} {0.000} {0.250} {0.139} {0.986}

7 | 166.25* 185.86*  277.94* 333.40* 475.13* 477.40 609.53 633.67

{0.000} {0.000} {0.000} {0.000} {0.000} {0.163} {0.105} {0.965}

8 | 185.63* 204.51* 299.97* 366.12* 521.55* 528.66 663.27 688.64

{0.000} {0.000} {0.000} {0.001} {0.000} {0.296} {0.330} {0.998}

9 | 193.90* 221.42* 322.41* 393.23* 570.79* 579.33 731.97 782.77

{0.000} {0.000} {0.000} {0.005} {0.000} {0.453} {0.462} {0.998}

10 | 216.72* 246.77*  352.08* 439.60* 624.22* 612.92 810.22 858.89

{0.000} {0.000} {0.000} {0.003} {0.000} {0.773} {0.491} {1.000}

12 | 242.06* 279.14* 402.61* 492.10* 679.98* 658.83 872.45 943.96

{0.000} {0.000} {0.000} {0.001} {0.000} {0.887} {0.665} {1.000}

13 | 257.49* 294.25% 421.62* 532.21* 730.13* 711.68 935.29 1,020.73
10.000} {0.000} {0.000} {0.001} {0.000} {0.927} {0.796} {1.000}

14 | 270.65* 319.49* 460.12* 567.78* 782.21* 757.77 995.82  1,084.72
{0.000} {0.000} {0.000} {0.001} {0.000} {0.969} {0.895} {1.000}

The rows represent test statistics of residual autocorrelation up to order h. Hy: Residual
autocorrelation up to lag h is zero. p-values in {}. * indicates rejection on 5 pct. level.
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Table 1.6: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(3)

h r=3 r=4 r=5 r==6 r=7 r=8 r=9 r=10

1 2630* 5215* 4916* failed max. iterations 6470 10079 9781

{0.002} {0.000} {0.003} {0.452}  {0.068}  {0.543}

2| 3119 71.02*  87.50* - - 102.85 17852 160.17

{0.027} {0.000} {0.001} {0.950} {0.178}  {0.983}

3| 46.73* 9227 118.99* - - 156.50  247.82 239.47

{0.011} {0.000}  {0.001} {0.972} {0.402}  {0.996}

4 | 64.98% 106.51* 147.55* - - 194.08  306.45 299.03

{0.002}  {0.001} {0.001} {0.999} {0.751}  {1.000}

) 74.80* 123.08* 174.07* - - 224.64 344.81  367.33

{0.004}  {0.001} {0.003} {1.000} {0.986}  {1.000}

6 99.72*  155.54* 212.95* - - 284.73 419.23  446.80

{0.000}  {0.000} {0.001} {1.000} {0.987}  {1.000}

7 | 114.30* 166.46* 231.74* - - 32848  468.23  496.79

{0.000} {0.001} {0.003} {1.000} {0.999}  {1.000}

8 | 120.55* 185.85*  260.84* - - 370.56  527.45 574.34

{0.000} {0.001} {0.003} {1.000} {1.000}  {1.000}

9 | 134.73* 199.94* 279.82* - - 40449  593.54 636.62

{0.000} {0.001} {0.008} {1.000} {1.000}  {1.000}

10 | 157.52%  212.42* 301.64* - - 446.82 653.77  709.65

{0.000} £0.004} {0.014} {1.000} {1.000}  {1.000}

11 | 170.53* 239.61* 345.27* - - 490.68  708.49 783.20

{0.000} {0.001} {0.003} {1.000} {1.000}  {1.000}

12 | 183.29* 253.33* 377.71* - - 527.04 763.42 841.09

{0.000} {0.002} {0.002} {1.000} {1.000}  {1.000}
Test statistics based on smoothed residuals from a VAR(4)

h r=3 r=4 r=5 r=6 r=7 1r=28 r=9 r=10

1| 21.00F 28.82° 60.72° 24.66 T 6446 125.89" 105.20

{0.013} {0.025} {0.000}  {0.924} {0.460}  {0.001}  {0.341}

2| 37.59* 43.90 92.43*  52.71 - 9492 171.86  176.64

{0.004} {0.078}  {0.000}  {0.957} {0.987}  {0.283}  {0.882}

3| 60.32* 63.89 121.33*  75.17 - 141.01  216.79 230.63

{0.000} {0.062}  {0.001}  {0.993} {0.998} {0.886}  {0.999}

4 | 67.40* 75.83  139.58*  89.52 - 166.00 256.54 288.91

{0.001} {0.148}  {0.006}  {1.000} {1.000} {0.998}  {1.000}

51 90.86* 104.85* 175.20* 126.35 - 219.22  314.99 351.50

{0.000}  {0.033}  {0.002}  {0.999} {1.000} {1.000}  {1.000}

6 | 103.86*  110.88 191.64* 140.07 - 257.89  372.87 404.90

{0.000} {0.142}  {0.012}  {1.000} {1.000} {1.000}  {1.000}

7 | 109.69* 126.97 218.54* 162.72 - 292.05 447.16  478.20

{0.000} {0.158}  {0.014}  {1.000} {1.000} {1.000}  {1.000}

8 | 121.38*  145.09 239.23* 185.96 - 323.48  512.27 535.13

{0.000} {0.143}  {0.030}  {1.000} {1.000} {1.000}  {1.000}

9 | 143.21*  165.07 265.68* 217.70 - 363.93  570.38 599.09

{0.000} {0.110}  {0.033}  {1.000} {1.000} {1.000}  {1.000}

10 | 155.96* 196.74* 314.68* 267.49 - 412.06 635.52 677.01

{0.000} {0.026}  {0.003}  {1.000} {1.000} {1.000}  {1.000}

11 | 167.10% 212.70* 332.92* 284.29 - 44743 685.14  728.51

{0.000} {0.031}  {0.010}  {1.000} {1.000} {1.000}  {1.000}

The rows represent test statistics of residual autocorrelation up to order h. Hy: Residual
autocorrelation up to lag h is zero. p-values in {}. * indicates rejection on 5 pct. level.
Unreported numbers show that a VAR(5) fixes the residual autocorrelation for r = 5,
whereas for r = 3, the problem remains.
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Table 1.7: Forecast error variance decompositions for key macroeconomic
variables.

F(8,1) F(8,2) F(8,3) F(84) F(85) F(86) F(8,7 FFR) F —total Idio.

6m  0.06 0.03 0.02 0.06 0.07 0.07 0.04 0.04 0.39 0.61

12m 0.06 0.03 0.04 0.07 0.07 0.06 0.06 0.05 0.43 0.57

24m 0.06 0.03 0.06 0.07 0.07 0.06 0.08 0.05 0.47 0.53

60m 0.06 0.03 0.10 0.07 0.07 0.05 0.09 0.04 0.51 0.49
60-month horizon F(8,1) F(8,2) F(8,3) F(8,4) F(85) F(8,6) F(8,7 FFR
77) Federal funds rate 0.03 0.06 0.35 0.23 0.03 0.08 0.19 0.03
16) IP: total index 0.50 0.03 0.05 0.11 0.03 0.10 0.09 0.07
108) CPI-U: all items 0.02 0.07 0.20 0.09 0.42 0.02 0.09 0.02
78) US Thbill, 3m. 0.03 0.06 0.35 0.20 0.03 0.10 0.18 0.02
81) Tbond const 5yr. 0.04 0.07 0.38 0.17 0.05 0.18 0.09 0.01
96) Monetary base 0.00 0.02 0.02 0.02 0.01 0.01 0.03 0.00
93) Money stock: M2 0.01 0.06 0.03 0.01 0.03 0.03 0.06 0.01
74) FX: Japan 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.00
102) NAPM commodity prices 0.02 0.06 0.17 0.05 0.10 0.07 0.11 0.06
17) Capacity util rate 0.03 0.01 0.17 0.12 0.09 0.04 0.21 0.12
49) Pers cons exp: total 0.01 0.00 0.01 0.01 0.04 0.00 0.01 0.00
50) Pers cons exp: tot. dur 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00
51) Pers cons exp: nondur. 0.01 0.00 0.01 0.00 0.03 0.00 0.01 0.00
26) Unempl. rate: all wrks 0.05 0.02 0.21 0.10 0.19 0.05 0.21 0.15
48) NAPM Empl. Index 0.02 0.01 0.20 0.12 0.07 0.10 0.22 0.15
118) Avg hr earnings constr. 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00
54) Housing starts: nonfarm 0.02 0.07 0.14 0.04 0.07 0.04 0.20 0.06
62) NAPM new orders 0.03 0.02 0.18 0.10 0.04 0.11 0.23 0.14
71) SP500: dividend 0.05 0.08 0.30 0.03 0.08 0.03 0.14 0.02
120) Consumer expec. (Mich.) 0.02 0.05 0.15 0.09 0.21 0.03 0.04 0.05

The upper panel illustrates the total fraction that the eight factors can explain of the
forecast error variance at varying horizons. "Idio." means idiosyncratic variance. FFR
means federal funds rate, which is the shock in focus. The lower table shows the 60-month
ahead forecast error variance decomposition for key macroeconomic variables.
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Figure 1.1: The panel information criterion /C,; of Bai & Ng (2002).
The criterion does not provide information about the number of lags in the VAR so the

criterion as a function of the number of static factors, r, is calculated for a given number
of lags. On top of each bar the number of factors is plotted. Eight factors seem to be a
good choice when model parsimony is taken into account.
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Figure 1.2: Adjusted average R? of all variables in the panel for all models.

For each FAVAR model with r factors and p lags in the VAR, the R? is calculated. The
number on top of each bar represents the number of lags in the VAR with r factors.
Note how the incremental value of R? diminishes as more factors are added.

number of static factors (r)
(small numbers on top of each bar represents the number of lags)
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Figure 1.4: Autocorrelation functions for the preferred specification ver-

sus a VAR(1).
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The smoothed residual autocorrelation functions for the preferred specifications for
FAVARs with 3.4,...,10 factors versus their VAR(1) counterpart are plotted to empha-
size that VAR(1) dynamics are not sufficient for whiteness in the monetary policy factor
residuals. Unreported results show that there is virtually no difference in the autocorre-
lation function for r4p7(4) versus BBE-EM version r4p13(4).
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Figure 1.5: R? for the preferred model versus the BBE-EM and Bernanke,
Boivin and Eliaz.
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f factors 1-4 from the preferred model versus related observed variables.

The time series o

Figure 1.6
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f factors 5-8 from the preferred model versus related observed variables.

The time series o

Figure 1.7
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Figure 1.8: "Industrial production factor" and "unemployment factor".
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Figure 1.9: "NAPM factor" and "(overtime)hours factor".
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Figure 1.11:
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Figure 1.13: Contribution of the monetary policy shock to forecast error
variance decomposition.
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The figure plots the forecast error variance decomposition along the forecast horizon (the
horizontal axis). Dashed gridlines indicate a larger scale compared to the dotted gridlines.

o7



58



CHAPTER 2

|dentification of Macroeconomic Factors in Large Panels

Lasse Bork," Hans Dewachter! and Romain Houssa.?

January 2010

"Finance Research Group, Department of Business Studies, Aarhus School of Business, Uni-
versity of Aarhus, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark. Affiliated with CREATES at
the University of Aarhus, a research center funded by the Danish National Research Foundation.
Email: 1bo@Ilassebork.dk.

YCES, University of Leuven, RSM Rotterdam and CESIFO. Hans Dewachter acknowledges

financial support from FWO grant number G.0626.07.
SCRED and CEREFIM, University of Namur, CES, University of Leuven.

29



Abstract”

This paper presents a dynamic factor model in which the extracted factors and
shocks are given a clear economic interpretation. The economic interpretation of
the factors is obtained by means of a set of over-identifying loading restrictions,
while the structural shocks are estimated following standard practices in the SVAR
literature. Estimators based on the EM algorithm are developed. We apply this
framework to a large panel of US monthly macroeconomic series. In particular, we
identify nine macroeconomic factors and discuss the economic impact of monetary
policy stocks. The results are theoretically plausible and in line with other findings

in the literature.
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2.1 Introduction

In recent years, factor models have become a standard tool in applied macroeco-
nomics and finance. They have been applied in empirical macroeconomics for
predictions (Bernanke & Boivin (2003), Forni et al. (2005), and Stock & Watson
(2002a,b)); for structural analysis (Forni & Reichlin (1998), Forni et al. (2008), Gi-
annone et al. (2004, 2002), Houssa (2008a), Bernanke et al. (2005) and Stock &
Watson (2005)); and for constructing business cycle indicators (Forni et al. (2001),
Kose et al. (2003), Houssa (2008b), and Otrok & Whiteman (1998)). Applications
of factor models in finance include the arbitrage pricing theory (Chamberlain &
Rothschild (1983) and Ingersoll (1984)); the measurement of risks (Campbell et al.
(1997), ch. 2); the estimation of the conditional risk-return relation in Ludvigson &
Ng (2007); bond market applications (Monch (2008), Ludvigson & Ng (2008) and
Diebold et al. (2008)); and the prediction of the volatility of asset returns (Alessi
et al. (2007)).

The increasing popularity of factor models can be explained by two model fea-
tures. First, factor models distinguish measurement errors and other idiosyncratic
(series-specific) disturbances from structural shocks. As such, dynamic factor models
have a direct mapping from observed data to their theoretical counterparts!. Sec-
ond, large data sets are becoming increasingly available and classical multivariate
regression models generally perform poorly in fitting them. By contrast, Dynamic
Factor Models (DFM), exploiting the dynamic and cross-sectional structure of the
data set, allow a large panel to be analyzed through a (small) set of underlying
extracted factors. Moreover, various estimation techniques have been developed
recently to analyze factor models in large panels. For instance, Stock & Watson
(2002a,b) and Forni et al. (2000) proposed a non-parametric estimation approach
based on principal components. The former uses the time domain method while
the latter suggests a frequency domain estimation technique. In a related literature,
Otrok & Whiteman (1998) and Kim & Nelson (1999) propose a Bayesian estimation
technique whereas Doz et al. (2006, 2007) and Jungbacker & Koopman (2008) use

an estimation approach based on the EM algorithm.

While these studies have provided important contributions to the literature on

factor models, some identification issues remain, however. In particular, it is often

'Typically, these theoretical counterparts are defined within a DSGE model (see for example
Altug (1989), Sargent (1989) and recently Boivin & Giannoni (2006)).
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the case that the (static) factors estimated in applied work do not necessarily have

2. A standard procedure

a well-defined and unambiguous economic interpretation
amounts to inferring the economic interpretation of the factors from the dominant
factor loadings. This approach, however, neglects the non-dominant (but possibly
significant) loadings and hence does not necessarily generate unambiguous and well-

defined interpretations of the factors.

In this paper we address this identification problem by using a procedure that
1mposes a specific and well-defined interpretation on the static factors. The economic
interpretation of the extracted static factors is based on a set of overidentifying
restrictions on factor loadings. Furthermore, a set of standard exclusion restrictions
on the impact matrix is used to identify the structural shocks. We employ the
iterative maximum likelihood estimation approach as in Doz et al. (2006, 2007) and

Jungbacker & Koopman (2008) which is an iterative maximum likelihood method.

We illustrate our approach by revisiting the large cross-section data analyzed
in Bernanke et al. (2005). We aim at identifying and extracting from the data
panel nine macroeconomic factors respectively related to inflation, unemployment,
economic activity, consumption, state of the business cycle, residential investments,
financial markets and monetary policy. Given the identification of these factors,
we assess and analyze (as in Bernanke et al. (2005)) the impact of monetary policy
shocks on a number of key observable through impulse response analysis and variance

decompositions.

Our paper is closely related to a number of recent studies. Boivin et al. (2009)
and Reis & Watson (2008) impose loadings restrictions to identify a measure of pure
inflation for the US economy. In the same way, Forni & Reichlin (2001) and Kose
et al. (2003) use loading restrictions to differentiate between world, regional and
country factors. Finally, Boivin & Giannoni (2006) employ loading restrictions to
estimate the theoretical concepts of variables defined in DSGE model. The main
difference between these studies and ours is that we employ the EM algorithm to

derive closed form solutions for (linearly) restricted factor loadings. As such, we

2 Static factors are related to the variance-covariance matrix of the data while dynamic factors
capture the property of their spectral density matrix. See Forni et al. (2000) for a literature
review. Recent studies provide a structural interpretation to dynamic factors (shocks), see for
example Giannone et al. (2004); Houssa (2008a) and Forni et al. (2008). The main difference
between these studies and ours is that we identify (in economic and structural terms respectively)
the static and dynamic factors.
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can combine various loading restrictions allowing to obtain a clear macroeconomic

interpretation of the extracted factors (see sections 2 and 3).

The remainder of the paper is organized as follows. First, the methodological
approach is explained in Section 2.2. We introduce a dynamic factor model and
discuss the identification restrictions. In addition, closed-form solutions for the pa-
rameter estimates, consistent with the identification schemes and using results from
Shumway & Stoffer (1982) and Wu et al. (1996), are presented. An empirical illus-
tration of the impact of US monetary policy shocks on the macroeconomic factors

is provided in Section 2.3. Section 2.4 concludes.

2.2 Methodology

We first introduce the DFM. More details can be found in Forni et al. (2000) and
Forni & Lippi (2001). Subsequently, we employ the quasi-maximum likelihood esti-
mation approach as in Doz et al. (2006, 2007) and Jungbacker & Koopman (2008).
We take this approach one step further by imposing (over-) identifying restrictions
on the loadings and on the impulse response function (IRF). This allows a clear
economic interpretation of the static factors and a structural identification of the

shocks.

2.2.1 Dynamic Factor Model

Consider a panel of observable economic variables y;;, where ¢ denotes the cross-
section unit, ¢ = 1,..., N while ¢ refers to the time index, ¢t = 1,...,T. The panel of
observed economic variables is transformed into stationary variables with zero mean
and unit variance. These transformed variables are labeled by z;;. Dynamic factor
models assume that a variable z;, can be decomposed into two components, the

common component, X, and the idiosyncratic component &,:

Tit = Xip + i (2-1)

Furthermore, in exact dynamic factor models it is assumed that the idiosyncratic and
common components are uncorrelated at all leads and lags and across all variables,
E(&+x;s) = 0,V s,t,i,j. The common component is assumed to be driven by a

small number 7, 7 << N, of common factors f; = (fis, for, -+ fri) =
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Tip = )\szt + &t (2.2)

where )\; is a r X 1 vector of factor loadings measuring the exposure of z;, to the

factors f;. On the other hand, the idiosyncratic component is driven by variable-

specific noises. Stacking equation (2.2) over all cross-section units, z;4, i = 1,..., N,
gives

Xt - )\ft + St? (23)
where X; = (v14,...,2n¢) ", & = (E1ps -, En) |5 and X is a N x r matrix of factor

loadings, A = (A1, ..., Ay) . Equation (2.3) is called a static factor model. "Static"
stands for the fact that the observed variables only load contemporaneously on the

factors.

To close the model, factor dynamics have to be specified. We assume that the

r-dimensional vector of common factors f; has a VAR(p) representation

o(L)fe = Ty, (2.4)
where ¢(L) = I — ¢, L — ¢oL* — ... — ¢,LP, with ¢; denoting a r x r matrix of
autoregressive coefficients (j = 1,...,p). Moreover, given the stationarity of the

transformed panel, we impose that the roots of det (¢(L)) are outside the complex
unit circle. The g-dimensional vector of dynamic factor innovations is denoted 7,
and T represents a r X ¢ transformation matrix. As in Doz et al. (2006) we make
additional distributional assumptions: 7, ~ i.i.d N (0,Q) and &, ~ i.i.d N (0, R),

with @ and R denoting (semi)positive definite matrices®.

Using equations (2.3) and (2.4), the model can be summarized in first order,

with a rp x 1 state vector Fy, F; = (f,, ..., f;pH)T, by the measurement equation:

Xt - AF’t + gt? (25)

3Note that, by assuming i.i.d idiosyncratic components, (2.3)-(2.4) define an ezact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
sets where cross-sectional and serial correlations are expected to be found. As such, (2.3)-(2.4)
represent a misspecified model. However, Doz et al. (2006) show that, for large N and T, the exact
factor model estimators are consistent quasi-maximum likelihood estimators for the approzimate
factor model.
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and the transition equation:
Ft = (I)Ft_l + VSUt, (26)

where A is the N xrp matrix loading, implied by A, ® is the rpxrp companion matrix
corresponding to the VAR(p) in (2.4), V = <TT, O:(pq)Xq
structural shocks that are identified through the matrix S (see section 2.2.2 below).
Inverting the VAR in (2.6) and substituting F; in (2.5) gives

4
) , and u; represents the

Xt = B(L)U/t + ft, (27)

where B(L) = A(I — ®L)~'V S, represents the IRF to u;.
The state-space system, defined by equations (2.5) and (2.6), is not uniquely
identified. We address the econometric identification as well as the economic in-

terpretation of the static factors in section 2.2.2 Finally, the identification of the

structural shocks u; is discussed in section 2.2.2.

2.2.2 Economic interpretation
Economic interpretation of the factors and shocks requires additional identification

restrictions. We use two types of restrictions:

1. Loading restrictions allowing for a clear macroeconomic interpretation of the

(static) factors.

The section headed "Economic factors" details this approach.

2. Restrictions on the impact matrix identifying the structural shocks.

The section headed "Structural shocks" details this approach.

Economic factors

We impose a set of restrictions on the loading matrix A in (2.5) and denote the
restricted loading matrix by A*. The linear loading restrictions take the following
general form:

Hpvec(A") = k4. (2.8)

where s, refers to a ¢ x 1 vector of ¢ linear combinations of restrictions of factor
loadings defined by Hy, Hy € RN,
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We use three types of loading restrictions, depending on the information content
of the observables. In particular, economic identification is achieved by means of (i)

unbiasedness restrictions (i) one-to-one restrictions or (7ii) exclusion restrictions.?

The unbiasedness restriction implies that observable x; is an unbiased and direct
information variable for factor f;,l =1,2,...,7,:

7

This type of restrictions is used on observables that are assumed to be a direct
measure (up to some measurement error) of the underlying factor. For instance,
our empirical application assumes that the observable “CPI-U: All items” inflation
is a direct measure for the inflation factor. As such, the unbiasedness restrictions
imply a unit loading of “CPI-U: All items” inflation on the inflation factor and zero
loadings on all other factors. Note that these unbiasedness restrictions allow for
the econometric identification of the DFM as the static factors are now uniquely
defined. Our identification approach is an application of Proposition 2 in Geweke &
Singleton (1981) and further discussed in Bork (2008).

The one-to-one restriction implies a one-to-one link between an observable and

a factor. Unlike unbiasedness restrictions, we allow other common factors to affect

the observable as well, i.e. we do not impose A}, , = 0. Formally, one-to one
restrictions between observable z; and factor [ are ensured by imposing:

=1 (2.10)

Finally, contemporaneous exclusion restrictions, i.e. the case where variable x; is

(contemporaneously) not related to the factor f, take the form of:
A, =0. (2.11)

Note that this identification scheme formalizes and extends the standard informal
identification procedures used in the literature. The standard approach identifies
the factors from the principal factor loadings of the economic variables, disregard-
ing the smaller loadings. Our identification procedure formalizes this approach by

(i) imposing exclusion restrictions on the non-informative variables, which ensures

4To conform to the static factor structure of the model, all loadings on lagged factors are set to
Z€ro.
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that only information of relevant variables is incorporated in the factor and (i) fa-
cilitating interpretation of the factors by means of the unbiasedness or one-to-one

restrictions imposing a direct mapping between the observables and the static factor.

The economic interpretation of the factors is obtained by imposing at least one
unbiasedness or a one-to-one restriction per factor. However, while exclusion and
unbiasedness restrictions exclude some observables from the information set of a
factor, we allow for feedback effects across factors. Specifically, through the VAR
specification in (2.6) we allow for dynamic interactions among factors. As such,
factors can be correlated and structural shocks are eventually transmitted across all

observables.

Structural shocks

In equation (2.7), structural shocks are identified. We follow the standard iden-
tification procedure in the SVAR literature by choosing an appropriate matrix S
such that the implied restricted IRF, B(L)*, has an economic justification. For
instance, the Blanchard & Quah (1989) long-run restrictions can be obtained by

*

choosing S such that appropriate elements of B(1)* are equal zero. Sign restric-
tions, recently introduced by Uhlig (2005), can also be fulfilled by choosing S such
that the time path of some elements of B(L)* have an appropriate sign. Popular
sign restrictions include the fact that prices cannot increase following a negative de-
mand shock. Finally, structural identification can be obtained by imposing the Sims
(1980)’s triangular representation on the matrix S. This is the approach followed in

our empirical application in section 2.3.

We first impose that the number of static factors equals the number of dynamic
factors, i.e. ¢ = r. This generates a structural shock to each of the static factors.
Thereafter, we use the exclusion restrictions implied by the Cholesky decomposition
of @ = S5’ with S lower triangular. The structural interpretation of the shocks is
then implied by the ordering of the static factors and discussed in more details in

section 2.3.

2.2.3 Estimation: the EM algorithm

Given the latent nature of the static factors, a standard EM algorithm is used
to estimate the parameters and to extract the implied factors. Denote by ©* =
{A*, R, ®,Q} the set of parameters to be estimated with A* satisfying the set of
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identification restrictions listed in equation (2.8). Conditional on the estimates of
the factors, F (and matrices measuring uncertainty ﬁ’), the elements of ©* can be

estimated by (Maximization step):

vec (A*) = vec(DC™)
+(C'®R) Hy [Hy (C @ R)H]]™
X {kp — Hp vec (DC™1)},
R = 7 (E-DC™'DT), (2.12)

vec (®) = vec(BA™Y),

Q = VQVT=1[C—-BA'BT],

where the estimator for A* follows from a straightforward extension of Wu et al.
(1996). Appendix B.1 offers a derivation of A*.

