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Introduction to the thesis

This thesis is positioned in the research area represented by the intersection of

macroeconomics, monetary policy and the �nancial markets. The thesis consists

of three chapters, which make empirical and methodological contributions to the

�eld of empirical monetary policy analysis and dynamic macro-�nance models of

the yield curve.

On a non-technical level, I propose an econometric model to evaluate empirically,

how a surprise change in the US monetary policy instrument (the short-term interest

rate) a¤ects a large set of key macroeconomic variables. This enables us to assess the

typical macroeconomic outcome, following an unexpected change in the monetary

policy instrument.

In the above monetary policy analysis, I do not analyze potential determinants

of the interest-rate setting by the central bank. This would require the monetary

policy instrument to be expressed as a function of relevant macroeconomic variables;

a so-called policy rule. However, questions of what should be and appears to be the

economic determinants of the monetary policy rate have been discussed in a large

volume of papers. In a widely cited paper, Taylor (1993) estimates a particular

simple policy rule, which can be characterized as a "lean against the wind" policy.

Intuitively, the central bank increases the interest rate if economic activity expands

beyond its natural or potential level, or if in�ation exceeds some desired rate of

in�ation, or both. Accordingly, measures of in�ation and economic activity should

be included in the set of candidate explanatory variables for the short-term interest
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rate.

The short-term interest rate is a crucial component in modern no-arbitrage yield

curve models; aka dynamic term structure models. However, until recently macro-

economic determinants of the short-term interest rate have been largely absent in

standard dynamic term structure models. As such, these models do not re�ect

how central banks implement their monetary policy. Consequently, I propose to de-

scribe the bond market behavior, in terms of bond pricing, by an econometric model

that includes macroeconomic determinants of the bond yields. This model is then

evaluated in terms of how surprises to the included macroeconomic determinants

(variables) a¤ect the yield curve.

The policy makers at the Federal Reserve Bank and the bond market participants

have one thing in common: They have an abundant amount of information at their

disposal, and as such the information set on which they condition the interest rate

setting, and bond pricing respectively, is large. Consequently, a recurrent theme

of this thesis is the approximation of the large information sets by a large panel

of macroeconomic and �nancial time series. In particular, this thesis advances the

use of dynamic factors, to approximate the conditioning information set in both

monetary policy analysis and in an a¢ ne macro-�nance model of the term structure.

By construction, only a few of these factors are able to summarize the bulk of the

information of potentially hundreds of observed time series.

In the �rst chapter entitled "Estimating US Monetary Policy Shocks Using a

Factor-Augmented Vector Autoregression: An EM algorithm Approach" the economy-

wide e¤ects of shocks to the US monetary policy instrument (the federal funds rate)

are estimated using an iterative maximum likelihood estimation method. The data

description of the US economy is con�ned to a large cross-section of 120 macro-

economic and �nancial time series and the comovement of these time series over

time is shown to be adequately described in terms of a few dynamic latent driving

forces (dynamic factors) and the US federal funds rate. Technically, the 120 time

series constitute the measured part in a state space system. The state transition

part of this system contains the dynamics of the driving forces and is represented

as a vector autoregression of the federal funds rate augmented by a few dynamic

factors extracted from the large cross-section of time series. The complete state

space system in turn allows for an empirical study of the response of each of the

120 observed variables following a shock to the federal funds rate. The methodolog-
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ical contribution of this chapter is the one-step fully parametric estimation of the

Factor-Augmented VAR (FAVAR) by means of the EM algorithm as an alternative

to the two-step principal component method and the one-step Bayesian method in

Bernanke et al. (2005). I demonstrate empirically that the same impulse responses

but better �t emerge robustly from a low order FAVAR with eight correlated factors

compared to a high order FAVAR with fewer correlated factors, for instance four

factors. This empirical result accords with one of the theoretical results from Bai &

Ng (2007) in which it is shown that the information in complicated factor dynamics

may be substituted by panel information

The dynamic factors estimated in the �rst chapter capture reasonably well the

observed time series associated with the most dominant loading on the particular

factor. A standard procedure in the literature amounts to inferring the economic

interpretation of a particular dynamic factor from the dominant factor loading.

However, this approach neglects the non-dominant (but possibly signi�cant) loadings

and hence does not generate unambiguous and well-de�ned interpretations of the

factors.

The second chapter "Identi�cation of Macroeconomic Factors in Large Panels"

is written jointly with Hans Dewachter and Romain Houssa. In this paper we

address the ambiguous economic interpretation of the exactly identi�ed dynamic

factors by using a procedure that imposes a speci�c and well-de�ned interpreta-

tion of the factors. The economic interpretation of the extracted factors is based

on a set of overidentifying restrictions on the factor loadings. This model is still

a Factor-Augmented Vector Autoregression, but it is now subject to linear loading

restrictions. However, we show how the estimator for the loadings subject to linear

restrictions can be stated in closed form within the EM algorithm. We apply this

framework to the same panel of US macroeconomic series as in the �rst chapter of

this thesis. In particular, we identify nine macroeconomic factors and discuss the

economic impact of monetary policy shocks. We �nd that the results are theoreti-

cally plausible and in line with other �ndings in the literature.