Conditional on the estimated parameters, ©, the latent factors can be extracted

by means of the Kalman smoother and the required moments can be computed

(Expectation step). In particular, the following expectations are generated:

A= ZtT:1 (pt—l\T + Ft—l\TFtTfuT) )

B = Zthl (FtITFtT—uT + P{t,t*1}|T> )

=L, (Fkl+ Pyr). 213
_\T T

D=5% XiFyr,

E= Zthl XtXtT

with: X
Ft|T:E[Ft | XT]a

Pyr = E |(F = Byr) (Fi — Fyr)T | x|, (2.14)

Py nyr=E [(Ft — Fyr)(Frea — Froapr) T | XT] ;
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where E |- | Xr| denotes the expectations operator conditional on the information set
Xp ={X,...,X;} as implied by the Kalman smoother (as a function of ©). See for
instance de Jong & Mackinnon (1988) or de Jong (1989). We iterate sequentially over
the M-step in equation (2.12) and the E-step in equation (2.13) until convergence

of the likelihood starting from different sets of initial values.’

In our empirical application discussed in section 2.3 the unrestricted model in-
volves 1,614 parameters to be estimated. This is computationally feasible with
the EM algorithm method. Doz et al. (2006) suggest to initialize the Kalman fil-
ter by the parameters implied by principal components and then filter the factors.
However, principal component analysis results in orthogonal factors and we prefer

correlated factors®

. Consequently, we suggest entertaining an oblique rotation of
the orthogonal factors, which is a common tool in confirmatory factor analysis and
described in Lawley & Maxwell (1971). This approach does not change the initial
fit but rotates the factors towards a target loading matrix which we choose to be the
exactly identifying loading restrictions. The result is a set of correlated factors from
which a set of implied initial parameters’ consistent with the identifying loading

restrictions can be derived.

2.3 Empirical Application

We illustrate our procedure by revisiting the large data panel analyzed in Bernanke
et al. (2005)%. This data set includes 120 monthly time series covering a large part
of the US economy over the period 1959:1 to 2001:8°.

>We define convergence using a relative tolerance of 10~2 for the log-likelihood.

6The Geweke & Singleton (1981) identification scheme allows the factors to be correlated which
is relevant if any macroeconomic interpretation is going to be attached to these factors.

"We experimented with many different sets of starting values in order to address the sensitivity
of the EM algorithm to starting values. In one of the experiments we imposed very weak priors
on the initial parameter estimates ©* = {A*, R, ®, @} . In particular, the loading matrix was filled
with with zeros except for the exactly identifying unit restrictions as explained in equation (2.9).
In another experiment, principal component analysis (PCA) on the panel X generated a set of
orthogonal factors from which a set of starting values of © can be derived. We also experimented
with PCA of r subsets of the dataset where the principal component of each subset represents an
initial estimate of one of the r factors. In the end, we prefer the oblique factor rotation as this
approach results in improved likelihood values and statistical fit compared to the other approaches.

8We thank Jean Boivin for kindly making the data set available on his website, HEC-Montréal,
Canada.

9The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Bernanke
et al. (2005) for details on the data set and on the transformation which results in a sample size
of T = 511. The data transformation decisions are similar to Stock & Watson (2002b) and based
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The focus of our empirical analysis is to extract a number of factors with an
unambiguous (macro) economic interpretation. Moreover, we analyze the economic

impact of monetary policy shocks on the US economy.

We first discuss the identification of the factors in section 2.3.1. Then in section
2.3.2 the statistical and economic significance of the over-identifying restrictions
are evaluated by means of standard information criteria, R-squared and a likelihood
ratio test. The results are then presented in section 2.3.2 and the empirical monetary

policy analysis undertaken in section 2.3.2.

2.3.1 Identification

The identification of the factors and the structural monetary policy shocks are now
discussed in an empirical setting. Firstly, the number of factors is discussed in section
2.3.1. Subsequently, we follow the structure represented by the two numbered items
in 2.2.2 by a discussion of 1) economic interpretation in of the identified factors in
section 2.3.1 and 2) structural monetary policy shocks in section 2.3.1. Thus, the
economic identification in 1) and the structural identification in 2) are discussed
separately but it should be mentioned that the order in which the factors enters
into the VAR in (2.6) is influenced by the recursive structural identification of the

shocks.

Determining the number of factors

An important choice in factor analysis concerns the unknown number of static factors
r that span the factor space. Bai & Ng (2007, 2002), Stock & Watson (2002b) and
Hallin & Liska (2007) represent important contributions to the literature on the
determination of the number of factors. However, applications of the proposed
tests usually result in substantial variation in the number of factors. For example,
Giannone et al. (2004) find that the number of shocks (dynamic factors) driving the
US economy is equal to two (i.e. ¢ = 2). Stock & Watson (2005) analyzing a similar
large US data set set, but with a different method, argue that seven dynamic factors
and nine static factors are required ( ¢ =7 and 7 = 9). Bai & Ng (2007) and Hallin
& Liska (2007) find that ¢ = 4.

on judgemental and preliminary data analysis of each series, including unit root tests.
Prior to the estimation, we de-mean the series and divide them by their standard deviation such
that the resulting series have zeros mean and unit variance.

70



Part of the difference in the number of factors can be attributed to the fact
that earlier research focussed primarily on fitting the leading statistical indicators
for economic activity and inflation. Stock & Watson (2005) demonstrate, however,
that additional factors are required to fit the other dimensions of the data panel.
Bernanke et al. (2005) do not use the popular information criteria by Bai & Ng
(2002) because this test does not address the number of lags of the factors. They
prefer a model with four factors of which three are latent and the last is the federal
funds rate. Bork (2008) also consider the same data as in Bernanke et al. (2005)
and based on various information criteria including the criteria by Bai & Ng (2002)
he finds that an exactly identified factor-augmented VAR with 7 = 8 explains the

data well.

Based on the reasoning by Stock & Watson (2005) and the results of Bork (2008)
we allow for nine factors and include six lags in the dynamics of the factors (r =
q = 9 and p = 6)'°. The motivation for introducing more factors is based on the
observation that our approach, unlike the latent factor approach, imposes a large
number of over-identifying restrictions on the loading matrix. These over-identifying
restrictions most likely reduce the fit of each of the factors. This decrease in flexibility

is compensated for by increasing the number of factors.

Economic interpretation of the factors

We identify the nine retained static factors using a relatively wide array of economic
concepts or interpretations, relevant for empirical monetary policy analysis. The
identification of seven out of the nine factors is motivated by small-scale macroeco-
nomic theoretical models. In particular, we retain four (aggregate supply) factors:
an inflation factor (m); an economic activity factor (y); an hours in production fac-
tor (hrs) functioning as a buffer to changes in demand and an unemployment factor
(un). The standard aggregate demand equation motivates the identification of the
following three factors: a consumption factor (c); a housing factor (h) approximat-

ing (residential) investment; and a monetary policy factor (i)''.

The remaining two factors have an interpretation either as additional information

190ur results are robust to including more lags and to reducing the number of lags to p = 4.
Choosing a lower order VAR than p = 4 seems to leave some of the endogeneous response of the
monetary policy in the VAR residuals which in turn affects the impulse response functions; see the
following sections for a discussion.

"For more details we refer to Bernanke et al. (2005) for a nice exposition on the mapping
between a small-scale macro model and a factor model.
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factors or as financial factors.'?> More precisely, we identify a stock market factor (s)
which may capture wealth effects on consumption, a Tobin’s ¢ effect on investments
as well as serving as an information factor for monetary policy in the sense that
deciphering the forward-looking expectations of the private sector embedded in stock
prices is relevant information for policy makers. Finally, we define a commodity
price factor (pcom) which is intended to indicate nascent inflation upon which the
monetary policy makers may respond to. We experimented with various factor

specifications and discuss these later in section 2.3.1.

[Insert Table 2.1]

Table 2.1 offers an overview of the identification restrictions. The identification
of the respective factors is obtained in two steps. First, we identify the factors by
imposing a set of unbiasedness restrictions. In particular, we impose unbiasedness
restrictions on nine observables closest to the economic interpretation of each of
the factors (see shading areas in Table 2.1).!* This results in an exactly identified
system (along the lines of Proposition 2 in Geweke & Singleton (1981)). This exactly

identified latent factor model is labelled as the “unrestricted model” .

Second, to enhance economic interpretation of the factors we impose overidentifying

restrictions in the form of exclusion restrictions (see empty boxes in Table 2.1).

Generally, the identification scheme is based on two strategies. First, exclu-

sion restrictions are primarily imposed on slow-moving variables while fast-moving

2Information variables (or information factors) are assumed to be monitored by central banks
because they may display relevant information that is not available in typical macroeconomic
variables. See Leeper et al. (1996), Christiano et al. (1999) and very recently Bjgrnland & Leitemo
(2009) for a discussion. Generally, information variables are fast-moving variables that respond
contemporaneously to all variables. Examples of fast moving variables include auction market
commodity prices, stock prices, and options on financial instruments.

13The target observables of the factors are: the CPI-all items index (series 108) for the inflation
factor (m); the Unemployment Rate all workers (series 26) for the unemployment factor (uy);
the Industrial Production-total index (series 16) for the economic activity factor (y); Personal
Consumption Expenditure all items (series 49) for the consumption factor (c); Average weekly
Hours of Production in manufacturing (series 47) for the hours in production factor (hrs); Housing
Starts non-farm (series 54) for the housing factor (h); NAPM commodity price index (series 102)
for the commodity price factor (pcom); The effective federal funds rate (series 77) by the monetary
policy rate factor (i); and finally the NYSE stock price index (series 66) for the stock market factor
(s). See appendix A.1 page 162 for the definition and numbers assigned to each observable in the
data panel.
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observables are left unrestricted (except for housing starts and stock market obser-
vations).!* This modeling choice is motivated by the idea that fast moving variables,
containing a speculative component, can be considered as general and timely infor-
mation variables for macroeconomic developments. Second, we differentiate between

nominal, real, information, and policy factors.

We define: one nominal factor (inflation factor); four real factors (unemploy-
ment, economic activity, consumption, and hours in production factors); three in-
formation factors (housing, commodity price, and stock market factors); and one

policy factor (monetary policy factor).

In our identification strategy, nominal factors exclude all types of real observables
as (contemporaneous) information variables. In the same way, real factors exclude
nominal variables. Information factors exclude all slow-moving real and nominal
observables. Finally, the policy factor loads freely on all observables (except for
the necessary unbiasedness restrictions). Details on the restrictions per variable are
described in more detail in Appendix A and displayed in terms of shaded and empty
cells in Table 2.1.

Identification of structural monetary policy shocks

Dynamic factor models (DFMs) or related models such as FAVARs (e.g. Bernanke
et al. (2005)) or large Bayesian VARs (Banbura et al. (2008)) are increasingly used to
assess the economic impact of monetary policy shocks. The main advantages of these
models over the commonly-used small-scale VAR models are well understood: (i) a
large information set is used in the former models leaving less scope for the omitted
variable problem or the fundamentalness problem (see e.g Forni et al. (2008)); (ii)
the results are more robust, i.e. less dependent on the particular choice of variables
than in a small-scale VAR; (iii) the formal structure of the DFMs, FAVARs or

BVARSs, is sufficiently strict to contain estimation problems.

The structural analysis of monetary policy shocks proceeds as in conventional

small-scale VAR models in several respects. First of all, the factors in DFMs,

FAVARs or BVARs play the role of the variables in the conventional VAR. Provided

14We use the definition of fast- and slow-moving variables of Bernanke et al. (2005) except
housing starts and stock market returns, which we assume not to respond contemporaneously to
some factors. This assumption helps empirically to distinguish a housing factor from a stock market
factor.
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that one of the factors is the federal funds rate, the issue of identifying the structural
monetary policy shock from the reduced form VAR residuals therefore applies ex-
actly similar to the conventional VAR. Accordingly, the identification schemes often

entertained in the structural VAR (SVAR) literature apply equally well.

In the following a brief introduction to empirical monetary policy analysis us-
ing SVARSs is presented; thorough expositions are given in Leeper et al. (1996) and
Christiano et al. (1999). The first thing to realize is that most monetary policy
actions are systematic, i.e. the actions are predominantly endogenous response to
the state of the economy. As such, the systematic effects of monetary policy on the
economy are difficult to assess on the basis of historical aggregate time series. How-
ever, not all of the variation in the monetary policy instrument can be characterized
as a response to the state of economy. The unaccounted variation is formalized
with the notion of an exogenous monetary policy shock and a non-exhaustive list of
exogenous policy shocks includes changes in the mix of the board of policy makers,
changes in the preferences of the board!®, and technical factors like measurement
errors arising from real-time data versus revised data. An empirical identification
of these shocks is interesting because only when policy makers deviate from the en-
dogenous response it becomes possible to collect empirical evidence of the response
of actual economies to such shocks. Furthermore, the empirical evidence facilitates
a comparison with a similar shock in model economies; cf. Christiano et al. (1999)

for a further discussion.

The VAR model introduced by Sims (1980) represents a widely used model for
evaluating the dynamic response of a monetary policy shock. In particular, all the
variables (or factors) in the VAR are endogenous and can be written in a moving-
average (MA) form of the reduced form VAR residuals. However, these reduced
form VAR residuals lack any economic content because they are linear combinations
of underlying structural shocks but identification of the structural shocks of interest
would lead to a structural MA form of the VAR which in turn allow for an impulse

response analysis of the monetary policy shocks.

The notion of systematic responses of monetary policy and monetary policy

shocks is formalized in a standard fashion by a linear reaction function f for the

5 For instance a shift toward more weight on inflation versus unemployment.
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monetary policy instrument:
it = f (.E) + O'ié‘i

where F; are the variables that the policy makers look at (time ¢ information set),
el is the monetary policy shock normalized to have zero mean and unit variance and
0, is the standard deviation of monetary policy shock. We follow Christiano et al.
(1999) and more recently Bernanke et al. (2005) and apply a recursive identifica-
tion approach to the identification of the structural monetary policy shock. This
approach assumes that the monetary policy shock is contemporaneously orthogonal
to the variables that enter the reaction function, i.e. that the variables in F; do
not respond contemporaneously to time t shock but instead respond with a lag.
This effectively allows for a recovery of the monetary policy shock from the VAR

residuals.

A standard approach in the literature is to relate the reduced form VAR residuals
e; to the structural innovations u; by e; = Su; where S is a lower triangular Cholesky
decomposition of the covariance matrix of e;. Moreover, this particular identification
approach leaves the dynamic impact on all the variables in the VAR to a monetary
policy shock invariant to the ordering of the variables. This result is due to the
proposition in Christiano et al. (1999)'. Nonetheless, the actual ordering of the

variables is based on economic theory as follows.

Inflation is ordered first in the VAR as inflation responds with long and variable
lags to changes in the monetary policy through complex transmission mechanisms.
Delayed response of aggregate demand to changes in monetary policy, periodic wage
negotiations and staggered price-setting among firms all lead to a drawn out re-
sponse of inflation. Unemployment is ordered second, industrial production ordered
third and consumption fourth. Underlying this ordering is the idea that a monetary
policy shock will impact consumption before industrial production which in turn af-
fects unemployment that finally affects inflation via some rigidity in wage and price
setting. The fifth factor is defined as (overtime) hours in production and this factor
is assumed to respond relatively faster. The sixth factor is housing starts and the
seventh factor is a commodity price factor which partly represents commodity prices

determined in auction-like markets and partly represents producer prices including

16However, for non-policy shocks the impulse responses are sensitive to the ordering of the
variables in the VAR.
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crude and intermediate components of the producer price index. The eighth factor
is the monetary policy instrument (federal funds rate). The ninth factor is a stock
market price index factor and obviously fast-moving. We order this last serving as
a informational variable for the monetary policy makers!”. Using the previously de-

fined notation the factors in F are therefore ordered as {7, u,, y, ¢, hrs, h, pcom, i, s}.

Alternative factor specifications

The factor specification described above is motivated by theoretical and empirical
monetary policy as well as by the characteristics of the distinct factors in the panel
data. The factors representing inflation (7), output (y), and the monetary policy
interest rate (7) follows readily from theoretical small-scale models within monetary
theory!® whereas another standard theoretical ingredient in the form of potential

output (yN ) has not been represented by a factor.

According to Giordani (2004) the omission of the potential output in empirical
VARSs results in a ’price puzzle’ as first noted by Sims (1992).!9. Typically, the
literature on empirical monetary policy analysis includes a commodity price index
in the VARs in order to mitigate the price puzzle. The reason is, that commodity
prices contain useful information about potential output (to be precise the output
gap given by y — yV). Inspired by this we tried to approximate the output gap
by the capacity utilization rate given by a single series in the data by imposing an
unbiasedness restriction on this. However, in order to achieve a precise measure of
the capacity utilization rate one would need to impose many exclusion restrictions
on the slow-moving variables resulting in a thinly defined factor that most likely will

be dominated by the fast-moving variables?.

1"Notice, that if structural shocks to stock market prices are considered then a simultaneity
problem arise in the sense that both the federal funds rate and stock market prices should be
allowed to respond contemporaneously to either of these shocks. Bjgrnland & Leitemo (2009) solve
this by long-run restrictions. However, we do not consider shocks to the stock market and order
the stock market factors last. Ordering stock market last implies that stock prices can respond
contemporaneously to all other shocks inlcuding the federal funds shock. However, the monetary
policy shock respond with a lag to shocks to stock market prices; the underlying assumption is
that the monetary authority wants to evaluate whether the shock is fundamental or not.

18See the backward-looking models of e.g. Svensson (1997) and Rudebusch & Svensson (1999).

19 A typical finding in standard VAR analysis of monetary policy is an increase in the price level
following a contractionary monetary policy shock - hence the notion of a price puzzle, because we
would expect a decrease.

20Notice, that whenever we tried to mix the capacity utilization rate with other slow-moving
variables the signal get too blurred to represent inflation expectation and/or supply shocks and
consequently resulted in a price puzzle.
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We suggest including more proxies for the output gap in the data set if an output
gap factor should be extracted. The same problem with thinly defined factors applies
to the NAPM commodity prices index, but we solve this problem by imposing one-
to-one restrictions on the closely related intermediate and sensitive materials among

the producer price indices.

Summing up the discussion, we choose to include a commodity price factor to
proxy the output gap and to construct a hours in production factor which is quite

correlated with the capacity utilization rate.

2.3.2 Empirical results

Evaluating the over-identifying restrictions

Our identification scheme involves more than 400 over-identifying restrictions and
the validity of these restrictions is tested statistically. Specifically, a likelihood
ratio (LR) test is used to test the over-identifying restrictions against the exactly
identified "unrestricted model". As expected all the restrictions lumped together
are clearly statistically level rejected at any significance level but interestingly the
economic significance of the restrictions is indeed small. As discussed in details
below the consequence of imposing more than 400 over-identifying restrictions is an
approximately 3 percentage points decrease in overall adjusted R?. We conclude
that little is lost by imposing the over-identifying restrictions and we are willing
to pay the price of a slight reduction in overall R? for economically interpretable

factors.

Similar findings have been found by Reis & Watson (2008). In a related dynamic
factor model they estimate a measure of pure inflation by imposing a unit loading
on each of 187 US sectoral price indices. Their restrictions are rejected in t-tests
but they find that for eighty percent of the series the decrease in terms of R? is less
than 3%.

In order to examine whether some of our restrictions are particularly restrictive,
we impose the restrictions sequentially using 23 blocks of restrictions of varying sizes.
The model is re-estimated for each added set of restrictions. Table 2.1 represents
the loading matrix and displays the exactly identifying restrictions, the 23 blocks

of over-identifying restrictions and the free parameters of our preferred model as
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follows. Firstly, the exactly identifying restrictions are indicated by shaded entries
with either a 1 or 0 and constitute the unrestricted model. The numbers in Table

2.1 represent estimated free parameters of our preferred model.

For the first factor (7) a total of fifteen exclusion restrictions are lumped together
in block [1] and imposed on industrial production. These over-identifying restrictions
are in fact accepted in a likelihood ratio test?’. Then an additional four over-
identifying restrictions in block [2] are imposed on 7 which are rejected, although
the overall adjusted R? is unchanged. Subsequently, the restrictions in block [3] to
block [23] are added implying that when the block [23] is reached all restrictions are
imposed yielding the preferred model. For each block of restrictions we calculate
the L R-test, the adjusted R?, AIC and BIC. We also report the panel information
criteria IC)p from Bai & Ng (2002) targeted towards principal component dynamic
factor models. However, to comply with the EM algorithm the IC), criteria is
slightly modified in terms of the convergence rate of the estimated factors towards

the true factors and is denoted ICj,; see Doz et al. (2006) for the convergence rate

of (ﬁ,%)

The rectangles represents the blocks of exclusion restrictions starting with the
first block of 15 over-identifying restrictions on the first factor 7 in the upper left
corner. Notice the small [1] in the upper right corner of the rectangle which de-
notes block number [1]. Within the rectangle the overall adjusted R? is reported
along with the above mentioned criteria if space allow. We then move downwards
in the 7 column and impose block number [2]. This particular rectangle is not
completely closed because an element in the rectangle does not belong to the set
of over-identifying restrictions. We intend to indicate the opening part of the rec-
tangle in the same way as the symbol [ and the closing part of the rectangle as |.
One-to-one restrictions are indicated by unit integers without any decimal places.
When all blocks of restrictions have been imposed and subsequently estimated we
end up in the lower right rectangle of the table denoted [23]. The adjusted R? from
this rectangle equalling 52.5% is the fit of preferred model to be compared with an
adjusted R? of 55.9 in the unrestricted model.

21To save space a full table of the 23 likelihood ratio tests is not reported. A likelihood ratio test
of the over-identifying restrictions in block [1] cannot be rejected at a 1%, 5% or 10% significance
level. However, the restrictions in block [2] to block [23] are clearly rejected. Likelihood ratio tests
were also calculated from block [i] to block [¢ 4+ 1] and in this marginal sense we could not reject
the restrictions imposed on block [5] and on block [22].
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As expected, the adjusted R?* measures in Table 2.1 decrease and the AIC/SIC
measures increase as more and more restrictions are imposed. Moreover, all blocks of
restrictions are rejected in a likelihood ratio test, except the first block and the fifth
block, where the latter is only accepted in a marginal sense, i.e. the log likelihood

value for block [5] is not significantly different from the log likelihood value of block
[4].

An evaluation of the economic significance of the restrictions shows that some
of the restriction blocks result in a clear decrease in R? up to half a percentage
point and a relative clear increase in the AIC/SIC. On the other hand, some of the
other restriction blocks do not change the R? nor the AIC/SIC. Consider each of
the factors in turn. Five of the six blocks of restrictions imposed on the inflation
factor result in a very small decrease in R? whereas the last block restriction on
housing starts and stock returns seems to be somewhat restrictive. We suspect that
this block restriction significantly changes the nature of the first factor towards a
clear inflation factor thus eliminating any potential residential investment compo-
nent and stock market component in this factor which in turn may deteriorate the
fit of housing starts and stock returns. For the unemployment factor, the economic
activity factor, the consumption factor and the stock market factor there are no
particular restrictive block restrictions. The three factors, hours in production, res-
idential investment and commodity prices, are more narrowly defined factors and
consequently one should expect reduced explanatory power of these factors com-
pared to the fully latent factors. In fact, this illustrates the tradeoff we face between
economic interpretability and statistical fit in the sense that some of the explana-
tory power of the fully latent factors has to be sacrificed to achieve an unambiguous

economic interpretation of the factors??.

In that respect, restriction block [16] is
relatively restrictive for the residential investment factor, which could be explained
by the exclusion of e.g. unemployment variables in the measurement equation?.
For the (NAPM) commodity price factor, restriction block [18] is relative restrictive
which may be explained by the exclusion of other NAPM survey measures whereas

the exclusion of CPI inflation is unrestrictive.

22Furthermore, the defined factors should also be relevant for empirical monetary policy analysis.

23The exclusion of unemployment and employment variables in the housing factor may eliminate
any potential employment component (distinct from the unemployment factor) which in turn may
deteriorate the fit of the employment variables. In other words, if any employment component is
embedded in the housing factor the exclusion restrictions eliminate this component such that a
clearer interpretation of the factor emerges.
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Implied factors

Figure 2.1 displays the factors as retrieved from the panel. Overall, these factors
are well in line with the leading measures and trends in the US economy over the
sample period. Specifically, the general inflation factor captures almost perfectly
the overall CPI series while the economic activity factor picks up most of the peaks
and troughs as identified by the NBER and indicated by shaded bars in the figure.

Insert Figure 2.1 and Table 2.2

Table 2.2 reports the factor loadings as well as the total variance explained by the
common factors (R-squared) for a number of leading economic measures®!. Overall,
the statistics reported in Table 2.2 and Figure 2.1 support the economic interpreta-
tion of the latent factors. Specifically, we find that the inflation factor (7) closely
tracks the CPI-U: All items inflation. Moreover, the R-squared is higher than the
one based on the inflation factor identified by Bernanke et al. (2005) (96% instead
of 87%).%> The estimated factor loadings on other CPI and PPI inflation series are
significantly positive and the common component captures a substantial part of the

variation in these series.

The unemployment factor (u,,) captures almost half of the variation in all of the
23 (un)employment series while the R-squared for the four unemployment duration
series is almost 70%. Moreover, this factor contributes predominantly to the fit of

the capacity utilization rate measured by unreported marginal R-squared.

The economic activity factor (y) explains up to 97% of growth in industrial pro-
duction and also fits reasonably well the different components of industrial produc-
tion (R-squares above 50% for half of the 16 series). Moreover, loadings for industrial
production components are in general positive. The economic activity factor also

contributes to the variation of payroll, income and employment variables.

The consumption factor (c¢) is restricted to load only on the five personal expen-
diture series in addition to the fast-moving variables. The one-to-one restrictions
help to extract a consumption factor that explains half of the variation in the per-

sonal expenditure series which is significantly higher than the 6-10% reported by

24To save space we have not reported the estimated covariance matrices Q and R as well as the
companion matrix ®. These results are available on request. It should be noted that all eigenvalues
of & are less than one in absolute values such that the system is stationary.

?Bernanke et al. (2005) use an exactly-identified four-factor FAVAR model.
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Bernanke et al. (2005) and Bork (2008). Our identification approach therefore al-
lows to target a group of variables in the panel which otherwise have little chance
of showing up in a distinct factor. The price for this may be a reduced overall fit of

the panel but as reported above this appears to be only modest in our application.

The hours in production factor (hrs) explains average weekly overtime hours for
production workers in manufacturing almost perfectly. Furthermore, this factor also
helps explaining capacity utilization and help-wanted ads measured by unreported
marginal R-squared. The commodity factor (pcom) captures close to half of the
variation in monthly commodity price inflation as measured by movement in the
NAPM commodity price index. The housing factor (h) explains on average 66%
of the variation in the seven housing start series while the stock market factor (s)

explains more than 80% of the variation for four out of five stock prices.

Finally, the overall, unadjusted average R? of the panel is 53%, which is com-
parable to the R? reported by Bai & Ng (2007), Bork (2008) and Yu (2008) where
over-identifying restrictions are not imposed?®. Moreover, for the targeted concepts,
e.g. inflation, economic activity, we obtain significantly higher values for the R-
squared. Also, the reported average R? corresponds to the average R? that one
would obtain from the Stock & Watson principal components approach to factor
models if six factors are entertained for this particular panel data. This suggests
that the over-identifying restrictions and the implied economic interpretation of the
factors can be obtained without major loss in fitting the dominant sources of varia-

tion in the panel.

Measuring the impact of monetary policy

We use our model to analyze the overall impact of monetary policy shocks on the
US economy. To facilitate comparison with other papers including Bernanke et al.
(2005), we do not present the impulse response functions (IRFs) of the factors them-
selves but instead focus on the IRFs of twenty key measures covering the US econ-
omy, as implied by the factor model. More specifically, we analyze the federal funds
rate, the level of industrial production, the consumer price level (CPI), monetary
aggregates, the capacity utilization, the (un)employment level, the average hourly

earnings, the level of consumption and consumer confidence expectations as key

26Stock & Watson (2002a) find 39% for 7 = 6 in a panel of 215 US monthly series.
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indicators for the macroeconomy. Additionally, we cover housing starts and three
financial market variables: the dividend yield on the S&P, the five year treasury
yield and the USD-YEN foreign exchange rate.

Insert Figure 2.2 and Table 2.3

Figure 2.2 displays the IRFs of each of these variables to a 25 basis point mon-
etary policy shock. The unit of the impulse response functions is the standard

deviation of the respective series.

Christiano et al. (1999) survey and estimate monetary policy shocks using dif-
ferent VAR specifications and conclude that there is considerable agreement in the
literature about the qualitative effects of a monetary policy shock. Specifically,
monetary policy shocks explain only a modest fraction of the variation in output
and prices as measured by forecast error variance decomposition. Furthermore, a
contractionary monetary policy shock is followed by an increase in interest rates
and a fall in output and employment whereas wages respond only modest and prices
decrease slowly with a significant time lag. Our impulse response functions depicted
in Figure 2.2, are as expected and in line with this finding?”. Therefore, the plausi-
bility of the impulse response functions suggests that the model is able to identify
accurately the key macroeconomic transmission mechanisms and shocks. Several

observations can be made in this respect.

First, in line with recent FAVAR or BVAR models and unlike standard small-
scale VAR models, we do no longer observe a persistent price puzzle. The (per-
manent) deflationary effects of monetary policy tightening do appear with about
a one-year lag. Second, we observe long-run neutrality. Monetary policy shocks
only have a temporary effect on production and consumption, although it holds
only marginally for the latter. Long-run neutrality also holds for both the depicted
unemployment series and employment series. Third, note that the impact of tem-
porary policy shocks is initially negative on the consumption expectations but then
reverses before the impact becomes neutral in the long-run. Finally, the results show
a significant impact of monetary policy shocks on financial markets. Monetary pol-

icy tightening increases the bond yields with the short-term yields responding more

2TThe impulse response functions (IRFs) for the monetary aggregates are somewhat puzzling as
we would expect a decrease in the monetary aggregates following a positive monetary policy shock.
However, the uncertainty surrounding these IRFs are very wide implying that any interpretation
should be made with caution.
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than the long-term yields, as illustrated by the IRF of the 3 month and 5 year yield.
However, given the moderate persistence of the policy shocks (see the IRF of the
federal funds rate), the impact on bond yields of monetary policy shocks remains
relatively small and temporary. Real estate markets, as illustrated by the IRF of
the housing starts, initially respond strongly to the monetary policy shock although
there is no long-run effect. On the other hand, price-dividend ratio tends to adjust
downwards following a monetary tightening. These IRFs match both the responses
reported in Banbura et al. (2008), using a BVAR and Bernanke et al. (2005) using
a FAVAR.

Table 2.3 reports the variance decomposition of the selected variables at alter-
native forecasting horizons. This variance decomposition allows us to assess the
relative importance of monetary policy shocks in the overall variation of the series.
Our results are broadly in line with those reported both in Banbura et al. (2008) and
Bernanke et al. (2005). In line with these studies, we observe that monetary shocks
do not have important long-run impact on the forecast error variance of a broad
selection of twenty key macroeconomic and financial variables. Specifically, we find
that a monetary policy shock explains less than 10% of the variation in industrial
production, consumer prices, commodity prices, (un)employment, new orders for
any forecast horizon and virtually zero for consumption. For the bond yields the
portion of the variance explained is decreasing in the maturity of the bond and does
not exceed 15% in the long run. Unlike Bernanke et al. (2005), we do not find a
large significant long-run effect of monetary policy shocks on the federal funds rate.
The estimates reported in Table 2.3 indicate that monetary policy shocks are only
mildly persistent and only account for approximately 15% of total long-run variation
in the federal funds rate. Banbura et al. (2008), reporting similarly small numbers,

argue that this may be explained by the size of the model?®.

2.4 Conclusion

This paper has proposed a methodology to identify factors within the framework
of Dynamic Factor Models. We impose an economic interpretation on the static

factors through a set of over-identifying restrictions on the factor loadings. We

28The larger the model, the more shocks can be identified and the smaller the likelihood of
misspecification of the monetary policy shocks. In this model we identify nine structural shocks,
which is significantly higher than the number of structural shocks identified by Bernanke et al.
(2005).
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modify the standard estimation methodology to incorporate these over-identifying
loading restrictions. In particular, following Shumway & Stoffer (1982) and Wu
et al. (1996), we derive the appropriate parameter estimators and filters based on
the EM algorithm.

In the application, we focus on identifying a set of nine factors with unambiguous
economic interpretation. These factors represent key measures of the US economy
such as inflation, unemployment, economic activity, consumption, state of the in-
dustrial production, residential investments, financial markets and monetary policy.
The obtained factors are empirically plausible measures for each of the targeted key
concepts, listed above. Subsequently, we use the model to assess the overall impact
of monetary policy on the US economy. Our results are in line with the results those

obtained using alternative methods on large panels, e.g. FAVARs or large BVARs.

The framework proposed in this paper has many other applications in economics
and finance. For instance, the identification restrictions can be used to generate
factor pricing models, where factors can be economically interpreted. This type
of model could be used to evaluate and analyze the types and the importance of

macroeconomic risks in stock and bond markets.
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A Over-identifying loading restrictions

The specific set of (over-) identifying restrictions can be summarized as follows;
the inflation factor (m) is identified by the unbiasedness restriction on "CPI-U:
All items". Additionally, we allow other inflation measures to load on the infla-
tion factor. With the inflation factor being a nominal factor, we exclude from the

information set all real variables, e.g. industrial production.

For the four real factors, we impose exclusion restrictions on nominal variables
(e.g. CPIinflation). Additional exclusion restrictions limit the type of real variables
acting as information variables for each of the factors. In particular, the unemploy-
ment factor (u,) is identified by the unbiasedness restriction on "Unemployment:
All workers". Other (un)employment variables and measures of payroll statistics
and capacity utilization are included as additional information variables. All other
slow-moving variables are excluded from the information set. The economic activity
factor (y), identified by the unbiasedness restriction on the "Industrial Production:
Total index" uses other industrial production (IP) variables next to employment
and payroll series as additional state variables. The hours in production factor
(hrs) measures the current over (under) production and is identified (by means of
an unbiasedness restriction) through the overtime hours in production and manu-

facturing.

As additional information variables we include variables such as capacity utiliza-
tion rate, survey-based production indices (PMI, PMP) and help-wanted advertising
to enter freely. We exclude (un)employment and IP growth as we consider them less
informative with respect to the level of over and underproduction. The last real fac-
tor, i.e. the consumption factor (c), is filtered from the observed consumption series
in the panel with an unbiasedness restriction on "Personal Consumption Expendi-
ture" series and one-to-one restrictions on two consumption observables. Moreover,
due to consumption smoothing, we do not expect strong contemporaneous correla-
tions between production employment based statistics and consumption (growth).

Therefore, we impose exclusion restrictions on production related variables.

The information and the policy factors measure particular features in the econ-
omy. More precisely, the housing factor (h) is included as a residential investment
factor. This factor is identified through an unbiasedness restriction on the total

number of housing starts and uses as additional information variables other hous-
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ing starts or authorization variables. We consider the housing factor to be mainly
a forward-looking variable containing all relevant information. As such, exclusion
restrictions are imposed on all slow-moving variables. The commodity price factor
(pcom) aims at measuring cost-push factors due to price increases of raw materi-
als or intermediate products. It is identified by means of the NAPM commodity
price index. Moreover, the commodity price factor retrieves additional information
from PPI data for crude and intermediate materials and from the index of sensi-
tive materials. The monetary policy factor (i) is directly measured by the effective
federal funds rate. Finally, the stock market factor (s) is related to returns on the
NYSE index and uses S&P500 stock market component indices as additional state
variables. We allow all other fast-moving variables to load freely on the stock mar-
ket factor allowing for direct interactions across financial markets. Notice that the
imposition of an unbiasedness loading restriction on the stock market factor seems
to prevent this factor from responding contemporaneously to shocks to the other
factors which seems inappropriate for a financial market factor. However, the com-
bination of the stock market factor ordered last in the VAR and a lower triangular S
(consistent with a standard recursive identification scheme) makes the stock market

factor respond contemporaneously to all shocks.

86



B The EM algorithm, the Kalman filter and the

Kalman smoother

The EM algorithm is an iterative maximum likelihood procedure applicable to mod-
els with "missing data", which in this context is the unobserved factors. The com-
plete data likelihood of the Gaussian state space model in equations (2.5)-(2.6) is
given in equation (2.21) below. Although the complete data likelihood cannot be
calculated due to the unobserved factors, it is nevertheless possible to calculate the
expectation of the complete data likelihood conditional on the observed data and
inputs of parameters, denoted ©) at the jth iteration. Essentially, this expecta-
tion depends on smoothed moments of the unobserved variables from the Kalman
smoother and hence on the data as well as parameters in ©U). Finally, "updated"
values of the parameters at iteration j + 1 denoted ©U*Y are available in closed
form and follows from the first-order conditions of the conditional expectation of
the complete data likelihood. The updated parameters ©U+1) can then be used to
filter and smooth a new set of moments to be used in the calculation of the condi-
tional expectation of the complete data likelihood. This algorithm continues until

convergence of the likelihood value.

The following offers a brief description of the Kalman filter and the Kalman
smoother. Then the complete data likelihood and the incomplete data likelihood
for a state space model are stated. Finally the moments used in the closed form

parameters estimators in (2.12) are stated.

The Kalman filter

Denote by X; = {Xj, ..., X;} the information set available at time t. The condi-
tional expectation and variance of the factor are: Ftﬂu = E[F;11]| X,] and ]5t+1|t =

var (Fyq1| Xy), respectively.

The Kalman filter recursions for t = 1,..,T" can then be written as
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Kalman smoothing

Ft+1|t = q)pﬂt—l + K (Xt — AFt\t—l) ;
Pt+1|t = (I)pt|t71LtT +Q,

where

5t =X — AFt|t71>

nx1

Pt& = Aif)t\t—lAT + R,

nxn

N N -1
Ky = ®Py AT (AP AT+ R)

kxn

Lt — ®—KtA

kxk

(2.15)

Kalman smoothing is the name for the reconstruction of the full state sequence

{Fy, .., Fr} given the observations {X7,.., X7}. Smoothing provides us with more

accurate inference on the state variables since it uses more information than the

basic filter.

The Kalman smoother recursions for t = T, ..., 1, based on the efficient smoother

by de Jong & Mackinnon (1988), de Jong (1989) and used in Koopman & Shephard

(1992) are given by

Fyr

Pyr
p{T,T—1}|T
P{t,t—1}|T

where

Tt—1 = AT |:p§§
Nt,1 - /\T []555

Lt = @ - KtA = @ - @pﬂt,lAT |:p§£

= Fyr+ Py AT [Pﬁf—l] B &+ Pya L e

= Ft|t71 + ]515|t,1rt_1 (alternatively)

= pt\tfl - pt\tletflpﬂtfl

= [I - KpA|®Pr yp

- (1 - Pﬂt_thfl) LoaPrjpn t=T—1,..,1

—1
t|t71:| § + Lz—rta for1<t<Tandry=0

-1
} A+LIN,Lfor1<t<T and Ny =0

t)t—1

tlt—1

}IA.
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The complete data likelihood and the incomplete data likelihood

Under the Gaussian assumption including Fy ~ N (p,, Po) and ignoring the constant,

the complete data likelihood of Equations (2.3)-(2.4) page 64 can be written as
2nLrx(0) = In|Bol+ (Fo— ) Bt (Fo — o)

T
+TIn|Q+ Y (F—®F_1) Q7 (F, — ®F, 1)
t=1

T
+TIn|R[+ ) (X, —AF) R7Y(X,—AF).  (221)

t=1

given that we can observe the states Fr = {Fy, .., Fr} as well as the observations
Xr = {Xi,..,Xr}. However, given Xy and some input of parameter estimates
(denoted ©U~Y) the conditional expectation of the complete data likelihood can be

written as

Q (00 ™) = E[-2InLrx(0)|Xr, 00 V]

~ ~ T
= 1I1|P()| + tr |:P0_1 {(FOT_/L0> <FO\T_H0) +PO|T}:|

+T - Q|+ tr [Q™'{C — B®' —®B' + ®AD'}]
+7 - In|R|

T

Rt Z { (Xt — AﬁﬂT) <Xt — AFtT)T + A]StTAT}

t=1

4+ tr

(2.22)

where the following moments can be calculated from the Kalman smoother listed

above.

T

c =3 <Ft|TFt‘TT + PﬂT) (2.23)
t=1
T

B = > (FﬂTFluT + P{t,t—1}|T> (2.24)
t=1
T

A=3 <Ft,1|TFtT_1|T n PH‘T) (2.25)

t=1
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B.1 The Loading Estimator Subject to Linear Restrictions

Within the EM algorithm approach we want to derive analytically the estimate of
A subject to linear restrictions Hj vec A = k5. Consider therefore the part of the

conditional expectation of the likelihood function in equation (2.22) which involve
A

1
——1tr
2

R! {i (Xt — AFt|T> (Xt — /\13}T>T + i AJf’tTAT}
t=1

t=1

1o
= —5tr[R{E-DAT =AD" + ACA"}]

where X
¢ = Zthl (E|TFt—|rT + Pt\T>
D = ZtT:1 XtFt|TT
E = ZtT:I XtXtT

The maximization of the likelihood problem can be rewritten as the minimization

problem:

minimize : %tr [R_l {E — DA —ADT + AC’AT}]

subject to : HjyvecA = ky.

The Lagrangian is:

L(A) =Ly [Rl{ E —DA — AD'+ A CATH—)\T[HAvecA—F;A]

2 NxN | NxN NxrrxN NxrrxN NXrrxXrrxN nXNrN o nx1
r

and the differential of the Lagrangian is (keeping only d A), cf. Magnus & Neudecker
(2007)

dL (M) — %tr {Rl {— D (dA) = (dA)DT + (dA) C (dA)TH—/\T Hy dvec A

NxN NXr oy N Nxr ™% Nxr ™" rxN NXNr
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The first-order conditions are

T T
1) lvec { ({ C A" — DT} R—l) }] — A Hy =0 (2.26)
rXrrxX N rXN | NxN nxNr

2) : Hjy vecA = Ry (2.27)
nxXNr nx1

Rewrite (2.26) as

(C’ ® R_l) vec ( A > — vec (R_l D ) = 0\ (2.28)
rXr NxN Nxr NXNN xr

pre-multiply by Hx (C~!' ®@ R)

Hy <C—1 ® NRN) (C ® ﬁ‘;{) vec < M)
nxNr \ TXT x rXT X mxp = Hj (0_1 ® R ) H/—{/\
— Hy (C7'® R) vec <R D) pxNr \ rxr  mxm
nxNT NxNNxr

=

Hy I vec(A)—HA (Cl®R)Vec<R1D> (C ® R>HATA
nx NrNTXNT Nxr nxNr NXNNXxr anT TXT

substitute from the constraint in (2.27)

ka — Hy (C ®R>vec(R1D> (C @R)HATA
nxNr \ TXT NXNN xr anT TXT
=
-1
A= [HA <01® R )HI} {M— Hy <C '® o )vec(Rl D)}
nxNr \ TXr NxN nxNr \ TXr NxNNXxr
substitute A in (2.28)
-1
(C’@R )Vec<A>—vec<R_1D) = HX[HA <C ® R) } X (2.29)
TXT Nxr NxNNxr nXNr \ "XT
{nA— Hy (C‘ ® R ) xvec<R—1 D >}
nxNr \ TXT NXNNXr
Consider the term vec (R~*D) . Using Theorem 2 in ch. 2.4 of Magnus & Neudecker
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(2007) which allows to rewrite vec (R™'D) = (D" ® R™*) vec (), which is going to
be used in the curly brackets above, i.e. in the term (C~' ® R)vec (R™'D).

Consider this last mentioned term, post-multiply by vec (Iy) and use equation
(4), ch. 2.4 of Magnus & Neudecker (2007)

(C’_l® R ) <DT ®R_1> Vec< 1 ) = <C_1DT ® R R_l) V6C< I >
rXT NxN rx N NxN NxN rXr rXN NXNNXN NxN
= ((]_1DT ® I )VGC( I )
rXr rxN NxN NxN
= vec < D C_1>
Nxr rxr

Substituting the last result into (2.29) and solving for vec (A) yields the restricted
loadings estimator denoted vec (A*) in (2.12).

NXr rxr
-1
<Cl® R )HAT [HA <Cl® R )HAT] X
TXT NXN nxNr \ TXT NXN

{/@A — Hy vec < D Cl>}
nxNr NxXr rXr

vec (A*) = wvec ( D C_1> +
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Table 2.1: Estimated factor loadings and test statistics.

K u y c hrs h pcom i s
1) IP: products, total B E 0.92 = E| K| E| £
2) IP: final products = R = 0.87 R = - - R =
3) IP: consumer 55.9% ssa% | 075 55.1% 54.4% 53.9% 53.2% 52.5%
4) IP: durable cons.
5) IP: nondurable cons. AIC: 1.449 AIC: 1.457 043 AIC: 1.462 AIC: 1.480 AIC: 1.490 AIC: 1502 AIC: 1.518
6) IP: bus. Equip SIC: 1.684 siciness | () 7| SIC: 1.672 SIC: 1.676 SIC: 1.680 SIC: 1.686 SIC: 1.688
7) IP: intermediate 1C(2) : -0.410 c@:-0398 | 0 73 1C(2) : -0.386 1C(2) : -0.367 1C(2) : -0.355 1C(2) : -0.340 1C(2):-0.321
8) IP: materials IC(2)*: -0.565 1C(2)*: -0.553 - 1C(2)*: -0.540 1C(2)*: -0.522 1C(2)*: -0.510 IC(2)*: -0.495 1C(2)*: -0.476
9) IP: durable goods
10) IP: nondur. Goods
11) IP: manufacturing
12) IP: dur. Manuf
13) IP: nondur. Manuf.
14) IP: mining
15) IP: utilities
16) IP: total index 0 0 0 0 0 0 0 .
17) Capacity util rate B 0.74 ) e B )
18) Pmi R = "
19) NAPM prod. 55.8% ,
20) Pers. Income AIC: 1.450 0.31
1) pers, In. - rans. Sic: 1oss s
22) Help-wanted v 0.03 044 001 "
23) Empl. Help-wanted -0.71 0.01
24) Civ. Labor: empl., -0.06 0.39
25) Civilian labor: empl., -0.10 0.43
26) Unempl. Rate: all wrks 0 1 0 0 0 0 0 0
27) Unemp dur: mean B 0.62 0.22 ) B e " 0.29 =)
28) Unemp by dur. <5 wks 0.71 -0.04
29) Unemp by dur. 5-14 w 0.79 -0.02
30) Unemp by dur. 15+ w 0.80 0.13
31) Unemp by dur. 15-26 w R, = 0.82 0.06
32) Nonag payrl.: total 55.8% -0.21 0.73 52.7%
33) Nonag payrl.: total, -0.16 0.76
34) Nonag payrl.: goods AlC: 1.451 -0.18 0.81 AIC: 1516
35) Nonag payrl.: mining SIC: 1.682 -0.11 0.18 SIC: 1.696
36) Nonag payrl.: contract 1C(2) : -0.407 -0.04 0.36 1C(2):-0.327
37) Nonag payrl.: manuf 1C(2)*: -0.561 -0.18 0.81 1C(2)*: -0.481
38) Nonag payrl.: durable -0.18 0.80
39) Nonag payrl.: nondur -0.11 0.56
40) Nonag payrl.: service -0.24 0.38
41) Nonag payrl.: trans. -0.07 0.14
42) Nonag payrl.: sale -0.12 0.42
[43) Nonag payrl.: finance -0.19 0.21
44) Nonag payrl.: services -0.15 0.33
45) Nonag payrl.: gov. -0.25 -0.02
46) Avg. Wkly hrs. prod “ I ”1 | “11
47) Avg. Wkly overtime prod 0 0 0 0 0
48) NAPM Empl. Index | ss7% | -0.53 048 | | K| 2l
49) Pers cons Exp: total 0 0 0 0 0
50) Pers cons Exp: tot. R = B of " oy &
51) Pers cons Exp: nondur. 55.7%
52) Pers cons Exp: services AIC: 1.452
53) Pers cons Exp: new cars SIC: 1.682 K
54) Housing starts: nonfarm 0 0 0 0 0 1 0 0
55) Housing starts: N.E - Tlz- Yz "[z- ™[z i 048 |m- ™ - 9
56) Housing starts: M.W 55.4% 55.3% 55.2% 55.1% 54.9% 52.5% 52.5%
57) Housing starts: S AIC: 1.457 AIC: 1461 AIC: 1.460 AIC: 1462 AIC: 1.467 AIC: 1519 AIC: 1518
58) Housing starts: S SIC: 1.686 SIC: 1.684 SIC: 1.677 SIC: 1.669 SIC: 1.670 | 0.85 SIC: 1.697 SIC: 1.685
59) Housing auth. Tot new 1c2):-039 | | 1c@):-0395 | |1c2):-0303 | |1c@):-0385 | |1c@:-0381 | 100 |1c@):-032 006 |1C@):-0321
60) Mobile homes 1c@*: 0553 | [ 0549 | [ic@y: 0548 | ic@: 0539 | icmoss| 061 1C(2)*: -0.478 032 IC(2)*: -0.475

The consequence of imposing more and more over-identifying loadings restrictions is shown in this table and explained
in details in the text. 23 blocks of restrictions of varying sizes are imposed sequentially. Each block is denoted by a
number in a bracket in the upper right corner of the rectangles. For each added set of restrictions we estimate the
model and calculate the mean adjusted R-squared (Ri), AIC and SIC as well as the ICp2 panel information criteria
from Bai & Ng (2002) and ICp, which takes into account the convergence rate of Doz et al. (2006).
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Table 2.1 continued

K u y c hrs h pcom i s
61) NAPM inventories 0.06 -0.39 0.08 0.00 0.01 0.27 0.16 0.04 -0.05
62) NAPM new orders -0.09 0.08 0.39 -0.01 0.07 0.26 0.30 -0.29 0.00
63) NAPM vendor deliv. 0.04 -0.29 0.15 -0.01 0.26 0.21 0.15 0.14 -0.09
64) New orders: cons goods 0.00 0.08 0.50 0.13 -0.06 0.00 -0.01 -0.07 0.07
65) New orders: nond, 0.04 0.01 0.06 0.12 0.03 0.03 0.03 -0.05 0.00
66) NYSE: composite 0 0 0 0 0 0 0 0 1

N G [ 1] 03] [ [ 20
67) S&P composite

68) S&P industrials
69) S&P capital
70) S&P utilities

71) S&P: dividend 0.08 0.30 -0.02 -0.00 -0.49 -0.09 0.32

72) S&P: price earnings -0.06 -0.17 0.01 -0.01 0.48 0.05 -0.30

73) FX : switzerland -0.08 -0.02 0.17 0.08 0.06 -0.19 0.08

74) FX : japan -0.12 -0.13 0.09 -0.00 0.01 -0.18 0.06

75) FX : united 0.10 -0.03 -0.16 -0.05 0.03 0.13 -0.01

76) FX : canada -0.01 0.07 0.13 0.04 -0.01 -0.04 0.01

77) Federal funds 0 0 0 0 0 0 0 1 0
78) US Tbill, 3m. -0.06 0.12 0.02 -0.01 0.03 -0.03 0.12 0.96 0.01
79) US Tbill, 6m. -0.08 0.16 0.01 -0.01 0.03 -0.03 0.17 0.94 0.00
80) Tbond const 1yr. -0.12 0.24 0.01 -0.02 0.04 -0.04 0.23 0.91 0.00
81) Tbond const Syr. -0.17 0.54 -0.02 -0.02 0.10 -0.02 0.28 0.76 -0.01
82) Tbond const 10yr. -0.14 0.62 -0.02 -0.02 0.13 -0.00 0.26 0.69 -0.01
83) Bond yield: Moody AAA -0.06 0.65 -0.05 -0.02 0.19 0.07 0.12 0.65 -0.02
84) Bond yield: Moody BAA -0.06 0.65 -0.05 -0.01 0.11 0.08 0.10 0.64 -0.00
85) Spread 3m — fed funds -0.21 0.38 0.07 -0.03 0.10 -0.09 0.39 -0.88 0.04
86) Spread 6m — fed funds -0.24 0.47 0.04 -0.03 0.08 -0.09 0.50 -0.92 0.01
87) Spread 1y — fed funds -0.38 0.75 0.02 -0.05 0.11 -0.12 0.70 -0.79 0.01
88) Spread Sy — fed funds -0.29 0.93 -0.03 -0.04 0.18 -0.04 0.49 -0.85 -0.01
89) Spread 10y — fed funds -0.21 0.93 -0.03 -0.03 0.19 -0.00 0.40 -0.87 -0.01
90) Spread AAA — fed funds -0.09 0.91 -0.07 -0.02 0.26 0.10 0.17 -0.85 -0.02
91) Spread BAA — fed funds -0.09 1.00 -0.08 -0.02 0.17 0.12 0.15 -0.72 -0.01
92) Money stock: M1 0.17 0.31 -0.05 0.08 -0.21 0.29 -0.08 -0.13 0.05
93) Money stock: M2 0.02 0.03 0.00 0.03 -0.59 0.51 -0.14 0.02 0.04
94) Money stock: M3 0.03 -0.12 -0.04 0.06 -0.44 0.59 -0.07 0.18 0.06
95) Money supply---M2 1992 -0.53 -0.01 0.02 0.03 -0.44 0.40 -0.13 -0.00 0.04
96) Monetary base 0.25 0.25 -0.04 0.01 0.14 0.23 -0.13 -0.05 0.02
97) Depository inst reserves 0.04 0.16 0.02 -0.06 -0.21 0.17 -0.09 -0.05 -0.00
98) Dep. Inst. Res. Nonbor. 0.10 0.07 -0.15 -0.01 -0.16 0.07 -0.18 -0.09 0.06
99) Comm. & indust. Loans -0.24 -0.22 0.03 0.03 0.19 -0.08 0.23 031 0.02
100) Wkly rp Ig com. -0.13 0.02 0.03 -0.02 0.34 -0.06 0.22 0.23 0.10
101) Cons credit outst. -0.21 -0.06 0.02 0.05 -0.09 0.36 0.29 0.08 -0.03
102) NAPM cmodity prices 0 0 0 0 0 0 1 0 0
103) PPI: finished 0.79 o] R R e " |
104) PPI: finished 0.76

105) PPI: intermed 1

106) PPI: crude

107) Index of sensitive mat.