In the third chapter entitled "A multifactor A¢ ne Term Structure Model with

Macroeconomic Factors from Large Panels" I approximate the potentially large in-

formation set of the bond market by the large panel of macroeconomic and �nancial

time series used in the former chapters. The main motivation for the use of an

expanded information set is the fact that the �nancial markets monitor and respond

xi



to a large set of macroeconomic variables in the process of �ltering the underlying

development in key macroeconomic variables. I propose to solve the bond mar-

ket�s �ltering problem by a large panel dynamic factor analysis to derive a small

set of macroeconomic state variables. In fact, these macroeconomic state variables

are a subset of the well-de�ned macroeconomic factors derived in chapter 2. A

discrete-time dynamic term structure model is then augmented with these �ltered

macroeconomic state variables. The focus in the chapter is primarily on bond risk

premia and a forecast error variance decomposition shows that shocks to in�ation

and in particular unemployment are important for the risk premia on long-term

bonds.
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Abstract*

Economy-wide e¤ects of shocks to the US federal funds rate are estimated in a

state space model with 120 US macroeconomic and �nancial time series driven by

the dynamics of the federal funds rate and a few dynamic factors. This state space

system is denoted a factor-augmented VAR (FAVAR) by Bernanke et al. (2005). I

estimate the FAVAR by the fully parametric one-step EM algorithm as an alterna-

tive to the two-step principal component method and the one-step Bayesian method

in Bernanke et al. (2005). The EM algorithm which is an iterative maximum likeli-

hood method estimates all the parameters and the dynamic factors simultaneously

and allows for classical inference. I demonstrate empirically that the same impulse

responses but better �t emerge robustly from a low order FAVAR with eight cor-

related factors compared to a high order FAVAR with fewer correlated factors, for

instance four factors. This empirical result accords with one of the theoretical re-

sults from Bai & Ng (2007) in which it is shown that the information in complicated

factor dynamics may be substituted by panel information.

JEL classi�cations: E3, E43, E51, E52, C33.
Keywords: Monetary policy, large cross-sections, factor-augmented vector autore-
gression, EM algorithm, state space.

*I thank Tom Engsted and Stig Vinther Møller for helpful comments. Any remaining errors are

my own.
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1.1 Introduction

This paper estimates the "economy-wide" response to shocks to the US federal funds

rate using an iterative maximum likelihood estimation method. The data descrip-

tion of the US economy is con�ned to a large cross-section of 120 macroeconomic

and �nancial time series and the comovement of these time series over time is shown

to be adequately described in terms of a few dynamic latent driving forces (dynamic

factors) and the US federal funds rate. Technically, the 120 time series constitute

the measured part in a state space system. The state transition part of this system

contains the dynamics of the driving forces and is represented as a vector autore-

gression of the federal funds rate augmented by a few dynamic factors extracted

from the large cross-section of time series. The complete state space system in turn

allows for an empirical study of the response of each of the 120 observed variables

following a shock to the federal funds rate.

This setup is what Bernanke et al. (2005) denote a factor-augmented vector

autoregressive (FAVAR) approach and this paper is closely related to both their

approach and the data used. While Bernanke et al. (2005) estimate their FAVAR

using both a two-step semi-parametric principal component method and a one-step

Bayesian likelihood method, this paper contributes to the literature by estimating

the FAVAR by a one-step fully parametric iterative maximum likelihood method, the

Expectation Maximization (EM) algorithm. In fact, several of the future research

issues that Bernanke et al. (2005) address in their conclusion are cited below and

discussed in this paper:

"Future work should investigate more fully the properties of FAVARs, alternative

estimation methods and alternative identi�cation schemes. In particular, further

comparison of the estimation methods based on principal components and on Gibbs

sampling is likely to be worthwhile. Another interesting direction is to try to interpret

the estimated factors more explicitly". Bernanke et al. (2005) page 415, §3.

Speci�cally, the issue of alternative estimation methods is adressed by the above-

mentioned EM algorithm and the issue of alternative identi�cation schemes is ad-

dressed by allowing for correlated dynamic factors in contrast to the typical ap-

plication of uncorrelated dynamic factors1. Finally, a thorough investigation of the

1The issue of interpretation of the estimated factors is addressed in Bork et al. (2008) in which
the EM algorithm is also applied.
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properties of the FAVARs is undertaken by estimating a large number of econometric

speci�cations of FAVARs and subsequently evaluating these in terms of statistical

�t, speci�cation tests, and implications for monetary policy analysis. Consider each

of these three contributions in turn.