108) CPI-U: all items 1 0. 0 0 0 0 0
109) CPI-U: apparel & upkeep 0.44 ! oy . i B &
110) CPI-U: transportation 085 |R: = R = R.= R =

111) CPI-U: medical care 0.23 552% 552% 53.8% 52.5%

112) CPI-U: commodities 1.02 0.06

113) CPI-U: durables 0.58 &

114) CPI-U: services 0.51 AIC: 1.461 AIC: 1.461 AIC: 1.491 AIC: 1.519

115) CPI-U: less food 0.85 SIC: 1.683 SIC: 1.680 SIC: 1.678 SIC: 1.696

116) CPI-U: less shelter 1.01 1C(2):-0.393 | |1C(2):-0.392 1C(2):-0.353 | |1C(2)*: -0.322

117) CPI-U: less medical 1.00  |IC(2)*:-0.548 | |IC(2)*:-0.547 IC(2)*: -0.508 | |IC(2)*:-0.477

118) Avg hr earnings constr. 0.10 -0.15 -0.13 0.07 -0.12 0.04

119) Avg hr earnings manuf. 0.30 -0.04 0.31 -0.03 -0.21 0.03

120) U. Of mich. Index -0.67 -0.23 0.12 0.00 0.11 0.03 0.23

The consequence of imposing more and more over-identifying loadings restrictions is shown in this table and explained
in details in the text. 23 blocks of restrictions of varying sizes are imposed sequentially. Each block is denoted by a
number in a bracket in the upper right corner of the rectangles. For each added set of restrictions we estimate the
model and calculate the mean adjusted R-squared (Rz), AIC and SIC as well as the ICp2 panel information criteria
from Bai & Ng (2002) and ICp, which takes into account the convergence rate of Doz et al. (2006).
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Table 2.2: Estimated factor loadings.

Variable Names T u y c hrs h  pcom 2 R?
1) IP: products, total 0.92 —0.01 79.7
2) IP: final products 0.87 0.01 70.5
3) IP: consumer 0.75 —0.02 53.0
4) IP: durable cons. 0.72 0.00 47.0
5) IP: nondur. cons. 0.43 —0.04 16.4
6) IP: bus. Equip 0.71 0.01 46.5
7) IP: intermediate 0.73 —0.05 50.8
8) IP: materials 0.87 0.01 76.5
9) IP: durable goods 0.87 0.04 74.8
10) IP: nondur. goods 0.40 —0.04 14.7
11) IP: manufacturing 1.01 0.01 97.4
12) IP: dur. manuf 0.97 0.02 90.9
13) IP: nondur. manuf. 0.70 —0.04 46.5
14) IP: mining 0.23 0.03 3.5
15) IP: utilities 0.12 —0.07 0.5
16) IP: total index 1 96.4
17) Capacity util rate —-0.74 0.16 0.25 0.19 72.7
18) Pmi 0.50 0.24 —0.11 36.6
19) NAPM prod. 0.54 0.14 —0.20 41.1
20) Pers. Income 0.31 —0.05 8.4
21) Pers. Inc. - trans. 0.54 —0.05 27.4
22) Help-wated 0.03 0.44 —0.01 —0.13 20.3
23) Empl. Help-wanted —0.71 0.01 0.31 0.33 67.7
24) Civ. Labor: empl., —0.06 0.39 0.04 13.2
25) Civilian labor: empl., —-0.10 0.43 0.03 16.6
26) Unemp rate: all 1 72.7
27) Unemp dur: mean 0.62 0.22 —0.29 42.4
28) Unemp dur. < 5 w. 0.71  —0.04 0.28 75.4
29) Unemp dur. 5-14 w 0.79 —0.02 0.11 73.3
30) Unemp dur. 15+ w 0.80 0.13 —0.06 66.1
31) Unemp dur. 15-26 w 0.82 0.06 —0.01 70.4
32) Nonag payrl.: total —0.21 0.73 0.05 54.6
33) Nonag payrl.: total, —0.16 0.76 0.08 55.6
34) Nonag payrl.: goods —0.18 0.81 0.05 64.8
35) Nonag payrl.: mining —-0.11 0.18 0.17 3.5
36) Nonag payrl.: contrct —0.04 0.36 —0.04 12.0
37) Nonag payrl.: manuf —0.18 0.81 0.05 65.3
38) Nonag payrl.: durable —0.18 0.80 0.07 63.0
39) Nonag payrl.: nondur —0.11 0.56 —0.03 31.7
40) Nonag payrl.: service —0.24 0.38 0.03 19.1
41) Nonag payrl.: trans. —0.07 0.14 0.04 0.6
42) Nonag payrl.: sale —0.12 0.42 0.04 17.2
43) Nonag payrl.: finance —0.19 0.21 0.11 6.1
44) Nonag payrl.: services —-0.15 0.33 0.10 10.7
45) Nonag payrl.: gov. —0.25 —0.02 —0.13 8.6
46) Avg. wkly hrs. prod 0.97 —0.15 87.6
47) Avg. wkly overtime 1 93.0
48) NAPM Empl. Index —0.53 0.48 0.07 52.1
49) Pers cons exp: total 1 66.6
50) Pers cons exp: tot. 1 0.05 94.4
51) Pers cons exp: nondur. 1 0.07 9.9
52) Pers cons exp: services 0.16 —0.09 1.7
53) Pers cons exp: new cars 1.04 0.10 84.9
54) Housing starts: n’farm 1 92.5
55) Housing starts: N.E 0.48 —0.21 28.6
56) Housing starts: M.W 0.57 —0.38 50.3
57) Housing starts: S 0.94 0.27 85.5
58) Housing starts: S 0.85 0.00 69.3
59) Housing auth. Tot new 1.00 0.06 95.1
60) Mobile homes 0.61 0.32 41.1

The factors are denoted by the symbols {, u,y, ¢, hrs, h, pcom, 1, s} and describe general inflation, unemployment, eco-
nomic activity (growth), consumption growth, hours in production, residential investments, commodity pric inflation,
federal funds rate and stock markets returns respectively. R? denotes R-squared. Coefficients in bold are statistically
significant at the 5% level (the standard errors are two-sided finite difference approximations of the gradient of the

likelihood function.
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Table 2.2 continued

Variable Names ™ u y c hrs h pcom [ s R?

61) NAPM inventories 0.06 —0.39 0.08 0.00 0.01 0.27 0.16 0.04 —0.05 44.7
62) NAPM new orders —0.09 0.08 0.39 —0.01 0.07 0.26 0.30 —-0.29 0.00 60.1
63) NAPM vendor deliv. 0.04 —0.29 0.15 —0.01 0.26 0.21 0.15 0.14 —0.09 45.3
64) New orders: cons goods 0.00 0.08 0.50 0.13 —0.06 0.00 —0.01 —0.07 0.07 28.1
65) New orders: nondefense 0.04 0.01 0.06 0.12 0.03 0.03 0.03 —0.05 0.00 1.1
66) NYSE: composite 1 97.5
67) SP500 composite 0.00 1.01 100.0
68) SP500 industrials 0.00 1.00 98.7
69) SP500 capital —0.02 0.92 82.7
70) SP500 utilities 0.01 0.61 35.4
71) SP500: dividend 0.08 0.30 —0.02 0.00 —-0.49 —0.09 0.32 0.31 —0.03 80.4
72) SP500: price earnings —0.06 —-0.17 0.01 —0.01 0.48 0.05 —0.30 —-0.37 0.00 69.3
73) FX : Switzerland —0.08 —0.02 0.17 0.08 0.06 —-0.19 0.08 0.14 0.07 4.4
74) FX : Japan —-0.12 —-0.13 0.09 0.00 0.01 —0.18 0.06 0.19 —0.04 4.5
75) FX : U.K 0.10 —0.03 —-0.16 —0.05 0.03 0.13 —0.01 —-0.15 0.01 3.1
76) FX : Canada —0.01 0.07 0.13 0.04 —0.01 —0.04 0.01 —0.02 —-0.24 5.3
77) Federal funds 1 100.0
78) US Thill, 3m. —0.06 0.12 0.02 —0.01 0.03 —0.03 0.12 0.96 0.01 98.2
79) US Thill, 6m. —0.08 0.16 0.01 —0.01 0.03 —0.03 0.17 0.94 0.00 98.7
80) Tbond const 1yr. —0.12 0.24 0.01 —0.02 0.04 —0.04 0.23 0.91 0.00 99.0
81) Tbond const 5yr. —0.17 0.54 —0.02 —0.02 0.10 —0.02 0.28 0.76 —0.01 100.0
82) Tbond const 10yr. —0.14 0.62 —0.02 —0.02 0.13 0.00 0.26 0.69 —0.01 99.7
83) Bond yield: AAA —0.06 0.65 —0.05 —0.02 0.19 0.07 0.12 0.65 —0.02 100.0
84) Bond yield: BAA —0.06 0.65 —0.05 —0.01 0.11 0.08 0.10 0.64 0.00 99.7
85) Spread 3m — FF —0.21 0.38 0.07 —0.03 0.10 —-0.09 0.39 —0.88 0.04 80.2
86) Spread 6m — FF —0.24 0.47 0.04 —0.03 0.08 —0.09 0.50 —0.92 0.01 88.5
87) Spread 1y — FF —0.38 0.75 0.02 —0.05 0.11 —0.12 0.70 —0.79 0.01 90.3
88) Spread 5y — FF —0.29 0.93 —0.03 —0.04 0.18 —0.04 049 —-0.85 —0.01 100.0
89) Spread 10y — FF —0.21 093 —-0.03 —0.03 0.19 0.00 0.40 —0.87 —0.01 99.3
90) Spread AAA - FF —0.09 0.91 —0.07 —0.02 0.26 0.10 0.17 —0.85 —0.02 100.0
91) Spread BAA — FF —0.09 1.00 —0.08 —0.02 0.17 0.12 0.15 —0.72 —0.01 99.2
92) Money stock: M1 0.17 0.31 —0.05 0.08 —-0.21 0.29 —-0.08 —-0.13 0.05 21.7
93) Money stock: M2 0.02 0.03 0.00 0.03 —0.59 0.51 —-0.14 0.02 0.04 38.7
94) Money stock: M3 0.03 —0.12 —0.04 0.06 —0.44 0.59 —0.07 0.18 0.06 35.5
95) Money supply—M2(92) —0.53 —0.01 0.02 0.03 —0.44 0.40 —-0.13 0.00 0.04 52.9
96) Monetary base 0.25 0.25 —0.04 0.01 0.14 0.23 —-0.13 —0.05 0.02 13.9
97) Depository inst res 0.04 0.16 0.02 —0.06 —0.21 0.17 —-0.09 —0.05 0.00 8.2
98) Dep. Inst. Res.. 0.10 0.07 —0.15 —0.01 —-0.16 0.07 —-0.18 —0.09 0.06 10.0
99) Comm. and indust. L —0.24 —0.22 0.03 0.03 0.19 —0.08 0.23 0.31 0.02 19.2
100) Wkly rp lg com. —-0.13 0.02 0.03 —0.02 0.34 —0.06 0.22 0.23 0.10 14.5
101) Cons credit outst. —-0.21 —0.06 0.02 0.05 —0.09 0.36 0.29 0.08 —0.03 29.0
102) NAPM comm. prices 1 38.0
103) PPI: finished 0.79 0.03 —0.12 52.0
104) PPI: finished 0.76 0.05 —0.17 46.5
105) PPI: intermed 0.28 0.23 17.2
106) PPI: crude 0.20 —0.01 3.6
107) Index of sensitive mat. 0.33 —0.14 12.4
108) CPI-U: all items 1 95.6
109) CPI-U: apparel, 0.44 —0.02 16.3
110) CPI-U: transport. 0.85 —0.20 52.5
111) CPI-U: medical 0.23 0.41 32.0
112) CPI-U: comm. 1.02 0.06 —0.21 85.8
113) CPI-U: durables 0.58 0.11 39.5
114) CPI-U: services 0.51 0.33 55.1
115) CPI-U: less food 0.85 0.10 79.5
116) CPI-U: less shelter 1.01 —0.09 88.1
117) CPI-U: less medical 1.00 —0.02 93.6
118) Avg hr earn. constr. 0.10 —0.15 —-0.13 0.07 —0.12 0.04 0.07 —0.03 5.2
119) Avg hr earn. manuf. 0.30 —0.04 0.31 —0.03 —-0.21 0.03 0.11 0.00 22.3
120) Consumer expec. —0.67 —0.23 0.12 0.00 0.11 0.03 0.23 —0.12 0.02 67.2

The factors are denoted by the symbols {7, u, y, ¢, hrs, h, pcom, i, s} and describe general inflation, unemployment, eco-
nomic activity (growth), consumption growth, hours in production, residential investments, commodity pric inflation,
federal funds rate and stock markets returns respectively. R? denotes R-squared. Coefficients in bold are statistically
significant at the 5% level (the standard errors are two-sided finite difference approximations of the gradient of the

likelihood function.
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Table 2.3: Forecast error variance due to monetary policy shocks.

Average (all variables) T u Yy c hrs h pcom i s total Idio.
6 month 0.03 0.05 0.06 0.03 0.07 0.04 0.04 0.05 0.04 041 0.59
12 month 0.04 0.05 0.06 0.03 0.09 0.06 0.04 0.05 0.05 0.46 0.54
24 month 0.04 0.05 0.06 0.03 0.10 0.08 0.03 0.05 0.06 0.50 0.50
60 month 0.06 0.05 0.06 0.03 0.10 0.11 0.03 0.04 0.06 0.53 0.47
12 month horizon T u y c hrs h pcom 3 s total Idio.
77) Federal funds rate 0.02 0.06 0.06 0.03 041 0.15 0.04 0.16 0.08 1.00 0.00
16 ) IP: totalindex 0.06 0.21 032 0.01 012 0.09 0.02 0.09 0.05 0.95 0.05
108) CPI-U: all items 0.37 0.03 0.03 0.03 024 0.11 0.04 0.03 0.01 091 0.09
78) US Thbill, 3m. 0.03 0.03 0.04 0.02 038 0.15 0.09 0.12 0.08 0.94 0.06
81) Tbond const 5yr. 0.06 0.02 0.00 0.01 031 0.12 0.34 0.08 0.04 1.00 0.00
96) Monetary base 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.94
93) Money stock: M2 0.02 0.01 0.01 0.00 0.12 0.03 0.04 0.01 0.03 0.25 0.75
74) FX:Japan 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.05 0.95
102) NAPM comm prices 0.02 0.01 0.01 0.01 0.04 0.10 0.28 0.05 0.02 0.54 0.46
17) Capacity util rate 0.02 0.07 0.04 0.01 0.10 0.09 0.00 0.10 0.10 0.52 0.48
49) Pers cons : total 0.02 0.01 0.02 0.57 0.01 0.02 0.01 0.02 0.00 0.69 0.31
50) Pers cons : tot. dur 0.02 0.02 002 0.73 0.01 0.02 0.02 0.02 0.01 0.87 0.13
51) Pers cons : nondur. 0.01 0.01 0.01 035 0.01 0.01 0.01 0.01 0.00 0.41 0.59
26) Unempl.Rate: all 0.01 0.15 0.04 0.01 0.04 0.06 0.00 0.09 0.06 0.45 0.55
48) NAPM Empl. Index 0.02 0.06 0.09 0.00 0.06 0.06 0.00 0.05 0.05 0.40 0.60
118) Avg hr earn. constr. 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.97
54) Housing starts: n’farm | 0.01 0.01 0.07 0.01 0.24 0.39 0.03 0.10 0.01 0.86 0.14
62) NAPM new orders 0.02 0.06 0.09 0.00 0.08 0.08 0.04 0.11  0.02 0.50 0.50
71) SP500: div. yield 0.02 0.00 0.02 0.02 0.06 0.02 0.21 0.04 0.01 0.40 0.60
120) Consumer expec. 0.20 0.01 0.03 0.01 0.07 0.03 0.02 0.03 0.03 0.43 0.57
60 month horizon I u y c hrs h pcom 13 s total Idio.
77) Federal funds rate 0.10 0.04 0.04 0.05 0.19 0.38 0.06 0.07 0.07 1.00 0.00
16 ) IP: totalindex 0.05 0.19 029 0.01 0.14 0.12 0.01 0.09 0.07 0.96 0.04
108) CPI-U: all items 0.35 0.04 004 004 019 0.19 0.03 0.05 0.03 094 0.06
78) US Thbill, 3m. 0.11 0.03 0.03 0.05 0.19 0.37 0.08 0.05 0.06 0.98 0.02
81) Tbond const 5yr. 0.16 0.02 0.02 0.05 019 0.37 0.14 0.03 0.03 1.00 0.00
96) Monetary base 0.02 0.02 001 0.00 0.01 0.01 0.02 0.00 0.01 0.10 0.90
93) Money stock: M2 0.02 0.01 0.01 0.01 013 0.06 0.05 0.02 0.05 0.35 0.65
74) FX:Japan 0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.01 0.07 0.93
102) NAPM comm prices 0.03 0.01 0.01 0.02 0.06 0.12 0.26 0.05 0.04 0.61 0.39
17) Capacity util rate 0.05 0.05 0.04 0.02 015 0.19 0.02 0.11 0.08 0.71 0.29
49) Pers cons : total 0.02 0.02 0.02 0.56 0.02 0.02 0.01 0.02 0.01 0.69 0.31
50) Pers cons : tot. dur 0.02 0.02 0.02 072 0.02 0.03 0.02 0.03 0.01 0.87 0.13
51) Pers cons : nondur. 0.01 0.01 001 035 0.01 0.01 0.01 0.01 0.00 0.42 0.58
26) Unempl.Rate: all 0.05 0.09 0.03 0.02 0.17 0.19 0.01 0.10 0.06 0.72 0.28
48) NAPM Empl. Index 0.03 0.05 0.08 0.01 0.11 0.10 0.01 0.05 0.05 0.50 0.50
118) Avg hr earn. constr. 0.01 0.010 0.01 0.01 0.01 0.02 0.00 0.01 0.00 0.07 0.93
54) Housing starts: n’farm | 0.02 0.05 0.07 0.01 0.37 0.25 0.02 0.08 0.04 0.93 0.07
62) NAPM new orders 0.03 0.06 0.08 0.01 0.16 0.11 0.04 0.10 0.05 0.63 0.37
71) SP500: div. yield 0.16 0.01 0.02 0.06 0.08 0.22 0.19 0.03 0.01 0.78 0.22
120) Consumer expec. 0.22 0.02 0.03 0.03 0.11 0.17 0.02 0.03 0.02 0.66 0.34

The upper panel illustrates the total fractions that the eight factors can explain of the

forecast error variance on average for the panel at varying horizon. "Idio." means idio-

syncratic variance. The factors are denoted by the symbols {m,u,y,c, hrs, h, pcom,i, s}

and describes general inflation, unemployment, economic activity (growth), consumption

growth, hours in production, residential investments, commodity price inflation, federal
funds rate and stock markets returns respectively. The middle and lower panel shows

the 12 month ahead and 60 month ahead forecast error variance decomposition for key

macroeconomic variables.
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Figure 2.2: Impulse responses to a 25 basis point monetary policy shock.
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The figure illustrates the impulse responses in standard deviations of key macroeconomic
variables following a 25 basis point monetary policy shock. The horizontal axis denotes
the forecast horizon in months. Confidence intervals are represented by dark bands (68
percent) and light bands (95 percent).
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Figure 2.3: Forecast error variance due to monetary policy shocks.
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The figure plots the contribution of the monetary policy shock to the forecast error variance
decomposition of key macroeconomic variables along the foreast horizon (the horizontal
axis). Dashed gridlines indicate a larger scale compared to the dotted grid lines. Numbers
in parenthesis refer to the variable number in the panel, see the data appendix.
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Abstract”

The bond market is filtering an abundant amount of information in the process
of assessing the current state of the economy and its implications for bond pricing
and bond risk premia. I propose to solve the filtering problem by a dynamic factor
analysis of a large panel of US macroeconomic and financial time series to derive a
small set of macroeconomic state variables. A discrete-time dynamic term structure
model is then augmented with these filtered macroeconomic state variables. A
forecast error variance decomposition shows that shocks to inflation and in particular

unemployment are important for the risk premia on long-term bonds.

JEL classifications: C13, C32, C33, E43, E44, E52
Keywords: Monetary policy, Discrete-time Affine Term Structure Models, Finan-

cial markets and the macroeconomy, macroeconomic factors, Kalman filter.

*I thank Tom Engsted, Hans Dewachter and Claus Bajlum for helpful comments. Any remaining

€rrors are my owl.
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3.1 Introduction

The affine class of dynamic term structure models proposed by Duffie & Kan (1996)
and generalized by Dai & Singleton (2000) has been successful in modeling the
evolution of bond yields linearly in typically two or three latent state variables that
evolve over time according to some specified law of motion. However, given the
purely latent nature of the state variables, these models offer little economic insight

into the underlying driving forces of the yield curve.

However, from an economic point of view a macroeconomic underpinning of the
state variables is preferred. In particular, dynamic term structure models should
reflect how central banks implement their monetary policy through the adjustment
of the short term interest rate controlled by the central bank. Being an important
regulator of the economy, the economic determinants of the monetary policy rate are
of central interest in macroeconomics and in particular within the field of monetary
economics. Questions of what should be and appears to be the economic determi-
nants of the monetary policy rate have been discussed in a large volume of papers
and in book lengths'. In a widely cited paper Taylor (1993) estimates a remarkably
simple empirical monetary policy rule as a linear function of the deviation of cur-
rent inflation from an inflation target and the deviation from current GDP from the
potential GDP (output gap). Intuitively, the central bank "leans against the wind"
in the sense that the monetary policy rate is raised if economic activity expands
beyond its natural or potential level or if inflation exceeds a desired rate of inflation
or both.

However, macroeconomic influence is not limited to the short end of the yield
curve. Some macroeconomic underpinning of the risk premia demanded for holding
bonds of different time to maturity is also preferred as we would expect risk premia
to be high at the trough of the business cycle and low at the peak of the business

cycle.

To bridge no-arbitrage financial theory and macroeconomic theory, the recent
and rapidly growing "macro-finance” literature integrates more or less structural
macroeconomic models into no-arbitrage dynamic term structure models which in
turn allow for a macroeconomic explanation of the dynamics of the yield curve

including the monetary policy rate and the time-varying bond risk premia.

YA general treatment is found in Woodford (2003) and Walsh (2003) to mention only a few.
Bernanke et al. (1999) discuss inflation targeting as the monetary policy strategy.
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This paper contributes to the macro-finance literature by significantly exzpanding
the macroeconomic information set used in the affine class of dynamic term structure

model.

The main motivation for the use of an expanded information set is the fact
that the financial markets monitor and respond to a large set of macroeconomic
variables in the assessment of the current state of the economy. Therefore, including
e.g. a single specific consumer price index and a single specific series for production
(or unemployment) in a macro-finance term structure model may not carry enough
information compared with the potential macroeconomic information embedded in
bond prices. Furthermore, most macroeconomic series are prone to measurement
errors implying that the financial markets filter key underlying economic concepts
(like inflation) from many different sources (e.g. from a number of different price
indices).2

To imitate the potential information set and solve the bond markets filtering
problem, I propose a large panel dynamic factor analysis of a panel of 120 US
macroeconomic and financial time series, from which key macroeconomic factors like
inflation, production, and unemployment are filtered. Effectively controlling for the
short-term interest rate in the dynamic factor analysis, I use these macroeconomic
factors as observed state variables in an affine multi-factor Gaussian term structure
model. This setup allows for an empirical analysis of the dynamic responses of the

bond yields and bond risk premia (excess returns) to macroeconomic shocks.

The focus in this paper is on potential macroeconomic sources of variation in
expected excess returns on bonds. An impulse response analysis of the model-
implied expected excess return reveals that an inflation factor and an unemployment
factor are the most important among five candidate macroeconomic factors. A one
standard deviation shock to unemployment initially raises the expected excess return
by 17 basis points on an annually basis for a five-year bond held for one year. The
intuition is clear: risk premia are time-varying and counter-cyclical. Hence, in
business cycle troughs we see rising unemployment and investors are demanding a
higher risk premium to buy risky assets. Continuing with the same example, I find
that a one standard deviation shock to inflation lowers the expected excess return

by 9 basis points. Higher inflation increases the possibility that the Federal Reserve

2Notice that the same applies to central banks in the sense that central banks "monitor literally
hundreds of economic variables in the process of policy formulation" as expressed in Bernanke
et al. (2005).
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Board leans against the wind and raises the interest rate. Open positions in long

bonds would then probably lose money.

The findings are related to some of the existing literature as follows. Joslin et al.
(2009) also consider an impulse response analysis of the excess bond returns in an
affine term structure model. Their macroeconomic state variables are an individual
industrial production series and an individual inflation series. The impulse responses
in Joslin et al. (2009) and this paper are strikingly similar in terms of magnitude
and form®. However, I find that excess return responds more to unemployment
than industrial production. In contrast to Joslin et al. (2009) I examine longer
holding-periods and find that the longer the holding-period the larger the response
of expected excess return. Moreover, the longer the bond the larger the response.
This insight conforms to the findings in Cochrane & Piazzesi (2005) where one-year
horizon excess return regressions are the key to uncovering a single return-forecasting

factor.

The unique feature of this paper is its focus on the response of excess returns,
as implied by an affine term structure model, to shocks to large-panel dynamic

macroeconomic factors.

Several other papers also analyze bond excess return but these papers do not
entertain all three ingredients (excess returns, affine term structure model, large-
panel dynamic macroeconomic factors). For the well informed in this literature, I
use the five-factor Gaussian affine term structure model from Ang & Piazzesi (2003),
replace their macroeconomic factor by large-panel dynamic macroeconomic factors
as in Monch (2008) and focus on model-implied bond excess returns as in Joslin
et al. (2009). The following offers a brief introduction to closely related papers in

the literature on bond excess returns.

Duffee (2007), Joslin et al. (2009) and Ludvigson & Ng (2008) also focus on bond
risk premia. However, Duffee (2007) and Joslin et al. (2009) do not use large panel
macroeconomic state variables in their affine multi-factor Gaussian term structure
model whereas the large panel dynamic factors in Ludvigson & Ng (2008) are used

in excess return regressions only and not in a dynamic term structure model.

Dynamic term structure models are used in Monch (2008) and Ang & Piazzesi
(2003) but they do not focus on bond risk premia. Moénch (2008) includes large

3That is, if I perform the impulse response analysis with similar state variables compared to
Joslin et al. (2009) T get strikingly similar results.
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panel dynamic factors but does not use latent term structure factors in his affine
term structure model. Furthermore, Monch (2008) relies on a two-step principal
component method to extract the dynamic factors whereas a fully parametric one-
step iterative maximum likelihood method is used in this paper to estimate the

factors.

Finally, a distinguishing econometric feature of this paper is the recurring use of
the Kalman filter to estimate the large panel dynamic factors and the affine term
structure model.* Having stated how this paper differs from the most closely related
papers the following now contains a brief summary of these papers as well as other

papers in the macro-finance literature.

In the seminal paper by Ang & Piazzesi (2003) a standard three-factor affine
term structure model is augmented with two macroeconomic state variables and
they find that bond yields respond significantly to shocks to these state variables.
However, the three latent factors continue to play an important role in the variation
of the long bond yields. Ménch (2008) examines the forecasting power of multifac-
tor dynamic term structure models where the state variables include the monetary
policy rate as well as factors derived from large panel principal component meth-
ods. These factors are shown to have good forecasting properties but the factors
lack a well-defined economic interpretation as opposed to this paper where the eco-
nomic interpretation of the factors is obtained by means of a set of overidentifying
restrictions. Ludvigson & Ng (2008) use large panel dynamic factor analysis to ob-
tain dynamic factors which are subsequently used as explanatory variables in excess
return regressions. They find that dynamic factors which are correlated with mea-
sures of inflation and with measures of real output and employment are the key to
explain cyclical variation in bond risk premia. However, the previous critique with
respect to economic interpretability also applies here. Still in the context of bond
excess returns, Cochrane & Piazzesi (2005) find impressive forecasting properties of
a tent-shaped combination of forward rates. Cochrane & Piazzesi (2009) analyze in
an affine term structure model how much of a given yield curve that corresponds to
expectations of future interest rates, and how much that corresponds to bond risk

premia.

On a more general level, this paper resides in the above-mentioned macro-finance

research area that was pioneered by the work of Ang & Piazzesi (2003), Dewachter

1Duffee (2007) also use the Kalman filter to estimate his dynamic term structure model.
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et al. (2006) and Dewachter & Lyrio (2006b). These papers are characterized by
the inclusion of macroeconomic variables among the state variables in dynamic no-
arbitrage affine term structure models®’. However, real structural macroeconomic
theory in these models commenced with the papers by Hoérdahl et al. (2006), Bekaert
et al. (2005) and Wu (2006) in which New Keynesian macroeconomic models are
integrated with affine term structure models. Recently, also learning theory has been
introduced into macro-finance term structure models by Dewachter & Lyrio (2006a),
Laubach et al. (2006) and Dewachter (2008) where agents learn about the state of
the economy for instance in terms of the inflation target, the long-run inflation or
the real interest rate. This approach seems promising in generating persistent state
variables, which is a decisive for empirical term structure models; in particular for

the long end of the yield curve.

This paper is organized as follows. Section 3.2 presents the discrete-time Gaussian
affine term structure model and a variant of a dynamic factor model that allows me
to derive a set of macroeconomic state variables while controlling for the interest
rates. Section 3.3 addresses identification and estimation issues in both models
which in turn allows for an empirical application with respect to yield curve mod-
eling using macroeconomic state variables filtered from a large panel of US data.

Section 3.5 concludes by summarizing the main findings of this paper.

3.2 The modeling framework

Two dynamic models for panel data are used in this paper and now presented in turn.
As a first step, I extract a few dynamic macroeconomic factors from a large panel
of macroeconomic and financial time series, which represent the large information
set of the bond traders. To do this, the factor-augmented VAR model of Bernanke
et al. (2005) is used, which is a variant of a dynamic factor model that effectively

controls for the short-term interest rate.

The identification and dynamic interaction of the short-term interest rate with
the macroeconomic factors imply some advantages compared to the existing ap-

proaches in the dynamic factor analysis literature. Firstly, I do not want an interest

>Yet another interesting branch in the macro-finance literature has evolved around dynamic
extensions of the parametric Nelson-Siegel yield curve model. See Diebold et al. (2005), Diebold
et al. (2006), Coroneo et al. (2008) and Christensen et al. (2009).
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rate factor in disguise to explain the yield curve, so the macroeconomic dynamic fac-
tors are carefully estimated under an identification procedure similar to Bernanke
et al. (2005) that ensures that each factor is not an interest rate factor. Accordingly,
the short-term interest rate is explicitly modeled and identified as an observed fac-
tor that interacts dynamically with the macroeconomic factors. Secondly, yield to
redemption on coupon bonds are not excluded from the panel as in Ménch (2008);
on the contrary all redemption yields are included as a subset of financial market
variables based on the idea that financial variables serve as timely information vari-
ables for macroeconomic variables. To accommodate potential concern that one of
the factors may be a "redemption yield factor" in disguise it should be noted that
the redemption yields are highly correlated with the identified short-term interest
rate such that there is little need for a separate yield factor. Furthermore, the esti-
mated macroeconomic factors are shown empirically to be well in line with leading
macroeconomic measures of US economy. Details about the factor-augmented VAR
(FAVAR) are presented in section 3.2.2.

In the second step, the dynamic macroeconomic factors are used as state variables
in a dynamic no-arbitrage Gaussian multifactor term structure model to explain
a panel of US bond yields. The standard Gaussian affine term structure model is
presented first in section 3.2.1 in terms of a general state vector, which is responsible
for the dynamic evolution of the yield curve. The details of the partitioning of
the state vector into latent state variables and macroeconomic state variables is
postponed until the econometric formulation of the model in section 3.3, as I find
it more natural to begin to partition things there. Until then, it is sufficient to
think about the no-arbitrage term structure model as driven by both latent and
macroeconomic state variables. Finally, this section ends with a brief introduction to

the factor-augmented VAR model, which delivers the macroeconomic state variables.

3.2.1 Gaussian multifactor affine term structure model

In this section I present a discrete time multifactor affine term structure model
(ATSM)S where the dynamics of the yield curve are explained in terms of a small

set of latent variables.

SBackus et al. (1996), Backus et al. (1998) and Piazzesi (2009) present multifactor ATSMs
in discrete time whereas Dai & Singleton (2000) and Singleton (2006) among many other papers
present ATSMs in continuous time. Lund (1997) presents the algebra in getting from the continuous
time form to the discrete time representation.
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In the end the no-arbitrage ATSM is written in state-space form so the following
presentation will take an unrestricted state space form as a simple starting point and
later impose the no-arbitrage restrictions. Denote by y;* the yield of a default-free
zero-coupon bond, which always has n periods to maturity at any time ¢. Stack N
of these yields varying in terms of n in the N x 1 vector Y;. The dynamics of the N’
yields are described linearly in terms of a small set of K < A dynamic latent state
variables X in accordance with the empirical findings of Litterman & Scheinkman
(1991), where N = 3 latent variables (factors) can explain the vast majority of the
variation in the yields. The law of motion of the unobserved X is assumed to be
described in terms of a first-order autoregressive system and represents the state
transition equation of the state-space system whereas the observed yields represent

the observation equation in (3.1) below:

Xt = u + (I)Xt,1 + Egt (32)

where A is an N x 1 vector of constants, B is an N’ x K matrix that allows the A/
different yields in the observation equation to load with different weights on the K
state variables in X, pu is a K x 1 vector of constants, ® is a K x K matrix that
contains the autoregressive parameters where stationarity of the system implies that
the eigenvalues of ® are less than one in modulus, ¢; is a K x 1 vector with zero
mean and unit variance, X is a lower triangular K x K matrix that is the result of
a Cholesky decomposition of Ye; ~ N (0,9), where Q = ¥X7. Although more will
be said about this state-space system, the two equations in (3.1)-(3.2) illustrate in
a simple way how the time evolution of the yield curve is analyzed in terms of a few
driving forces, X, and how the dynamic response of a particular yield to shocks (¢)
to the driving forces can be analyzed within the same framework. The measurement
errors v; are assumed to be cross-sectionally independent Gaussian white noises,
ie. vy ~ N(0,R), with R being an N’ x N diagonal matrix. Variations about
the distributional assumptions in the literature for R are discussed in the empirical

section.

The state space system in (3.1)-(3.2) is too general to be econometrically iden-
tified, and it does not rule out arbitrage opportunities among the yields included in
Y. No-arbitrage is the fundamental building block in every standard asset pricing

model within finance and dates back to path-breaking contributions by Black &
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Scholes (1973), Merton (1973) and Harrison & Kreps (1979), to mention just a few
important papers. The idea is that, under the assumption of no-arbitrage, there
exists a risk-neutral measure Q under which we can calculate the price P of an
asset as the discounted expected value of the payoff of the particular asset using
the risk-free rate i as the discount rate. Duffie & Kan (1996) apply the notion of
no-arbitrage to multifactor ATSMs driven by latent yield curve factors and charac-
terize the class of ATSMs formally. Specifically, they demonstrate that if the bond
price is exponential affine in the state variables X, then the drift and volatility of
the state variables are also affine” and A and B in (3.1) must obey a set of recursive
restrictions. Before the exact no-arbitrage cross-section restrictions on A and B can
be stated, the following definition presents briefly the necessary assumptions needed

to derive these restrictions and set up the ATSM:

Definition 1 (Gaussian ATSM) The Gaussian ATSM in discrete time is con-
structed by the following three ingredients:

1. The one-period interest rate, iy, is affine in the K-dimensional vector of state

variables X;

where 0y s a scalar and 61 is a K x 1 vector.

2. The dynamics of the state variables is given by a VAR(1)#
Xt = ILL + @Xt,I + Uty U ~ N (07 Q) (34)

where the conditional mean is M;_1 = p+ ®X;_1. The covariance matriz )
is Cholesky decomposed into Q = X7 such that u, = Ye; where &, ~ N (0,1)
follows from the ATSM.”

3. The assumption of no-arbitrage guarantees the existence of a pricing kernel.

Specifically, the (nominal) bond pricing kernel M]\Z_tl is given by

M, L (dQ\”
]\2-1 = exp{—lt} <d%)

tt41

"In fact, the converse also holds, i.e. if the drift, the volatility and the short rate are affine in
X then the price is exponential affine in X; cf. the proposition in Duffie & Kan (1996).

8A VAR with p lags can be encompassed in a VAR(1) by a square companion matrix.

9Specifically, the discrete time representation of the continuous time diffusion process for X
involves an integration of Brownian motions which are normally distributed; cf. Lund (1997).

110



D
where ((cii;%)t,t—i-l

ditional distributions of X,y 1 under the risk-neutral measure Q and the data

denotes the Radon-Nikodym derivative which links the con-

generating measure P'° and is characterized by

dQ\” 1 1
(—> = €xp {——/\:/\t - AtTZfl [Xt—i-l - Mt]} = exp {——A:At - )\tT€t+1}
AP/, 2 2

where \; is a K-dimensional vector of possible time-varying market prices of
risk associated with shocks to the state variables; cf. Duffee (2002):

)\t = )\0 + )\1Xt (35)

Thus, the entire yield curve and its dynamics are characterized by (1) the func-
tional relation between the short rate and the state variables, (2) the dynamics of
the state variables, and (8) the risk premia specification. FEssentially, these three

ingredients specify a time-series process for the pricing kernel.

O

The discrete-time model setup in Definition 1 is quite standard and has been
used in various forms in e.g. Ang & Piazzesi (2003), Duffee (2007, 2008), Ang
et al. (2005) and Pericoli & Taboga (2008). Le et al. (2009) and Singleton (2006)
characterize discrete-time ATSMs in terms of conditional characteristic (or moment
generating) functions which are utilized below in characterizing the formal relation
between moments under the risk-neutral measure and the data generating measure.
In the literature, the market price of risk as specified in (3.5) is sometimes scaled
with the inverse of ¥, which in turn affects the relation between p and ® under the
two measures. However, if )\; is expressed in terms of the u’s, ®’s and 3, the same
equation emerges irrespective of whether (3.5) is scaled by ¥~! or whether y and ®

is scaled:
A=Y (n—p?)+27" (2 - 2%) X,

which follows from the formal relation between the conditional means M, and M2

that can be calculated using the conditional moment-generating function and de-

0Whenever a superscript Q is used, this refers to a moment or parameter (like 4@ ) belonging to
the risk-netural measure. To simplify the notation I do not use superscript P to denote moments
or parameters under the data generating measure, for instance I do not use pF.
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tailed in the Appendix A.1. In particular, the definition in (3.5) implies that

po= pd+3x
d = PV 4y

After these formal definitions, a natural starting point towards the no-arbitrage

My
where R;.; is the one period gross return for the particular asset. In the case of

restrictions on A and B is the fundamental asset pricing equation 1 = F; [Mt“ Rt+1] ,

zero-coupon bonds this can be rewritten as:

Pmﬂ} (3.6)

where P, i, is the price at time ¢ of a zero-coupon bond maturing in n + 1
periods. However, this equation is still too general to be of any practical interest
in pricing zero-coupon bonds, but a closed form equation can be derived as follows.
With the insight from Duffie & Kan (1996) the bond price equation is proposed to

be exponential affine in the state variables
P,y =exp{A, + B, X} (3.7)

where A,, and B,, each depends on the maturity of the zero-coupon bond and each
needs to satisfy recursive restrictions. Appendix A.2 contains a proof that the
proposed bond price equation is compatible with the fundamental asset pricing
equation in (3.6) and Definition 1. Moreover, the cross-sectional restrictions on A,
and B,, consistent with no-arbitrage are also specified. However, the measurement
equation in (3.1) maps the yields to the state variables and not the prices as in
(3.7) but the yield mapping in terms of A,, and B, is easily found from the relation

between the n-period zero-coupon bond yield yt(") and the price

(n) __ IOg Pn,t ~ DPng
Y o= o =T
n n
= A, +B'X, (3.8)
where the scalar A, = —% and the K x 1 vector B,, = —Ki—" is a straightforward

112



application of the definition of A,, and B,, in Appendix A.2:

B, = %5{ (I—o2)" (1-[09]") (3.9)
A, = 50+%[nj—(f—@@)‘l(f—[cb@]”)} (I—%)"" 0

1
5 > B/TxB; (3.10)
n
=0

Referring to the initial state space system in (3.1) and (3.2) it is now possible to
characterize this system as a no-arbitrage state space system if the cross-sectional
restrictions in (3.9) and (3.10) are imposed. Specifically, A in (3.1) is replaced by a
new N x 1 vector A = [A,,, ..., An,]" in (3.10) and B is replaced by a new N x K
matrix B = [B) , ..., B/, N}T in (3.9). Notice that the components of the replaced A
and B are highly nonlinear in the parameters of interest § = {do, 01, 1, , X, Ao, A1}
and depend on the maturity n which is emphasized by writing A = A (n,0) and

B (n,0).

The linear mapping between the yields and the dynamics of the state variables
allows for an analysis of the dynamic response of the yield of any maturity to a
shock ¢ to the state variables. For instance, given that one of the state variables is
a time series of inflation, the model allows us to trace through time how e.g. the
five-year yield responds to an inflation shock. The same type of analysis can be
extended to bond returns. Specifically, I analyze in Section 3.4.3 how (expected)
bond returns are affected by shocks to the state variables. For this reason, I derive
the affine relation between the expected excess holding period bond returns and the

state variables below.

Consider at time ¢, a buy-and-hold of an n-period zero-coupon bond for m pe-

riods. Sell this bond at t 4+ m which is now an (n — m) period bond. Denote by
rxiﬂm the resulting log return in excess of holding a bond for m periods!! which is

detailed in the Appendix A.3 to be

ey, = piom — pi™ 4 pi

(n—m)

where p,'},."" is the log price of an n — m period bond at time ¢ + m, etc. Inserting

Tdeally, for excess return calculations it may be preferred to roll over a one-period T-bill for
m periods as the alternative to invest-and-hold for m periods a longer bond. However, this is
approximated here by the m-period bond.
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the appropriate A,, and B,, from (3.25) and (3.24) in Appendix A.2 yields:

mt(’ilm = Apm— A+ An + B;ﬁmXHm — BIXt + B;Xt
= Gnn bz,th + Ggi)l,wrm (3.11)

where a,, , by and egi)lft +m are specified in the appendix to be:

m—1
U = By Y Ot Ap — A+ Ay, (3.12)
=0
b = —0] (1=0%) (1= [0°]" ") &7 + [09)" - [09]" } (3.13)
m—1
Ewgi)l,ter = B;lb——m Z D Uy
=0

Hence, the expected excess return is also affine in the state variable X;:
(n) _ T
By |1y om | = Qnm + by Xt (3.14)

Notice that risk premia need to depend on the state variables if the excess return in
ATSMs should be forecastable. That A; # 0 is needed becomes particularly clear if

a holding period of m = 1 is considered

bl = =0y (1=0%) (1= [°]" ) @+ [0°]" - 00}
= 5 (1-0%)7" {(1 . [@Q}”*l) (0% 4+ )] + [82]" - @Q}
= B ¥\

So far the state variables in X have been treated rather generically. A significant
part of the empirical literature on ATSMs treats X as unobserved latent variables'?,
i.e. X is an implicit function of the parameter vector that we choose such that
the joint likelihood of the observed yields and state variables is maximized. Alter-
natively, some of the X's may be observed as proposed by Ang & Piazzesi (2003)
but this does not require a change of the theoretical model outlined above; only
the econometric model outlined in section 3.3 is affected. The observed variables

used in this paper are derived from a large panel of macroeconomic and financial

I2Examples in the literature are Chen & Scott (1993), Duffie & Singleton (1997), Dai & Singleton
(2000, 2002) and Duffee (2002)
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time series and the following section presents the theoretical model for extracting

dynamic macroeconomic factors from large panels.

3.2.2 Large panel factor analysis: A factor-augmented VAR

Recent advances in the econometric theory put forward by notably Forni et al. (2000)
and Stock & Watson (2002a) allow us to analyze large panels of potentially hundreds
of time series in terms of a few (< 10) dynamic factors'®. As mentioned previously,
the idea pursued here is to imitate the large information set of the bond traders
by the large panel and then extract a few common dynamic macroeconomic factors
that can explain the majority of the variation in the data panel. Subsequently these
factors serve as the state variables X in the ATSM.

The model approach in this paper is similar to the factor-augmented VAR
(FAVAR) of Bernanke et al. (2005). The FAVAR is particularly interesting in the
way the monetary policy rate enters both as an observed variable (in the measure-
ment equation) and through the augmentation of the state variable with the policy
rate such that the policy rate interacts dynamically with the factors in the VAR
dynamics - hence the term factor-augmented VAR. This means that it is possible to
control for the short-term interest rate when macroeconomic factors are estimated.

Identification in general is addressed in section 3.3.

As in the previous section the starting point is once again a state space model.
Consider a panel of observable economic and financial variables z;;, where ¢ denotes
the cross-section unit, ¢ = 1, ..., N, while t refers to the time index, ¢t = 1,...,T. The
panel of observed economic variables is transformed into stationary variables with
zero mean and unit variance. These transformed variables are labeled x; ;. Dynamic
factor models assume that a variable x;; can be decomposed into two components,

the common component, x,,, and the idiosyncratic component &,,:

Tit = Xt T git'

Furthermore, in exact dynamic factor models it is assumed that the idiosyncratic
and common components are uncorrelated at all leads and lags and across all vari-
ables, E(fi,th,s) =0,V s,t,4,5. The common component is assumed to be driven

by a small number r, r << N, of common factors f; = (fis, for, =+, fri)

13Reichlin (2003) presents an empirical review of dynamic factor models.
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Ty = )\;rft + &y (3.15)

where )\; is an r x 1 vector of factor loadings measuring the exposure of x;; to the
factors f;. On the other hand, the idiosyncratic component is driven by variable-
specific noises. Stacking equation (3.15) over all cross-section units, z;, i = 1,..., N,

gives

20 = My + &, (3.16)

where z; = (214, ..., 2nt) 5 & = (§44, -, En) T, and X is an N x r matrix of factor
loadings, A = (A1, ..., \w) . Equation (3.16) is called a static factor model.!
To close the model, factor dynamics have to be specified. We assume that the

r-dimensional vector of common factors f; has a VAR(p) representation

e(L)fe = m, (3.17)
where (L) = I — ¢, L — @, L* — ... — ¢, LP, with ¢; denoting an r x 7 matrix
of autoregressive coefficients (j = 1,...,p). Moreover, given the stationarity of the

transformed panel, we impose that the roots of det (¢(L)) are outside the complex
unit circle. The r-dimensional vector of dynamic factor innovations is denoted 7,. As
in Doz et al. (2006), I make the distributional assumptions that 7, ~ i.i.d N (0, Q)
and &, ~ i.i.d N (0, R), with Q and R denoting (semi)positive definite matrices'®.

Using equations (3.16) and (3.17), the model can be summarized in first order

form, with state vector Fy, Fy = (f,", ..., f,_,41)" by the measurement equation:

and the transition equation
Fy=¢F 1+ U, (3.19)

14nGtatic" stands for the fact that the observed variables only load contemporaneously on the
factors.

5Note that, by assuming i.i.d idiosyncratic components, (3.16)-(3.17) define an ezact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
sets where some local cross-sectional and serial correlations are expected to be found. As such,
(3.16)-(3.17) represent a misspecified model. However, Doz et al. (2006) show that, for large N
and T, the exact factor model estimators are consistent quasi-maximum likelihood estimators for
the approximate factor model.
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where ¢ is the rpXxrp companion matrix corresponding to ¢ (L) and U = <Ir, OTT(p_1) XT)

Two state space models for panel data have been presented in this section and

they are summarized briefly below as:
1. A no-arbitrage Gaussian ATSM in state space form

Y, = An,0)+ B(n,0)X,+ v
Xy = p+2X, 1+ e

where 6 = {dg, 61, 11, ,3, Ao, A1} contains all the underlying parameters and
where some of the observed state variables in X; are macroeconomic factors
(F};) from:

2. A factor-augmented VAR model for large panel dynamic factor analysis

ry = AR +E,
F, = oF 1+ U

However, in their current form neither of the two state space models are econo-
metrically identified, as it is possible to form observationally equivalent models with

6

different parameters and state variables'®. The following section will thus address

identification and also estimation methods.

3.3 Estimation and identification

3.3.1 Identification issues in Gaussian ATSMs with observed
and unobserved state variables
The presence of latent state variables in standard multifactor ATSMs implies that

not all model parameters are econometrically identified. The identification approach

taken in this paper is quite standard but is nevertheless briefly discussed.

16 Consider a rotation of the FAVAR with the invertible matrix H such that z; = AF}, + &, and
F,=®F,_1+U, withA=AH ', F, = HF,, ® = H®PH ' and U = MU,. This model is clearly
observationally equivalent to the model above and the parameters are therefore not identified. The
same applies to ATSM.

117



Identification of ATSMs with latent state variables is thoroughly discussed in
Dai & Singleton (2000) where the notion of a canonical model defines a model that
is admissible, econometrically identified and still maximally flexible within a family
of models. Implicit in the canonical model specification is a set of normalizations
required for identification, which makes it impossible to rotate the state vector
without changing the short rate and thus the bond price. However, because the state
vector is latent, it is still possible to make "invariant" transformations (rotations and
translations of the state vector) that preserve admissibility and identification without
changing the short rate; cf. Dai & Singleton (2000). When observed variables are
included in the state vector, the usual rotations or translations would also change the
observed part of the state vector. Consequently Pericoli & Taboga (2008) redefine

the canonical ATSM when observed variables are included among the state variables.

Ang & Piazzesi (2003) assume that the macro variables are exogenous to the
yield curve. Implicitly, this implies a set of overidentifying overidentifying parame-
ter restrictions compared with the canonical model in Pericoli & Taboga (2008).
However, these overidentifying restrictions are by all appearances mainly imposed

to keep the estimation of these highly parameterized models manageable.

In order to clarify how and where the identifying restrictions are imposed a no-
arbitrage state space model is presented below which distinguishes between observed
state variables and unobserved (latent) state variables. Consider first the measure-
ment equation that consists of the A observed yields in Y; and now also p lags of K
observed macroeconomic variables stacked in a K; - p dimensional vector X;. These
observed (N + Kj - p) variables are affine in the state vector X, which is partitioned

into K - p observed macro variables and K, latent variables in X}

)? ]
_|_

Accordingly, X; is a K = K, -p+ K, dimensional vector. Furthermore, the N/ x 1

X7
Y,

0
A

I 0
B° B

0 O
0 B™

= ] (3.20)

(%

vector A and the N x K loadings matrix [ B° B* ] follow from the no-arbitrage
cross-section restrictions in (3.9)-(3.10). Thus, it can be seen that the yields now load
on both macroeconomic variables through B® which is an A/ x (K — K3) matrix and
on the latent variables through B* which is N’ x K;. The macroeconomic variables

are observed and therefore assumed to be measured without error, i.e. w;, = 0.

17To be precise, the dynamic factor analysis already allows for series specific idiosyncratic dis-
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Furthermore v; ~ iid N (0,]) implying that the measurement errors are B"v; ~
N (0, B"B™"), where B™ is an N x K, matrix.

The transition equation for the state variables X; is the same as (3.4) but written
out slightly to emphasize the macroeconomic state variables:

XO o @OO (POU/ XO o
t — ILL + t—1 + gt (3'21)
xp | L] e e || Xy et
where an exact listing of the dimensions of the vectors and matrices are deferred to
Appendix A.4.

EOO ZO’U,
EUO Euu

The exactly identifying restrictions are probably most easily stated if the start-
ing point is the model in (3.20)-(3.21) with no macroeconomic state variables, i.e.
K; = 0. In this case and following Dai & Singleton (2000) X"* is normalized to an
identity matrix which allows us to estimate 0] freely and which allows the latent
state variables to be correlated through a lower triangular ®“*“. Furthermore, a zero
restriction on p* allows for a free estimate of dy in the short rate equation. The
upper left Ky x Ky block of A} is estimated freely, but this in turn requires one
element in Ay to be restricted to zero; cf. de Jong (2000). For a three-factor model,
this implies twenty-one parameters to be estimated plus the covariance matrix of

the measurement errors.

Ang & Piazzesi (2003) apply this identification scheme and additionally impose
that %% = Pu° = 0% = 40 = (), that u° is zero'® and that X is lower triangular
as a result of a Cholesky decomposition. These restrictions are a consequence of
the exogenous treatment of the macroeconomic state variables in the term structure
where ©°°, §7 and X% are estimated consistently in a first step prior to the term
structure estimation and subsequently kept fixed in the second step estimation of the
ATSM. However, the upper left K; x K; block of A{ is estimated freely such that the
market prices of risk also depend on the state of the macro economy. The restrictions
P = P = ¥ = 3" = ( are overidentifying restrictions according to Pericoli
& Taboga (2008), i.e. it is in fact possible to achieve a more flexible yet identified
model without imposing these restrictions. However, treating {®°*, du° ¥ou Yo}

as free greatly increases the computational burden for the model in Ang & Piazzesi

turbances in the extraction of the common dynamic factors F;. Hence, yet another source of
disturbances through w; is not preferred here.
18The macro state variables are de-meaned prior to estimation.
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(2003) as additionally ninety parameters need to be estimated when K; = 2 and
p = 12. I experienced the same type of computational challenges and therefore
opt for the same identification scheme as in Ang & Piazzesi (2003) including the

above-mentioned overidentifying restrictions.

3.3.2 Estimation of Gaussian ATSMs

Two methods for the estimation of dynamic term structure models with latent state

variables are often used in the literature.

The first method is the maximum likelihood approach by Chen & Scott (1993),
where time series of K, latent state variables are inverted from a more or less ar-
bitrarily chosen set of K, perfectly measured zero-coupon bond yields.! The con-
ditional density of the observed yields then follows from the then known density of
the state vector and the Jacobian. Appendix A.4 presents the inversion of the latent
state variables and the likelihood function. This method has been used in a number
of papers including Duffee (2002), Dai & Singleton (2002) and the Gaussian macro-
finance term structure models by Ang & Piazzesi (2003), Hordahl et al. (2006) and
Pericoli & Taboga (2008).

The second method is the Kalman filter which recursively filters the latent state
variables conditional on a parameter vector and conditional on observing a history
of yields of different maturities and where all yields may be measured with errors.
The filter is recursive in the sense that each time a new observation arrives, a
forecast error can be calculated which in turn enables an update of the conditional
moments for the state vector X. Based on the updated conditional moment of X
a new one-period ahead forecast of the observed variable can be computed. For
Gaussian models, the linear Kalman filter is the optimal linear estimator within the
class of linear estimators, and the exact likelihood follows from the prediction error

decomposition; cf. equation (3.26) in Appendix A.4, which contains more details®.

It can be noted that the estimation of Gaussian term structure by the method
of Chen & Scott (1993) can be seen as a special case of the Kalman filter if the

same measurement errors are restricted to zero as in former method. The Kalman

19T find that estimation results are sensitive to which yields that are measured perfectly.

20For non-Gaussian models like the Cox et al. (1985) model, the exact likelihood is unknown
but quasi maximum likelihood methods based on the conditional first and second moments of the
state variables have been used in the literature; cf. Lund (1997) for a discussion.
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filter method has been applied to Gaussian macro-finance term structure models by
Dewachter et al. (2006), Dewachter & Lyrio (2006b) and Duffee (2007).

In this paper, I opt for the Kalman filter, primarily to avoid measuring some
of the yields without error, but also because of the generality and flexibility of this
method. For instance, the Kalman filter method allows measuring some of the ob-
served variables perfectly if needed or even handling missing data. However, the
computational cost of using the Kalman filter is larger than using the inversion
method of Chen & Scott (1993). For each candidate parameter vector in the op-
timization routine, the Kalman filter loops recursively through the T" observations,
each involving a matrix inversion and a set of matrix multiplications in order to
filter the latent state vector X;. The inversion method is much faster in this respect,

as only a single matrix inversion is needed for each candidate parameter vector.

3.3.3 Identification in the factor-augmented VAR and esti-
mation by the EM algorithm

The FAVAR is not econometrically identified as it stands in the state space model of
(3.18) and (3.19). The identification scheme and the estimation method are different
from Bernanke et al. (2005) as I allow for correlated factors estimated by the EM
algorithm as opposed to orthogonal factors estimated by Bayesian methods in the

latter.

As discussed in details in Bork (2008), identification in factor models is about
separating the contributions of the different latent factors to the variation in the
panel x. The predominant starting point is uncorrelated factors which, implies that
the identification of the sources of variation in z is then a matter of imposing an
identifying structure on the loading matrix; in particular a lower triangular block
structure of the loading matrix. Alternatively, the assumption about uncorrelated
factors can be relaxed by allowing for correlated factors. However, less restricted
factor dynamics would have to be paid by a more restrictive structure on the loading
matrix; in particular the lower triangular block mentioned above is replaced by an
identity matrix of the same size. In other words: Either the variables in x covary
because they load differently on a set of uncorrelated factors or because they load

on different factors which are themselves correlated.
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Thus, a sufficient condition for an exactly identified FAVAR model is to impose
an identity matrix restriction on 7 of the N observed variables.]>'. Therefore, for an

exactly identified model I specify the restricted loading matrix A* by imposing:

but as shown in Bork et al. (2008) additional restrictions may be imposed by the

general form of loading restrictions
HA VGC(A*) = RA

where K, is a vector and H, is the restriction matrix Hy. In fact, to identify the
monetary policy rate that enters both the measurement and state transition equation
I make use of this general restriction. Specifically, the policy rate in x; loads with
unity on the last factor in F; and zeros on the remaining latent factors, such that
the corresponding row in A* for the policy rate is [0, ..., 0, 1]. In line with Bernanke
et al. (2005), I argue that the federal funds rate is measured without error whereas

the other variables may be measured with error

These restrictions are easily imposed when the EM algorithm is used as the es-
timation method. The EM algorithm is an iterative maximum likelihood procedure
which is useful for models with "missing data", which in this context are the un-
observed dynamic factors; cf. Dempster et al. (1977), Shumway & Stoffer (1982)

22 In fact, for the linear

and Watson & Engle (1983) for important contributions
state space model in (3.18)-(3.19) it is possible to obtain closed form solutions for
the parameters of interest {A*, ¢, Q, R} as specified in Appendix A.4 which offers
a self-contained introduction to the EM algorithm including the application of the

Kalman filter and the Kalman smoother.

2l Furthermore, in this identification scheme, the restrictions are imposed on the so-called slow-
moving variables like production, employment as opposed to fast-moving variables like exchange
rates, stock prices, interest rates and consumer survey measures. This division into slow and fast-
moving variables follows Bernanke et al. (2005). See Appendix A.l page 162 for more details on
this division.

221t seems that it is not possible to apply the EM algorithm in a standard way to ATSMs as the
objective function is highly non-linear in the parameters.
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3.4 Empirical application

In this section, a multifactor ATSM with filtered macroeconomic state variables
conditioned on a large information set is taken to the data. I will show that filtered
macroeconomic state variables from a large panel data set matter for model per-
formance in several respects and that shocks to fundamental macroeconomic state
variables play an important role in the response of bond yields and bond risk pre-
mia. In this respect, inflation and unemployment are particularly important, but
the relations between bond risk premia and shocks to these fundamental macroeco-
nomic state variables are only uncovered if the dynamics of the state variables are

sufficiently rich.

In the following, the data is presented first, then some comments on the econo-
metric model specification and estimation issues are given, and finally the empirical

results are presented.

3.4.1 Data

To illustrate how the bond market might filter the state of the macroeconomy from
many different data sources I revisit the large data panel of macroeconomic and
financial time series analyzed in Bernanke et al. (2005)?*. This dataset consists of 120
monthly time series and therefore captures the dynamics of a wide range of economic
as well as financial developments in the US economy over the period 1959:1 to
2001:8%*. Specifically, the dataset contains several measures of industrial production,
income, (un)employment, consumption, housing starts, inventories, price indices and
other economic measures. Furthermore, financial market variables such as stock

prices, foreign exchange rates and coupon bond yields are also included.

I follow Ang & Piazzesi (2003) and use the continuously compounded zero-

coupon bond yields of maturities 1, 3, 12, 24 and 60 months from the CRSP covering

23] thank Jean Boivin for kindly making the data set available on his website, HEC-Montréal,
Canada.

24The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Appendix
A.1 page 162 in this paper and Bernanke et al. (2005) for details on the data set and on the
transformation which results in a sample size of 7' = 511. The data transformation decisions are
similar to Stock & Watson (2002b) and based on judgemental and preliminary data analysis of
each series, including unit root tests.

Prior to the estimation, we de-mean the series and divide them by their standard deviation such
that the resulting series have zero mean and unit variance.
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the same period as the data above (the macro data).

To get a sense of the data, an example of a common inflation factor estimated
from the FAVAR model is plotted against the log difference of two relevant specific
price indices in Figure 3.1. It can be noted that although monthly growth rates in
price indices are quite volatile, the common inflation factor does not match every
movement in the price indices; some of movements are thus series specific idiosyn-

cratic movements.

[Insert Figure 3.1 here]

3.4.2 Model specification

With hundreds of time series in the macro panel and potentially highly parameter-
ized macro-finance ATSMs there is indisputably a large set of candidate models to
choose between. Furthermore, both the FAVAR model and the Kalman filtration of
the ATSM can be time consuming, which means that there is a timewise limit as to

the depth of model exploration.

I choose to focus on three dimensions in the model specification. Firstly, five
macroeconomic dynamic factors are considered as candidate state variables moti-
vated by standard macroeconomic theory and derived from the FAVAR. The interest
centers around what role these fundamental macroeconomic key variables play in
the response of the yield curve and the bond risk premia to macroeconomic shocks.
Typically, two of these enter the ATSM as well as typically three latent variables
similarly to Ang & Piazzesi (2003).

Secondly, 1 examine whether yield and risk premia responses to fundamental
shocks depend on the assumed dynamic complexity of the state variables in the
VAR. Typically, VARs with monthly macroeconomic data require a significant lag
length; Ang & Piazzesi (2003) find that p = 12. The survival of such highly para-
meterized macro-finance ATSMs in AIC or BIC criteria is low. Pericoli & Taboga
(2008) apply the AIC and BIC criteria to a macro-finance model with quarterly data
and find that p should be in the range 0-2 depending on the specification. Thirdly, I

choose to focus on the estimation of the most parsimonious version of a given ATSM
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by carefully eliminating statistically insignificant parameters in order to reduce over-
parameterization. This approach is combined with the use of a global optimization

routine (simulated annealing) in an attempt to avoid inferior local maximums.

The five macroeconomic dynamic factors are a subset of the nine factors ana-
lyzed in Bork et al. (2008) and each factor is given a clear economic interpretation
by imposing overidentifying loading restrictions on A* in (3.22) as proposed and
described in detail by Bork et al. (2008).% Specifically, they define the following
nine factors. Four of these factors are related to aggregate supply: an inflation fac-
tor; an economic activity factor; an unemployment factor and a hours in production
factor (functioning as a buffer to changes in demand). Furthermore, they define
three factors related to aggregate demand: a consumption factor; a housing factor
approximating (residential) investment; and a monetary policy factor. The final two
factors have the interpretation of an information factor (commodity price factor) and
as a financial factor (stock market factor). The five macroeconomic factors retained
in this paper is the aggregate supply factors and aggregate demand factors except
for the housing factor and the monetary policy factor. The housing factor is a priori
excluded as I expect this factor to lag interest rates whereas the monetary policy
factor is excluded as the short-term interest rate is modelled within the ATSM as a

Taylor-style policy rule.?8

Obviously a general inflation factor should be a candidate state variable because
inflation is an important target variable in monetary policy (the Taylor rule) and
because inflation affects the purchasing power of the payoffs to bond investments.
Other highly relevant fundamental macroeconomic state variables are economic ac-
tivity and unemployment, which affect both the interest setting by the Federal
Reserve Board and income and consumption possibilities of the consumers. The
consumption growth factor is related to investor’s marginal utility of consumption
and therefore to the pricing kernel as in Breeden (1979) or more recently as in Camp-
bell & Cochrane (1999). Finally, a relative responsive state variable is defined in

terms of overtime hours in production.

25 Accordingly, exactly the same data and exactly the same overidentifying restrictions are used
in this paper as in Bork et al. (2008). Furthermore, they report that their results are robust to
including more lags and to reducing the number of lags in the FAVAR to p = 4 and I expect these
results to carry over to the FAVARs estimated in this paper using exactly the same estimation
routine.

26The stock market factor is not included because I opt for a fundamental macroeconomic ex-
planation of the term structure dynamics. The commodity price factor was included as a state
variable in the ATSM but it did not show up as an important state variable.
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A comment on the estimation of the ATSM will now be given. Feeding the
optimization routine with good initial values for the parameters is the key to find
the (hopefully) global maximum, and the simulated annealing method®’ is one mean
towards this. I proceed towards the most parsimonious model as follows. In a
first sequence of estimations I estimate (using simulated annealing) the expectation
hypothesis version of the ATSM with \g = A\; = 0 while {®, §;} is estimated freely.
Then ® and \g are kept fixed while \; is estimated. After this )\ is estimated while
keeping {®, A\ } fixed, and finally all parameters are free in a joint estimation. Given
the resulting new set of initial parameter values, this sequence of estimations with
some parameters kept fixed and other parameters free is repeated again (with the
faster Nelder-Mead simplex method). However, this time insignificant parameters
at a 10% significance level are set to zero. Notice that the purpose of this is only to
build up good starting values. In the final sequence, insignificant parameters at a
10% significance level are removed one at a time from the parameter vector, which is
reestimated after each removed parameter. Admittedly, this method involves many
estimations, but it delivers a parsimonious model and is capable of finding the true
parameters of a simulated three-factor ATSM?°. Moreover, this approach also proves

successful in an earlier replication of the results in Ang & Piazzesi (2003).

One of the attractive properties of the Kalman filter is the recursive calculation
of the filtered state vector X, which is the time ¢ expectation of the state vector
conditional on observations up to time ¢. Assuming that the parameter vector of the
FAVAR is known by the bond market X;; may be interpreted as the time ¢ beliefs
of the bond market about the state of the economy®’. Therefore, in terms of model
specification the filtered state vector is preferred in the estimations. Finally, the
Kalman filter allows for heteroskedastic measurement errors which are theoretically

attractive but nevertheless increase the computation time significantly3!. Therefore,

2TSimulated annealing is a global stochastic optimization technique which is often explained with
reference to the cooling process of molten metal (thermodynamics) where a slow cooling (annealing)
leads to a low energy state (the minimum) whereas a quick cooling might lead to a local minimum
only. See Goffe et al. (1994) for more details.

286, is always fixed at the unconditional mean of the short rate.

29This approach grew out of unfortunate experience with local maximums using initially the
simplex method and out of a brief comment from Ang & Piazzesi (2003) page 763 on estimation
issues.

30This argument ignores the actual vintage of the real-time data that the bond market actually
had at that time.

31Tf there are good reasons to expect that the variance of the measurement errors in the bond
market should be heteroskedastic, for instance if there are thinly traded bonds or "on-the run"
versus "off-the-run" effects, then it may be a good idea to allow for heteroskedasticity. On the
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I assume homoskedastic measurement errors as in Duffee (2007, 2008).

3.4.3 Empirical results

The results of the exploration into potential macroeconomic sources of the variation
in bond excess return are now presented. The exploration is limited to an assess-
ment of which role the five macroeconomic dynamic factors plays in the variation
of excess returns. This assessment is performed in terms of impulse response analy-
sis and forecast error variance decomposition (FEVD) of excess bond returns. In
Appendix A.5 I derive the FEVD for the excess bond returns with a general hold-
ing period. The preferred ATSM model includes the filtered inflation factor and
the filtered unemployment factor among the K7 = 2 macroeconomic state variables
and the K, = 3 latent variables. The background for this preference, is mainly
that unemployment is the most important source of variation in bond excess return,
among the analyzed macroeconomic factors. This specification is then evaluated

against other candidate models; for instance by comparing model fit and varying
the number of lags in both the FAVAR and the ATSM32.

Some of the initial estimations are not included in this paper. Specifically, 1
quickly realized that the use of K; = 3 macroeconomic factors and K, = 2 latent
term structure factors resulted in a significant inferior fit compared to models with
Ky = 2 and Ky = 3. Therefore, only models with the latter model specification
are reported. Furthermore, the inflation factor turns out to be an important state
variable as in practically all other macro-finance models in the literature. Conse-
quently, inflation is always one of the macroeconomic state variables in the ATSM
while the other are either unemployment, economic activity, consumption or hours-
in-production. Finally, I also allow the number of lags in both the FAVAR and the
ATSM to be either p = {4,8,12} . It turns out that four lags is not sufficient in the
sense that counterintuitive impulse responses emerge, which may be the result of a
omitted variable problem, and muted endogeneous responses in the VAR residuals.
Finally, the results with twelve lags are not very different from the results with eight

lags and therefore dismissed on the basis of the AIC or BIC criteria.

other hand, adding more parameters may worsen the overparameterization problem.

32Tn a previous version of this paper a comparison with a model that do not use filtered dynamic
factors was performed. For the last mentioned model, the fit was somewhat inferior and the impulse
responses were different.
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The empirical results for the models with eight or twelve lags are now summa-
rized and then subsequently discussed in details. Firstly, the model-implied expected
excess return (EER) responds as expected following a shock to the five macroeco-
nomic state variables. EER responds negatively to shocks to inflation, economic
activity, consumption and hours-in-production. Intuitively, shocks to the last three
mentioned variables would correspond to an improved state of the economy and
therefore the demanded risk-premium decreases. Secondly, the FEVD of the EER
is broadly similar for all five macroeconomic factors and the factors account for no
more than 30% of the total forecast error variation at any forecast horizon. Thirdly,
all four models are able to fit the yield curve well. The mean of the absolute values
of the deviation between observed yields and model implied yields, is in the range
of about 5-10 basis points. Finally, the impulse response analyses of the yield curve
following macroeconomic shocks also display the expected responses of the yields of
different maturites. For instance, shocks to industrial production and/or inflation
raise the short-term interest rate but also the longer yields.

I therefore conclude that the estimated models with either eight or twelve lags
seem to be well-specified. These models deliver empirical impulse responses of the
bond yields or expected excess returns that are consistent with theory and common
sense’.

The retained five common dynamic factors - inflation, unemployment, economic
activity, and consumption - are depicted in Figure 3.2 as well as the other four factors
in Bork et al. (2008). Focusing on the five factor it can be seen that these candidate
state variables in the macro-finance ATSM are well in line with the leading measures
and trends in the US economy over the sample period. Specifically, the general
inflation factor captures very well the overall CPI series while the unemployment
factor, the economic activity factor and the hours in production factor also capture
the development quite good. Moreover, these factors also capture the peaks and

troughs of the business cycle well.

[Insert Figure 3.2 here]

Figures 3.3, 3.4, 3.5 and 3.6 display the impulse response functions of expected
excess return of bonds following a shock to 1) the inflation factor plus one of the
factors from {unemployment, hours-in-production, economic activity or consump-

tion growth}, respectively. It can be seen that the shapes of the impulse response

33 As already noted, the models with four lags result in counterintuitive responses.
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functions for inflation shocks are broadly similar. Moreover, the unemployment fac-
tor in Figure 3.3 is seen to be an important source of variation in expected excess

return.

Generally, it can be seen that the longer the holding-period the larger the re-
sponse of expected excess return. Moreover, the longer the bond the larger the
response. A one standard deviation shock to unemployment initially raises the ex-
pected excess return by 17 basis points on an annually basis for a five-year bond
held for one year. This empirical evidence conforms with the conventional view that
risk premia are countercyclical. Notice also that a one standard deviation shock to
inflation lowers the expected excess return by almost 20 basis points. The responses

are weaker for the remaining shocks.

[Insert Figures 3.3, 3.4, 3.5 and 3.6 here]

Another related technique to analyze how the variation in bond yields and bond
risk premia is affected by macroeconomic state variables is the forecast error variance
decomposition. Specifically, in a forecast error variance decomposition (FEVD),
I calculate for a given forecast horizon what fraction of the model-implied total
forecast error variance for a particular variable that is due to a specific shock. I use
the FEVD to analyze how macroeconomic variables affect the expected excess return
on bonds. In Appendix A.5 I derive the FEVD for excess return on bonds with a
general holding period. A step towards the FEVD is the mean squared forecast
error, M SF FE,, given by:

MSFE, (m:HmmH) Zb 0[] nm+ZBT &0 [] B,

where by, ,, is given in (3.13) and represents the loading for the involved bonds until
the forecast starts. The matrices ®,§2 are seen in Definition 1. The price loading
B! . isseen in (3.7) and relates to the uncertainty of the selling price of the n —m
period bond at the end of the forecast period s. The holding period is represented
by m. The second term dominates in this expression and therefore the FEVD is
generally stable and almost constant throughout the forecast period. Consequently,
the FEVD for the five macroeconomic state variables is quite similar and therefore
only the FEVD for the preferred model is shown in Figure 3.8. It can be seen

that the inflation factor (denoted obs. state variable 1) is the far most important
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macroeconomic variable in forecasting excess returns of bonds in this model.
[Insert Figure 3.8 here]

The preferred model is now related to other candidate models to evaluate the
empirical fit. Consider Table 3.1 where the statistical fit of ATSMs with four sets of
macroeconomic is evaluated. Specifically, the preferred model is evaluated against
the following sets: {inflation, hours-in-production}, {inflation, economic activity},
{inflation, hours-in-production} and {inflation, consumption}. Generally, all four
models are able to fit the yield curve well with a mean of the absolute values of
the deviation between observed yields and model implied yields of about 7-8 basis
points. However, it is difficult to discriminate in sample between different models,
although the second model in Panel B seems to fit the yield curve less well. On
this background I conclude that an interesting account of some of the variability of

excess returns is obtained via the preferred model, without sacrificing the statistical
fit.

A prominent benchmark model is the Ang & Piazzesi (2003) affine term structure
model with K; = 2 macroeconomic variables and Ky = 3 latent term structure fac-
tors. Interestingly, Ang & Piazzesi (2003) perform a "mini" dynamic factor analysis
where inflation and real activity measures are constructed separately by principal
components analysis of a few observed indices. Their original data is extended to
match the sample period in this paper. Table 3.2 reports parameter estimates and
statistical fit of a Ang & Piazzesi like model. The model is estimated by the Chen
& Scott (1993) method to comply with the approach of Ang & Piazzesi. Figure 3.7
displays the impulse responses of expected excess returns of bonds. A comparison
with the {inflation, economic activity} model of this paper reveals that excess re-
turns in the latter models responds a little more; especially for the longer holding

periods. The same holds for the preferred model .

The final robustness analysis concerns impulse response analysis of the bond
yields. From the analysis of how a shock to a state variable propagates through the
state space system and affects bond yields, we can learn how different segments of
the maturity spectrum of the yield curve responds over time to such shocks. For
instance, it might be interesting in scenario analysis to know the effect on different
yields following a shock to inflation. Appendix A.5 shows that the n-period yield can

be written in a moving-average form which essentially shows how an uncorrelated
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shock realized generically in the past affects today’s yield. Illustrative examples are

given below.

Figure 3.9 displays how the 1-month, 12-month and 60-month yield responds
to a one standard deviation inflation shock and unemployment shock. It can be
seen that 100 bp. deviation from baseline (standardized) inflation in this particular
model would make the short yields respond immediately by 30 bp, and about 12
bp. for the long bond yield but then the effect dies out slowly. This is as expected
in the sense that the short yields are affected most if the Federal Reserve Board
accommodates a rise in inflation by an increase in the Federal funds rate. Similarly,
for an unemployment shock, short yields show little response as expected with a

more pronounced effect for the long term yield.

3.5 Conclusion

This paper can be seen as a new empirical approach to no-arbitrage bond pricing
that takes into account the abundant amount of macroeconomic and financial in-
formation in the bond market. Part of this information needs to be processed in
order to asses the current state of the economy, which is relevant for an assess-
ment of the state of the monetary policy rate, i.e. for the short end of the yield
curve. To obtain a broad based assessment, it is preferable to look at several rel-
evant economic as well as financial variables in order to distinguish series specific
idiosyncratic measurement errors from the underlying common component of rel-
evant key macroeconomic variables. I propose to use a factor-augmented VAR to
filter relevant key macroeconomic variables and explain empirically the short rate by
a few of these macroeconomic variables; specifically I argue for a general inflation
factor and a general unemployment factor. Furthermore, the exactly identifying
restrictions imposed on the loadings of the factor-augmented VAR ensure that the
factors and the monetary policy rate are identified and thus allow me to use finan-
cial variables as timely information variables for the macroeconomic development.
The overidentifying restrictions ensure a clear macroeconomic interpretation of the

factors.

However, the intersection between the macroeconomy and the bond market is
not limited to the short end of the yield curve. Risk premiums depend on the state of

the economy as well. In bad times investors would require a higher premium to hold
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a long-term bond. A multi-factor Gaussian affine term structure model is therefore
augmented with (Kalman) filtered state variables derived from the dynamic factor
analysis. I find that among five different macroeconomic state variables inflation
and unemployment perform particularly well. Firstly, in terms of yield curve fit they
perform at least as well as the updated factors from Ang & Piazzesi. Secondly, in
a forecast error variance decomposition the filtered state macroeconomic variables
show a significant ability to account for the variation in excess returns of bonds.
However, the key to an important role for macroeconomic variables in excess returns

of bonds is a sufficiently rich dynamic complexity in the term structure model.
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A Appendix

A.1 Conditional expectation of state variables under Q and
P.

The conditional expectation of X;,; under the P measure is denoted M; and the
conditional expectation of X; under the Q measure is denoted I\\/JI;Q . The two moments
are related by the Radon-Nikodym derivative. Dai et al. (2007) show how the
conditional distribution of X;,; under P is fully characterized by conditional moment

generating function v, :

w]f (v) = E; [exp {UTXtHH = Ei@

dP\”
exXp {UTXtH} (m) ]
tt+1

P2 (ZIN +0) { T A vTEETy }
= —expv’ (M2 +3)\) + —— 3.23
P (S1N) P (M, ) 2 (3.23)

From this expression it is simple to calculate the first moment by differentiating

(3.23) with respect to v and evaluating at v = 0 which implies
M, = M2 + 2\,
and inserting the definitions of M, and I\\/JIP from Definition 1 yields

p+oX, = p?+ oYX, + 2N\
= u? + VX, + % (N + M X))

and matching coefficients implies

po= p% 43X
o = ¢ L)\

Alternatively, we could express \; as in the main text as
=S (p—p®)+357 (2 -2Y) X,
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A.2 A and B in the bond price equation

The following proposition and proof are broadly similar to Campbell et al. (1997)
chapter 11 and Ang & Piazzesi (2003). To prove that the proposed bond price equa-
tion is compatible with the fundamental asset pricing equation in (3.6) and Definition
1 the proposed bond price equation is substituted into exp {An + B! Xt+1} in (3.6)

and then I show that A, and B, each must satisfy a cross-sectional restriction.

Proposition 2 The bond price equation in a discrete-time affine term structure

models is exponentially affine in the state variables X

Pn,t = exXp {An + B;LrXt}

where A,, and B,, must satisfy the following to be compatible with no-arbitrage

as specified in Definition 1 :

B, = -8 (I—-0%)7" (1-[22]") (3.24)
Ay = —ndy =] [n-1 = (1-02)7 (1= [°]")] (1 - @%) 7" 4
% nzl B/ 2B (3.25)

I
o

i

Proof. Substitute the zero-coupon bond price at time ¢ + 1 which now has n —

1 periods to maturity into the fundamental asset pricing equation in (}3.6), ie.

substitute P,_; ;41 = exp {An,l + B;_lXtH} into P,; = E; [Mj\zlpn,l,tﬂ

M, o1
P., = E [ A}“ exp {—zt - §A,TAt — Ajam} exp {An_l + BZ_le}]
t

1
= FE; |:eXp {—50 - (SirXt — 5)\:)\15 — )\;réprl} X exp {Anfl + B’I—l (,LL + &X; + EEt+1)}:|
1
= exp {—(50 — (51FXt — 5)\?)\,‘, + An—l + BZ,l (/L + (I)Xt)} X
Ey {GXP { (‘AtT + Byllz) €t+1H

134



and from the definition of the mean of a lognormal variable this is equal to

1
Pn,t = exp {_50 — 51|—Xt — §>\I>\t + An—l + B'r—l——l (M + (I)Xt)} X
1 1
exp {5)\?)% + EBI_lzzTBn—l - B’r—zr—lz)\t}

= exp {—50 — 0y Xp 4+ Ap 1 + %B,I_lEETBnl + B, (u+ @Xt)} X
exp{—B,_, [(p— %) + (2 - ©%) X, }

= exp {—50 + Ap_y + %B,I_lzzTBn_l + B ul } X
exp {[—0] + B,_, 9] X,}

Matching coefficients on the right hand side P,; = exp {An + B! Xt} with the
left hand side yields

B, = —&; +B, ,9¢
1
.An - _50 + An—l + 58’1——1221—871_1 + B";r_l#(@

These recursions can in turn be written more compactly as in (3.24) and (3.25).

The compact version of B, is derived by substituting recursively from B, _; to By
which result in B, = —0; 3.1 (®2)" which in turn is (3.24) . Similarly for A,,. =

)

A.3 Excess holding period bond returns

This section derives the conditional expected excess holding period bond return for

a general holding period of length m periods.

The return from investing in a n-period bond for m periods is:

P — B

Rggzl—m = ]Dt(n)

and the log return is then
ot (14 B = i = 507 i

where the log price at time t + m of a n — m period zero-coupon bond is denoted

pﬁiﬁ;{”), etc. This return in excess of holding a m-period zero-coupon bond to matu-
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rity is
Dy = pie — pi™ 4 pi™,

Inserting from (3.24) and (3.25) yields
7“$$)+m = An—m - -An + Am + BZ_th—&-m - B;Xt + B;Xt

where X, = 22161 Oy + X, + Z::Ol DUy s from (3.4). Thus, miﬁm can

be rewritten as

m—1

=0
+(B,_,®" — B, + B,,) X,
m—1
+B7;rfm Z (I)iuter,i
=0

T
= Qnm + bn,th + €t+1,t+m

where

m—1

U = Bl > Ot Ay — A+ A,
i=0

by = Bi_n,®"—B,+B,

= o] (-9 (1 [09)" ) @ 4 [00)" — [00]")
m—1
Ez(fi)l,t+m = Br—l——m Z @iuﬂrm—i

i=0

A.4 Estimation methods

The EM algorithm and Kalman smoothing recursions

The Expectation Maximization (EM) algorithm is an iterative maximum likelihood
procedure applicable to models with "missing data", which in this context is the
unobserved factors. The complete data likelihood of the Gaussian state space model
in equations (3.18)-(3.19) is given in equation (3.32) below. Although the complete
data likelihood cannot be calculated due to the unobserved factors, it is neverthe-

less possible to calculate the expectation of the complete data likelihood conditional
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on the observed data and inputs of parameters, denoted ©U) at the jth iteration.
Essentially, this expectation depends on smoothed moments of the unobserved vari-
ables from the Kalman smoother and hence on the data as well as parameters in
©U). Finally, "updated" values of the parameters at iteration j + 1 denoted ©U+1
are available in closed form and follows from the first-order conditions of the condi-
tional expectation of the complete data likelihood. The updated parameters ©U+1
can then be used to filter and smooth a new set of moments to be used in the calcu-
lation of the conditional expectation of the complete data likelihood. This algorithm

continues until convergence of the likelihood value.

The following offers a brief description of the Kalman filter and the Kalman
smoother. Then the complete data likelihood and the incomplete data likelihood
for a state space model are stated. Finally the moments used in the closed form

parameters estimators in (3.34)-(3.37) are stated.

The Kalman filter Denote by X; = {Xj,..., X;} the information set available
at time t. The conditional expectation and variance of the factor are: Ft+1|t =

E[F,1| X] and Pt+1|t = var (Fyy1| X) , respectively.

The Kalman filter recursions for t = 1,..,T" can then be written as

Ft+1|t = ¢Ft|t—1 + K (Xt - AFt\t—l) )
Py = 6Pyl +Q,

where

gt = X;— Apt\tfla
Ptgg = A]57t|t71/\T + R,

such that the Kalman gain matrix K used in Ft+1|t and FA’HW is calculated as

. . -1
K = ¢Pt|t71AT (Apth‘flAT + R) .

If the initial state vector and the error terms have proper normal distributions a

useful output of the Kalman filter is the prediction error decomposition form of the
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likelihood:

NT 1 « 1
_ pEE T.,-1
log L = — 5 log 27 — 3 ;1 log Pt|t71‘ ~3 ;1 &9 &, (3.26)

cf. Harvey (1989) chapter 3.

Kalman smoothing Kalman smoothing is the name for the reconstruction of
the full state sequence {F1,.., Fr} given the observations {Xj,.., Xr}. Smoothing
provides us with more accurate inference on the state variables since it uses more

information than the basic filter.

The Kalman smoother recursions for t =T, ..., 1, based on the efficient smoother
by de Jong & Mackinnon (1988), de Jong (1989) and used in Koopman & Shephard
(1992) are given by

Fyr = Fya+ BpaA” [Pfﬁfq] B &+ Pya L e (3.27)
= ﬁt|t_1 + Z5t|t_1rt,1 (alternatively) (3.28)

Byr = Pyt — Py Nooi Py (3.29)
p{T,T—1}|T = [ — KrA] ¢]3T—1|T—1 (3.30)
Pusnyr = (1 - Pt“_th_l) LirPrgjpot=T—1,..1  (3.31)

where

Tt—1 = AT |:p£§

—1
t|t71:| § + L:Tt, for1<t<Tandry =0

. -1
Ny = AT [ij_l} A+ L/N,Lfor1 <t<T and Ny =0

~ N -1
L = 6—KA=o¢- 6P AT [P, ] A

The complete data likelihood and the incomplete data likelihood Under

the Gaussian assumption including Fy ~ N (g, Py) and ignoring the constant, the
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complete data likelihood of equations (3.18)-(3.19) page 3.19 can be written as

2 Lry (©) = [P+ (Fo— i) By (Fo— o)
T

+T I [Q| + Y (F = ¢F 1) Q7' (Fy — ¢F, 1)
t=1
T

+TIn|R[+ ) (X, —AF)  RTY(X, - AF).  (3.32)
t=1

given that we can observe the states Fr = {Fy,.., Fr} as well as the observations
Xr = {Xi,..,Xr}. However, given Xy and some input of parameter estimates

(denoted ©U~Y) the conditional expectation of the complete data likelihood can be
written as

Q08 ) = E[-2lnLry(0)|Xr,00 V]

. . T
= In|Py| +tr {Pol {<F0|T — Mo) (FO\T — No) + P0|TH

+T - Q|+ tr [Q 7 {C — B¢" — ¢B” + ¢A¢"}]

+7 - 1In|R|
T

R Z { <Xt - AFtIT) (Xt - AFtT>T + APtTAT}

t=1

+tr

(3.33)

where the following moments can be calculated from the Kalman smoother above:

A= Zle Ft—l\TFtT—uT + pt—llT> B = 2:{:1 (Ft\TFtT—uT + p{t,t—1}|T>
¢ = ZtT:I Ft\TFﬂTT + pt|T> D= Zthl XtFt\TT
E= Zthl XltXtT

Given these smoothed moments the Maximization step results in the following

closed form estimators at iteration j
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vec (A(j)) = vec(DC™) (3.34)

RO = %(E—DClDT) (3.35)
vee (9U)) = vec (BA™Y) (3.36)
QU) = %[C_BAlBT} (3.37)

where F} is approximated by FHT = FE[F| Xr|. Xr = {X1, .., X1} denotes the full in-
formation set, ]5t|T = var (Fy| Xr) is the variance and p{t,t—1}|T = cov (Fy, F,_1| Xr)
is the lag-one covariance.

These estimates can then be used in the Expectation step to compute a new set
of moments from the Kalman smoother. Subsequently, these estimates are supplied

to the maximization step above and the procedure continues until convergence of
the likelihood.

Likelihood function

The maximum likelihood method of Chen & Scott (1993) for a Gaussian ATSM
with both macroeconomic variables and latent state variables is now presented and
follows closely Ang & Piazzesi (2003) although with somewhat more details here.

The measurement and state transition equation in (3.20)-(3.21) page 118 is repeated

1?]
_|_
Xt’u

below for convenience

XY
Y

0
A

I 0
B° B

0 0
0 B™

e ] (3.20)

(%

and

XO o (DOD (pou XO EOO EOU o
t — ILL + t—1 + gt (3 2 1)

where {p° 9} are K - p vectors with zeros except for the upper K; elements,

®°? is a K -p x K7 -p companion matrix representing the pth order lag polynomial,
3% 1is a Ky - p x K; - p matrix padded with zeros except for the upper left K; x K;
block and {®°“ 3"} are K; - p x K, matrices. For the latent variables {u*, i} are

K5 vectors and X" is a Ky x K5 matrix. Finally, also partition the K x 1 vector

140



01 in Definition 1 into 7 of dimension K; - p and §7 of dimension K5. The market
prices of risk load only on contemporaneous values of X; such that A\g has the same

structure as p and \; has the same structure as 2.

The parameters of interest implicit in the state space system above are 6 =
{80, 01, 11, D, %, Ao, A1} and need to be estimated using a maximum likelihood method
that involves the joint conditional density of (Y}, X?). However, this density is not
known but given the distributional assumptions about the measurement errors and
the multivariate normal distribution of the one-period ahead latent state variables
X;|X_ it is possible to apply a change-of-variable technique to relate the density
of (Y3, X7?) to the density of (X7, X}, v;) if X}* is known. Following the approach
by Chen & Scott (1993) the unobserved X;* are inverted from a subset of Y; by
assuming that K, yields are measured without error leaving N' — K> of the yields
to be measured with errors such that the measurement matrix B™ is padded with
zeros except for N — K, non-zero elements. The part of the measurement equation
in (3.1) that represents the yields in Y; is now partitioned into a part with K5 rows
that is measured without error (denoted by a bar) and a part with (N — K3) rows
that is measured with errors (denoted by a tilde)®! such that (3.20) can be written

in a reordered form as:

X? 0 I 0 0 Xy
Y, |=|A |+ | B° B* B™ X (3.38)
Y, A B° B* B™ vy

where the zero measurement errors of Y, implies that B™ contains only zeros and
B™y, = n, ~ N(0,H) where v, is K, x 1 and H is K, x K,. The latent state

variables can now be recovered as a function of the perfectly observed yields

Xy =[B"]"" (Y, — A— B°XY). (3.39)

Given the Jacobian J of the transformation from Y; to X}* :

I 0 0
J=| B> B* 0
B° B* B™

Y, is Ko x 1, Ais Ko x 1, B® is K x (K — K»), B" is Ky x K3, B™ is K3 x (N — K»), Y, is
(N —Ky) x1, Ais (N — Ks) x 1, B is (N — K3) x (K — K5), and B™ is (N — K3) x K,
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the joint conditional density of (Y;, X7) can be written as

o
|det ()]
1

- |det (J)| / (X;’Xtu’ml Xin Xity; \I’) f (m\ Me—1; ‘I’)

f (Y X0 X7 0, X7, T 1) f (X2 X0 0] XPy Xy T D)

where Z; contains lagged values of the conditioning variables. The second line
follows from the Markovian structure of the state variables, the definition of 1, and
the assumption that the measurement errors 7, are uninformative about the states
The joint likelihood £ (¥) is then given by

H , det F(X2 X0 ] XP X5 0) f (] g5 0)

and the log likelihood is then

log £(¥) = — (T —1)log(|det (J +Zlogf (X7, X3 me] Xo0, Xi50) +
t=2

T
Z log f (77t| Mi—15 \IJ)
t=2

= — (T —1)log (|det (J)|) — wlog(%) - (TQ_ 2 log (det (2))
% Z —u—®X, 1) QX - BX, )
_(T —1) ;N — K) log (27) — (T; D) log (det (H)) — %ZUIHlnt

A.5 Impulse responses and forecast error variance decom-

positions

Impulse response functions for the yields

The following self-contained presentation is closely related to Ang & Piazzesi (2003)
as they offer a quite pedagogical presentation of how the loadings on lagged state

variables load similarly on the moving-average coefficients of the state variables in
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the moving-average representation of the VAR in (3.1)%.

The VAR(1) companion form® of the VAR with p lags is rearranged into a
VAR(p) is rearranged as follows. The (K; - p + K3) x 1 state vector X; of current and

T T
lagged state variables X; = [ Xert Xxpt } with X? = [ ferorn e
and X} = [ ut ] is now split up in the yield equation in order detail how the IRF
are multiplied by the loading matrix. Consider the n-period yield

yt(n) = A, + B;Xt
= Au+Boff + .+ By i flya + By fi
= A, + B F+ ..+ BMLF

n,p—1
where

o
Bn,i

ou __
Ft =

ft ’ B g:d() =
It

o
ou \P—1 _ ft—i ouP-1
) Ft—z‘ i=1 [ 0 ] 7{Bn,i i=1

The VAR is now with p lags:

FP = ®g + OFFPY + ...+ F + U,

P

0 0 0 o
o= ! A= U=
0 Pu 0 0 ul

and where &, = 0, ®* is a K; x K; matrix corresponding to the observed state

where

variables and ®f is a K3 x K matrix corresponding to the unobserved state variables.
Finally, var (U) = Q which in turn is Cholesky decomposed into Q@ = PPT such
that U, = Pe;, with e; being iid.

The moving average representation MA (oo) of F* is then

F, = i VU = i HE
i=0 i=0

35However, the IRFs can be calculated equivalently as Y; = B;{ Zf; dly,_; where the practical
implementation involves a choice of the response period to analyze, i.e. letting ¢ run from 1 to say s
and then recursively calculate the expression above; cf. Canova (2007) chapter 4. Both approaches
were applied in this paper and it can be confirmed that both approaches give similar results.

36Recall that ® denotes the (Kj -p+ K3) x (K - p+ K2) companion matrix whereas ®’s with
the subscripts {®;}?_; refer to the VAR with p lags.
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where ¢, = P~1U, and ©, = ¥, P is found by the following recursion; cf. Liitkepohl
(2007):
GS:Z@S—jq)ja 821,2,...., @()ZP
j=1
The MA(c0) form of the n-period yield is then given by:

= A+ > Ve, (3.40)
=0

where

én) — BZ%T@Q
gn) — BZ%T@1+BOUT@0

n,1
= BMTO, + B0, + B 6

n,p—1

o = B0, 4+ B0, 5+ ..+ B6,

oM = BOTO, + B0, o+ ..+ B O 1y fori>(p—1)

n,1 n,p—1

Forecast error variance decompositions for the yields

Consider the jth component of the vector of yields Y; when there are K state
variables (K shocks). Furthermore, calculate the forecast error for a forecast horizon

of s periods using (3.40)
02— B[] = e+ v e o e

K
Z ¢1g7gekvt+5 + /4/}](67?1)616,15-{-8—1 + + @ZJ’(;’ls)i]_Bk;J_;'_l
k=1

The corresponding mean squared error is then
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]
vsE (52,) = 8| (- B [u2]) (2 - 5 [u2)]) |
K 2 2 2

()" () e ()]
k=

The contribution w,(cng of the kth factor to the MSE of the s-step ahead forecast
of the n-period yield is

1

2
s—1 n
S ol
L
ke (n)
MSE (yf),)

Notice, it would also be possible to treat the idiosyncratic noise (measurement

7

error) in the measurement equation®’. However, the fraction of the measurement

error in (FEVD) is negligible because of the very small measurement errors.

Forecast error variance decomposition for the excess bond returns

In the previous section I showed how to compute a forecast as of time ¢ of a future
n-period yield at time t + s and then evaluate the time ¢ mean squared error of
this forecast. In this section the future yield vy, is replaced by a future excess m-
period holding period return ngi)&t +m+s- Then the time ¢ mean squared error of this
forecast is constructed. The whole purpose of this exercise is to show how forecasts
of excess returns are influenced by shocks to the state variables at difference forecast

horizons.

The starting point is the m-period holding period return as of time ¢ in equation

(3.11) and (3.14) repeated below for convenience
T.ngl_m = An—m - An + Am + B;lr_th_i_m — BZXt + B;;Xt

m—1
T T E 7
= an7m + bnmet ‘l— Bn_m q) Ut+m_i
=0

37See Bork (2008) for this calculation.
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where

m—1

U = Bl > Ot Ay — A+ A,
=0

by = Bi_n,®"—B, +B,

Now, consider the same return but one period later, i.e. the excess holding period
return fromt+1tot+m+1:

rxgi)l,t-&-m-‘rl = Ay —Au+ Ap + BLtherH - BIXt+1 + BZLXtH

m—1
An,m + b;m (b + Xy + u1) + B, _,, Z D U ymi1—i
i=0
implying that the forecast error can be calculated as
m—1
T T ;
mﬁ)1,t+m+1 — E [Txgz)l,t-&-m—i-l] = bn,mut+1 +B,_,, Z D Uy mg1-i
=0

whereas the forecast error for the period ¢t + 2 to t +m + 2 is:

(n) (n) _ T T i
TTyy o pimye = B T imin| = Opm (PUep1 + usi2) + B, g DUy i

and generally for time t +stot+m+s
T‘Tgi)s,terJrs - Et [Tx§i)s,t+m+s:| = b;zrm Z (1) Utts—j + B —-m Z q) Ut t+m+s—i
7=0

Notice, that the first term relates to the uncertainty of all prices until the forecast
calculations starts whereas the second term relates to the uncertainty of the selling
price of the n —m period bond. The mean squared forecast error (MSFE) as of time

t of these forecasts up to horizon s is then simply

MSFE, <m:t+8t+m+8> Zb »I0 [7] nm+ZBT &' [@7] B,

Apply a Cholesky decomposition to €2 such that Q = ¥ and denote by the 1 x K
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vectors

gg}n - b;;mq)j 2
99 = B, &'y

which then allows us to rewrite the MSFE as

m—1
, T
MSFE, <7ﬁ$t+s t+m+s) Z §( nm ‘|‘ Z 19 [ ]
=0
In particular the contribution from the kth shock
s—1 A 9 m—1 9
MSFE; (Txl(fj-)s,t—&-m-l-s (k')> = [Q(mjznk} + [192) m k]

<
Il
=)
Il
<)

i

The contribution w,(f;m) of the kth factor to the MSFE of the s-step ahead forecast

of the m-period holding period excess return for a n-period bond is then:

s—=1 | (Jj 2
) Ej:o |:gnmk:| + Z [ n— mk]
MSFEt <Txt:l-)s,t+m+s>

(n—m
wk,s
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Table 3.1: Different sets of macroeconomic state variables and yield fit

Panel A: Filtered state variables (Xt|t) from large panel
dynamic factor analysis: Inflation and unemployment

’%—@’mwow—ﬁo

Maturity — y; — U

1m -0.0129 0.0743 0.7067
3m 0.0139 0.1256 1.0529
12m -0.0090 0.0825 0.5541
36m 0.0054 0.0615 0.3602
60m 0.0008 0.0558 0.3481

Panel B: Filtered state variables (Xt‘t) from large panel
dynamic factor analysis: Inflation and hours-in-production

Maturity — y; — U

’%—@’mMO%—%D

1m -0.0167 0.0734 0.6560
3m 0.0153 0.1309 1.1571
12m -0.0077 0.0907 0.5817
36m 0.0053 0.0624 0.3922
60m 0.0019 0.0618 0.3877

Panel C: Filtered state variables (Xt|t) from large panel
dynamic factor analysis: Inflation and economic activity

Maturity — y; — ¥ ’yt - ?Jt| max (|yt - Z)t|>
1m -0.0168 0.0727 0.6603
3m 0.0159 0.1281 1.2331
12m -0.0103 0.0828 0.6158
36m 0.0069 0.0631 0.4278
60m 0.0032 0.0579 0.4063

Panel D: Filtered state variables (Xt‘t) from large panel
dynamic factor analysis: Inflation and consumption

Maturity vy, — 9 |y — 9 max (|yt — gjt|>
Im -0.0138 0.0680 0.6790
3m 0.0114 0.1220 1.2992
12m -0.0069 0.0864 0.7109
36m 0.0058 0.0627 0.4267
60m 0.0027 0.0578 0.3865

The model specification follows the discussion of identification in 3.3.1 page 3.3.1 with K; = 2, p = 8 and Ko = 3.The
models are estimated by the Kalman filter. The column heading y: — 9+ means the average of fitting errors of the
yields measured in percentage points, |y+ — §¢| means average of the absolute value of the errors and max (\yt - gjt|)
means the maximum of the absolute value of the fitting errors.
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Table 3.2: Ang and Piazzesi like model

?.0001149**
0.00002
—0.0437*
— | —0.000435** _
1= (0.000010) Ao = (0.0041)
0.000312**
(0.000023)
0.9923** —0.0044
(0.0047) (0.0047)
Puv — 0.9712** U — 0.0543** . —0.2505**
(0.0077) 1 (0.0074) (0.0234)
—0.0452** 0.8267** —0.0507** 0.2421*
(0.0153) (0.0216) (0.0121) (0.0296)
(()6.00938020%)7 1.5244**  —0.0096
o = AP = (0.2421) (0.0930)
2.0839**  0.2000°
(26%%89092?** (0.2428) (0.1070)

Note:The remaining macroeconomic parameters are kept fixed.

Maturity y; — Uy |Z/t - ?Jt| max <|yt - ?)t|>

1m -0.0000  0.0000 0.0000
3m 0.0626  0.2132 1.7863
12m -0.0000  0.0000 0.0000
36m 0.0029  0.0883 0.6883
60m -0.0000  0.0000 0.0000

This model is based on the same specification and scaling as the model in Table 7 in Ang & Piazzesi (2003) and the
same data adjusted to the sample period in this paper. The model specification follows the discussion of identification
in Section 3.3.1 with K1 = 2,p = 12, K2 = 3 and is estimated by the Chen & Scott (1993) method described in
Appendix A.4. The column heading y; — ¢ means the average of the fitting errors of the yields measured in basis
points., |y: — 9| means the average of the absolute value of the errors and max (|yt — g}t|) means the maximum of the

absolute value of the fitting errors. Standard errors in parenthesis are calculated by the outer product of the gradient,
where the gradient is calculated numerically using two-sided finite difference calculations.
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Table 3.3: The preferred ATSM.

?.142%**
0.0319
. —0.0477**
0.5211**
(0.0173)
0.9949**
(0.0017) 0.0456™*
v s A - oo
B . o —0.1167** 0.2082** (.3138**
(909393)1 (()0%;14?62) (0.0157) (0.0290) (0.0240)
0.1578**
(0.0018) 0.2406**  —0.0695"*
o yoo _ | (00582) (0.0139)
i 1 —0.3346** —0.2332**
(0.0916) (0.0446)

0.1578

Note:The remaining macroeconomic parameters are kept fixed.

Maturity — y; — ¢ |yt - ?jt| max <|yt - ?)t|>

Im -0.0129 0.0743 0.7067
3m 0.0139  0.1256 1.0529
12m -0.0090  0.0825 0.5541
36m 0.0054  0.0615 0.3602
60m 0.0008  0.0558 0.3481

The model specification follows the discussion of identification in 3.3.1 page 3.3.1 with K; = 2,p = 8, K = 3 and is
estimated by the Kalman filter method. The column heading y; — ¢ means the average of fitting errors of the yields

measured in percentage points, |y: — §¢| means the average of the absolute value of the errors and max (\yt - g}t|)

means the maximum of the absolute value of the fitting errors. Standard errors in parenthesis are calculated by the
outer product of the gradient, where the gradient is calculated numerically using two-sided finite difference calculations.
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Figure 3.3: IRF for expected excess returns on bonds: The case of Xﬂt =
{inflation, unemployment} with p =8
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Figure 3.4: IRF for expected excess returns on bonds: The case of Xﬂt =
{inflation, hours-in-production} with p =8
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Figure 3.5: IRF for expected excess returns on bonds: The case of Xﬂt =

{inflation, economic activity} with p =8
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Figure 3.6: IRF for expected excess returns on bonds: The case of Xﬂt =
{inflation, consumption} with p =8
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Figure 3.7: IRF for expected excess returns on bonds: The Ang and
Piazzesi like model with p =8
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Figure 3.8: FEVD for the bond excess return:

{inflation, unemployment} with p =8
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Notes:

“latent state variable 3" is the third state variable (the so—called curvature factor).

“latent state variable 2" is the second state variable (the so—called slope factor.

"latent state variable 1" is the first state variable (the so—called level factor).

"obs. state variable 1" is the inflation state vector derived from dynamic factor analyis, while
"obs. state variable 2" is the unemployment state vector .

"HP" is the holding period.
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Figure 3.9: "Impulse response functions for 12, 36 and 60-month yields
following a one standard deviation shock to inflation and unemployment".
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A.1 Data description

Data are from Bernanke et al. (2005).
The second column is a mnemonic and a * indicates a "slow-moving" variable. Fourth

column contains transformation codes. "level" indicates an untransformed variable, say

z;. "In" means Inz; and "AlIn" means Inz; — Inx;_1.

Real output and income

1 IPP* 1959:01-2001:08 Aln Industrial production: products, total (1992=100,SA)

2 IPF* 1959:01-2001:08 Aln Industrial production: final products (1992=100,SA)

3 IPC* 1959:01-2001:08 Aln Industrial production: consumer goods (1992=100,SA)

4 IPCD* 1959:01-2001:08 Aln Industrial production: durable cons. goods (1992=100,SA)

5 IPCN* 1959:01-2001:08 Aln Industrial production: nondurable cons. goods (1992=100,SA)
6 IPE* 1959:01-2001:08 Aln Industrial production: business equipment (1992=100,SA)

7 IPT* 1959:01-2001:08 Aln Industrial production: intermediate products (1992=100,SA)

8 IPM* 1959:01-2001:08 Aln Industrial production: materials (1992=100,SA)

9 IPMD* 1959:01-2001:08 Aln Industrial production: durable goods materials (1992=100,SA)
10 IPMND* 1959:01-2001:08 Aln Industrial production: nondur. goods materials (1992=100,SA)
11 IPMFG* 1959:01-2001:08 Aln Industrial production: manufacturing (1992=100,SA)

12 IPD* 1959:01-2001:08 Aln Industrial production: durable manufacturing (1992=100,SA)
13 IPN* 1959:01-2001:08 Aln Industrial production: nondur. manufacturing (1992=100,SA)
14 IPMIN* 1959:01-2001:08 Aln Industrial production: mining (1992=100,SA)

15 IPUT* 1959:01-2001:08 Aln Industrial production: utilities (1992=100,SA)

16 P* 1959:01-2001:08 Aln Industrial production: total index (1992=100,SA)

17 IPXMCA* 1959:01-2001:08  level Capacity util rate: manufac., total (% of capacity,SA) (frb)

18 PMI* 1959:01-2001:08  level Purchasing managers’ index (SA)

19 PMP* 1959:01-2001:08  level NAPM production index (percent)

20 GMPYQ* 1959:01-2001:08 Aln Personal income (chained) (series #52) (bil 92$,SAAR)

21 GMYXPQ* 1959:01-2001:08 Aln Personal inc. less trans. payments (chained) (#51) (bil 92$,SAAR)
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(Un)employment and hours

22 LHEL* 1959:01-2001:08
23 LHELX* 1959:01-2001:08
24 LHEM* 1959:01-2001:08
25 LHNAG* 1959:01-2001:08
26 LHUR* 1959:01-2001:08
27 LHUG680* 1959:01-2001:08
28 LHU5* 1959:01-2001:08
29 LHU14* 1959:01-2001:08
30 LHU15* 1959:01-2001:08
31 LHU26* 1959:01-2001:08
32 LPNAG* 1959:01-2001:08
33 LP* 1959:01-2001:08
34 LPGD* 1959:01-2001:08
35 LPMI* 1959:01-2001:08
36 LPCC* 1959:01-2001:08
37 LPEM* 1959:01-2001:08
38 LPED* 1959:01-2001:08
39 LPEN* 1959:01-2001:08
40 LPSP* 1959:01-2001:08
41 LPTU* 1959:01-2001:08
42 LPT* 1959:01-2001:08
43 LPFR* 1959:01-2001:08
44 LPS* 1959:01-2001:08

45 LPGOV*
46 LPHRM*
47 LPMOSA*
48 PMEMP*

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Consumption
49 GMCQ* 1959:01-2001:08
50 GMCDQ*  1959:01-2001:08
51  GMCNQ*  1959:01-2001:08
52 GMCSQ* 1959:01-2001:08
53 GMCANQ*  1959:01-2001:08

Housing starts and sales

54 HSFR 1959:01-2001:08
55 HSNE 1959:01-2001:08
56 HSMW 1959:01-2001:08
57 HSSOU 1959:01-2001:08
58 HSWST 1959:01-2001:08
59 HSBR 1959:01-2001:08
60 HMOB 1959:01-2001:08

Aln
In

Aln
Aln
level
level
level
level
level
level
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
Aln
level
level
level

Aln
Aln
Aln
Aln
Aln

Index of help-wanted advertising in newspapers (1967=100;SA)
Employment: ratio; help-wanted ads: no. unemployed clf
Civilian labor force: employed, total (thous.,SA)

Civilian labor force: employed, nonag. industries (thous.,SA)
Unemployment rate: all workers, 16 years and over (%,SA)
Unemploy. by duration: average (mean) duration in weeks (SA)
Unemploy. by duration: pers unempl. less than 5 wks (thous.,SA)
Unemploy. by duration: pers unempl. 5 to 14 wks (thous.,SA)
Unemploy. by duration: pers unempl. 15 wks=(thous.,SA)
Unemploy. by duration: pers unempl. 15 to 26 wks (thous.,SA)
payrolls: total (thous.,SA)

total, private (thous.,SA)

goods-producing (thous.,SA)

Employees on nonag.
Employees on nonag. payrolls:
Employees on nonag. payrolls:

Employees on nonag. payrolls: mining (thous.,SA)

Employees on nonag. payrolls: contract construc. (thous.,SA)

Employees on nonag. payrolls: manufacturing (thous.,SA)
durable goods (thous.,SA)
nondurable goods (thous.,SA)
service-producing (thous.,SA)
trans. and public util. (thous.,SA)
wholesale and retail (thous.,SA)

finance, ins. and real est (thous.,SA)

Employees on nonag. payrolls:

Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:
Employees on nonag. payrolls:

Employees on nonag. payrolls: services (thous.,SA)

Employees on nonag. payrolls: government (thous.,SA)
Avg. weekly hrs. of production wkrs.: manufacturing (sa)
Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa)

NAPM employment index (percent)

Pers cons exp (chained)—total (bil 92$,SAAR)

Pers cons exp (chained)—tot. dur. (bil 963,SAAR)

Pers cons exp (chained)—mnondur. (bil 923,SAAR)

Pers cons exp (chained)—services (bil 92$,SAAR)
Personal cons expend (chained)—new cars (bil 96$,SAAR)

Housing starts: nonfarm (1947-1958); tot. (

Housing starts: northeast (thous.u.)s.a.
Housing starts: midwest (thous.u.)s.a.
south (thous.u.)s.a.

west (thous.u.)s.a.

Housing starts:
Housing starts:
Housing authorized: total new priv housing (thous.,SAAR)

Mobile homes: manufacturers’ shipments (thous. of units,SAAR)
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Real inventories, ordes and unfilled orders

61
62
63
64
65

MNV
PMNO
PMDEL
MOCMQ
MSONDQ

Stock prices

66
67
68
69
70
71
72

Foreign exchange

73
74
75
76

FSNCOM
FSPCOM
FSPIN
FSPCAP
FSPUT
FSDXP
FSPXE

EXRSW
EXRJAN
EXRUK
EXRCAN

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

rates

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Interest rates and spreads

7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

FYFF
FYGM3
FYGMG6
FYGT1
FYGT5
FYGT10
FYAAAC
FYBAAC
SFYGM3
SFYGM6
SFYGT1
SFYGT5
SFYGT10
SFYAAAC
SFYBAAC

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

level
level
level
Aln
Aln

Aln
Aln
Aln
Aln
Aln
level
level

Aln
Aln
Aln
Aln

level
level
level
level
level
level
level
level
level
level
level
level
level
level

level

NAPM inventories index (percent)

NAPM new orders index (percent)

NAPM vendor deliveries index (percent)

New orders (net)—consumer goods and materials, 1992 $ (bci)

New orders, nondefense capital goods, in 1992 $s (bci)

NYSE composite (12/31/65=>50)

S&P’s composite (1941-1943=10)

S&P’s industrials (1941-1943=10)

S&P’s capital goods (1941-1943=10)

S&P’s utilities (1941-1943=10)

S&P’s composite common stock: dividend yield (% per annum)
S&P’s composite common stock: price-earnings ratio (%,NSA)

Foreign exchange rate: Switzerland (swiss franc per USS$)
Foreign exchange rate: Japan (yen per USS$)
Foreign exchange rate: United Kingdom (cents per pound)

Foreign exchange rate: Canada (canadian $ per US$)

Interest rate: federal funds (effective) (% per annum,nsa)
Interest rate: US T-bill,sec mkt,3-mo. (% per ann,nsa)
Interest rate: US T-bill;sec mkt,6-mo.

Interest rate: UST const matur., 1-yr

(% per ann,nsa)
. (% per ann,nsa)
Interest rate: UST const matur., 5-yr. (% per ann,nsa)
Interest rate: UST const matur., 10-yr. (% per ann,nsa)
Bond yield: Moody’s AAA corporate (% per annum)
Bond yield: Moody’s Baa corporate (% per annum)
Spread fygM3—fyff
Spread fygm6—fyff
Spread fygtl—fyff
Spread fygts—fyff
Spread fygt10—fyff
Spread fyaaac—fyff
Spread fybaac—{fyff
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Money and credit quantity aggregates

92
93
94
95
96
97
98
99
100
101

FM1
FM2

FM3
FM2DQ
FMFBA
FMRRA
FMRNBA
FCLNQ
FCLBMC
CCINRV

Price indexes

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

PMCP
PWFSA*
PWFCSA*
PWIMSA*
PWCMSA*
PSM99Q*
PUNEW*
PU83*
PU84*
PU85*
PUCH
PUCD*
PUS*
PUXF*
PUXHS*
PUXM*

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08
1959:01-2001:08

Average hourly earnings

118 LEHCC*
119 LEHM*
Miscellaneous

120 HHSNTN
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NAPM commodity prices index (%)
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Avg hr earnings of prod wkrs: manufacturing ($,SA)

U. of Mich. index of consumer
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Summary

English summary

The policy makers at the Federal Reserve Bank and the bond market participants
have one thing in common: They have an abundant amount of information at their
disposal, and as such the information set on which they condition the interest rate
setting, and bond pricing respectively, is large. Consequently, a recurrent theme
of this thesis is the approximation of the large information sets by a large panel
of macroeconomic and financial time series. In particular, this thesis advances the
use of dynamic factors, to approximate the conditioning information set in both
monetary policy analysis and in bond pricing. By construction, only a few of these
factors are able to summarize the bulk of the information of potentially hundreds of

observed time series.

Chapter 1:

Central banks monitor literally hundreds of economic variables in the process of
policy formulation as expressed by Federal Reserve Board chairman Ben Bernanke
and his co-authors in Bernanke et al. (2005). Classical multivariate regression mod-
els generally perform poorly in fitting such large cross-sections of time series (aka.
large panels). However, in recent years econometric estimation techniques have been
developed which allow these large panels to be analyzed through a small set of un-
derlying extracted dynamic factors. These Dynamic Factor Models (DFM) and the
related Factor-Augmented Vector Autoregressive models (FAVAR) are typically esti-

mated by principal component methods or by Bayesian methods as in Bernanke et al.
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(2005). The methodological contribution of this chapter is a one-step fully paramet-
ric estimation of the FAVAR by means of the EM algorithm as an alternative to the
two-step principal component method and the one-step Bayesian methods. In the
empirical section of this chapter I analyze a cross-section of 120 US macroeconomic
and financial time series and find that the comovement of these time series over
time is shown to be adequately described in terms of eight dynamic latent driving
forces (dynamic factors) and the US federal funds rate. Subsequently, I study the
dynamic response of a set of key economic variables following a shock to the federal
funds rate. Finally, I demonstrate empirically that the same dynamic responses but
better statistical fit emerge robustly from a low order FAVAR with eight correlated
factors compared to a high order FAVAR with fewer correlated factors, for instance
four factors. In other words, I find empirical evidence that the information in com-
plicated factor dynamics (high order FAVAR) as in Bernanke et al. (2005) may be
substituted by panel information and a low order FAVAR.

Chapter 2:

The second chapter is written jointly with Hans Dewachter and Romain Houssa.

The starting point is the Factor-Augmented Vector Autoregressive model (FAVAR)
entertained in chapter one. We focus on the economic interpretation of the latent
(unobserved) factors that typically emerge from both DFMs and FAVARs. A stan-
dard procedure in the literature amounts to inferring the economic meaning of the
factors from the dominant factor loadings, i.e. from the observed variables in the
panel that are mostly related to the particular factor. However, this approach does
not necessarily generate unambiguous and well-defined interpretations of the factors.
In this paper we address the ambiguous economic interpretation of the exactly iden-
tified dynamic factors by using a procedure that imposes a specific and well-defined
interpretation of the factors. The economic interpretation of the extracted factors
is based on a set of overidentifying restrictions on the factor loadings. This model
is still a Factor-Augmented Vector Autoregression, but it is now subject to linear
loading restrictions. We apply this framework to the same panel of US macroeco-
nomic series as in the first chapter of this thesis. In particular, we identify nine
macroeconomic factors and discuss the economic impact of monetary policy shocks.
We find that the results are theoretically plausible and in line with other findings in

the literature.
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Chapter 3:

The bond market is monitoring an abundant amount of information in its as-
sessment of the state of the economy and its implications for bond pricing and bond
risk premia. In this chapter, I propose to imitate the potential large information set
and solve the bond markets filtering problem by a dynamic factor analysis of the
large panel of macroeconomic and financial time series used in the former chapters.
The identification approach proposed in chapter two allow me to estimate a few
dynamic factors with a clear macroeconomic interpretation. Subsequently, these
dynamic factors represent the macroeconomic state variables in a discrete-time dy-
namic term structure model that allows me to calculate model-implied bond prices,
bond yields and even bond risk premia (excess returns). The focus is on potential
macroeconomic sources of variation in expected excess returns on bonds. The dy-
namic responses of the model-implied expected excess return reveal that an inflation
factor and an unemployment factor are the most important among five candidate
macroeconomic factors. A one standard deviation shock to unemployment initially
raises the expected excess return by 17 basis points on an annually basis for a five-
year bond held for one year. The intuition is clear: risk premia are time-varying
and counter-cyclical. Hence, in business cycle troughs we see rising unemployment

and investors are demanding a higher risk premium to buy risky assets.
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Dansk resumé

Den amerikanske nationalbank (centralbank) og det amerikanske obligations-
marked har én ting til feelles: De overvager og har adgang til en meget stor meengde
information. Baseret pa denne rigelige information fastsatter begge parter hen-
holdsvis den officielle rentesats og forskellige obligationspriser. Disse kendsgerninger
har motiveret det gennemgaende tema i afhandlingen, hvor denne rigelige maengde
af information approksimeres med et stort panel af makrogkonomiske og finansielle
data. Specifikt videreudvikles nogle af de gkonometriske teknikker, som i de senere ar
er udviklet til at kunne handtere store panel datasaet, saledes at rigelig information
kan indarbejdes i empirisk pengepolitisk analyse samt i empirisk obligationsprisfast-

saettelse.

Kapitel 1:

Centralbanker overvager bogstaveligt talt hundredvis af gkonomiske tidsserier
med henblik pa at basere den pengepolitiske rentefastsattelse pa sa megen kval-
ificeret information som muligt. Sadan har den nuveerende amerikanske central-
bankchef Ben Bernanke og hans medforfattere udtalt i en indflydelsesrig vidensk-
abelig artikel; jfr. Bernanke et al. (2005). Den klassiske multivariate regressions-
analyse er ikke specielt velegnet til at beskrive store panel dataszet (store i tidsserie-
dimensionen og i krydssektionen). I de senere ar, er der dog sket store fremskridt i
udviklingen af gkonometriske teknikker, den sakaldte dynamiske faktoranalyse eller
den besleegtede faktor-udvidede vektor autoregressive model (FAVAR). Med den
dynamiske faktoranalyse er det muligt at beskrive disse store panel datasset med
nogle fa underliggende latente dynamiske faktorer. Hidtil er disse modeller typisk
estimeret ved principal komponentmetoden eller ved hjelp af Bayesianske teknikker,
jfr. Bernanke et al. (2005).

Dette kapitel bidrager til litteraturen ved at beskrive og anvende en alternativ
fuldt parametrisk, iterativ maksimum likelihood metode, til at estimere den faktor-
udvidede vektor autoregressive model ved hjzlp af EM algoritmen. I den empiriske
analyse i kapitlet, analyserer jeg et stort panel datasset bestaende af 120 amerikanske
tidsserier af makrogkonomisk og finansiel karakter. Jeg finder, at samvariationen
over tid for disse mange tidsserier kan beskrives tilfredsstillende, ved hjelp af otte

dynamiske latente faktorer (drivkreefter). Derefter analyserer jeg den dynamiske
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respons af en raekke gkonomiske ngglevariable, som fglge af et pengepolitisk sted
dvs. som fglge af en pengepolitisk overraskende renteforhgjelse. Slutteligt demon-
strerer jeg, at den samme dynamiske respons, men et markant bedre statistisk fit,
kan opnéas ved at bruge flere dynamiske faktorer med sparsom dynamisk komplek-
sitet sammenlignet med feerre faktorer med vaesentlig mere kompliceret dynamisk
kompleksitet. FAVAR modellen i Bernanke et al. (2005) er netop karakteriseret ved

en vaesentlige mere kompliceret faktordynamik.

Kapitel 2: .
Dette kapitel er skrevet i samarbejde med Hans Dewachter og Romain Houssa.

Udgangspunktet er den faktor-udvidede vektor autoregressive model (FAVAR)
fra kapitel 1. I dette kapitel fokuserer vi pa den gkonomiske fortolkning af de latente
(uobserverede) dynamiske faktorer, som fglger af den dynamiske faktoranalyse eller
FAVAR modellerne. Typisk for litteraturen udleder man den gkonomiske fortolkning
af de uobserverede faktorer ved at betragte de mest betydningsfulde faktorveegte
(factor loadings pa engelsk). Denne tilgang udelukker dog mindre dominerende
faktorvaegte og under alle omstaendigheder, er det ikke muligt at opna utvetydige og

veldefinerede fortolkninger af faktorerne ved denne tilgang.

I dette kapitel adresserer vi dette problem, ved at palsegge overidentificerende
restriktioner pa faktorvaegtene, saledes en utvetydig og veldefineret fortolkning af
faktorerne bliver mulig. I den empiriske analyse betragter vi igen det amerikanske
datasaet anvendt i kapitel 1. Vi estimerer ni gkonomisk fortolkbare faktorer fra
et datarigeligt miljo og anvender disse i en pengepolitisk analyse. Resultaterne er

teoretisk plausible og i overensstemmelse med andre resultater i litteraturen.

Kapitel 3:

Obligationsmarkedet overvager og reagerer pa en stor meengde tilgaengelig in-
formation i dets bestraebelser pa at vurdere (filtrere) den gkonomiske tilstand i
gkonomien, hvilket har indflydelse pa obligationskurserne og risikopraemierne. I
dette kapitel foreslar jeg, at imitere den store informationsmaengde og lgse obliga-
tionsmarkedets filtreringsproblem ved hjeelp af dynamisk faktoranalyse af et stort

amerikansk datasaet; jfr. ovenfor. Faktoranalysen bidrager med nogle makrogkonomiske
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tilstandsvariable, udledt fra et datarigeligt miljg, og disse tilstandsvariable (faktorer)
repraesenterer den underliggende udvikling i gkonomiske ngglevariable, eksempelvis
den underliggende inflation. Disse tilstandsvariable anvendes efterfolgende i en
dynamisk rentestrukturmodel i diskret tid, som muligggr beregning af teoretiske

nulkuponobligationskurser, nulkuponrenter, og endog obligationsrisikopreemier.

I den empiriske analyse fokuserer jeg pa potentielle makrogkonomiske arsager til
variation i obligationsrisikopreemier. Jeg finder, at den dynamiske respons af obliga-
tionsrisikopraemier som folger af stgd til eksempelvis den underliggende inflation eller
arbejdslgsheden, udggr de vaesentligste kilder bag variationen. Et positivt stgd pa 1
standardafvigelse til arbejdslgsheden indebaerer en modelimpliceret stigning i obliga-
tionsrisikopraemien pa 17 basispunkter p.a. for en feméarig nulkuponobligation med
en investeringshorisont pa 1 ar. Intuitionen er, at risikopreemier generelt er tidsvari-
erende og procykliske i konjunkturmaessig forstand. Derfor ser vi, at investorerne
i konjunkturmaessige lavpunkter, repraesenteret ved eksempelvis hgj arbejdslgshed,

kraever et store risikopraemier for at kgbe risikobetonede finansielle aktiver.
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