Similar to the one-step Bayesian method, the EM algorithm estimates all the

parameters and the dynamic factors simultaneously in contrast to the two-step

principal component method. The last-mentioned method extracts the factors non-

parametrically from the data without imposing any dynamic properties on the fac-

tors in the �rst step. The second step estimates the dynamic properties of the factors

through a vector autoregression treating the factors as observed2. One complication

in the principal component method is how to separate the observed federal funds

rate from the latent factors in the extraction of these factors, which in contrast is

handled in a straightforward manner in the one-step method. However, the advan-

tage of the principal component method is its computational simplicity. Finally,

the fully parametric likelihood approach of the EM algorithm allows for classical

inference.

The alternative identi�cation scheme allows the factors to be correlated, which

is relevant if macroeconomic interpretation is to be attached to these latent factors.

For instance, if the �rst factor is interpreted as an industrial production factor and

the second is interpreted as an unemployment factor, then we would expect these

factors to be negatively correlated. The correlated factor approach in this paper

allows for this feature.

Finally, the robustness of the preferred econometric model is evaluated against

several model speci�cations in terms of the number of factors included in the FAVAR

and the number of lags of these factors using various information criteria. Specif-

ically, careful model selection leads to a preferred model characterized by eight

factors with a particular parsimonious factor dynamics. This model yields an eleven

percentage point better �t of the panel and reaches the same conclusions from the

empirical monetary policy analysis as the benchmark model with four factors but

a complicated VAR(13) factor dynamics. This �nding accords with one of the the-

oretical results from Bai & Ng (2007) in which it is shown that complicated factor

dynamics may be substituted by panel information (in terms of more factors). The

2The di¤erence between the estimated factors and the true factors vanishes as the cross-section
dimension and the time series dimension approach in�nity, cf. Bai & Ng (2002).
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eight correlated factors are found to be closely related to observed variables; for

instance, the �rst and most important latent factor is interpreted as an industrial

production factor, the second as an unemployment factor, the third as a NAPM3

factor, and so on.

Factor models have a long tradition in applied economics, �nance, and other

sciences and hence only a few observations may be needed to motivate why we

should continue to be interested in variants of factor models.

Firstly, factor models enable a reduction in the number of explanatory variables

(factors) when the variation of a cross-section of variables can be decomposed into a

low-dimensional common component re�ecting the common sources of variation and

a variable speci�c idiosyncratic component; cf. Ross (1976), Chamberlain (1983),

Chamberlain & Rothschild (1983) and Geweke & Zhou (1996) for cross-section ap-

plications within �nance. Macroeconomic variables tend to comove over the business

cycle and therefore their common variation over time may be explained by a few

dynamic factor(s); cf. Geweke (1977), Sargent & Sims (1977) and Geweke & Single-

ton (1981) for the �rst generation of the dynamic factor (index) models estimated

by spectral density maximum likelihood methods. Engle & Watson (1981) propose

a time domain maximum likelihood method and Watson & Engle (1983) and Quah

& Sargent (1993) apply the Expectation Maximization (EM) algorithm introduced

by Dempster et al. (1977).

Secondly, large cross-sections of time series are nowadays available to researchers

and policy makers, including central bankers that "follow literally hundreds of data

series", as expressed by Bernanke et al. (2005). The potential gains of using large

information sets are more precise forecasts and a better understanding of the dy-

namics of the economy. In the context of the FAVAR, a much richer information

set is utilized in the econometric model than in the standard vector autoregressive

(VAR) model, leaving less scope for the omitted variable problem. Moreover, be-

cause macroeconomic data are prone to measurement errors4, dynamic factor analy-

sis of large panels may help to �lter out the observed counterpart of a theoretical

variable, like "in�ation", which may not be well represented by a single observed

time series.

Recently, a considerable amount of research has been devoted to the econometric

3Related to surveys by National Association of Purchasing Management.
4Sargent (1989) shows how the existence of measurement error leads to a dynamic factor index

model.
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theory and empirical analysis of large dimensional approximate5 dynamic factor

models, notably the generalized dynamic factor model by Forni et al. (2000, 2004,

2005) and the static representation of the dynamic factor model by Stock & Watson

(2002a,b). Both approaches allow for a general error structure and facilitate dynamic

factor analysis of large panels through a few dynamic factors that are extracted from

the panelX using non-parametric dynamic and static principal component methods,

respectively6. A vector autoregression of the factors may be considered as a second

step treating the factors as observed if one is interested in structural VAR analysis;

see for instance Stock & Watson (2005).

Note at this stage that in the FAVAR of Bernanke et al. (2005), the common

variation of the panel dataset is not limited to being explained by a set of latent

dynamic factors, as in the Stock & Watson model, but also observed variables (the

federal funds rate) may enter into this set and accordingly interact dynamically with

the factors.

Econometric theory of the determination of the number of factors has recently

been developed, notably by Hallin & Liska (2007), Stock & Watson (2005) and Bai

& Ng (2007) for the Forni, Hallin, Lippi & Reichlin class of models and by Bai & Ng

(2002) for the class of dynamic factor models in the static representation. Including

more factors in the factor model increases the statistical �t of the panel but at the

cost of parsimony, whereas choosing too few factors means that the factor space

is not su¢ ciently spanned by the estimated factors. The papers propose various

information criteria to guide us in the selection of the number of factors but they

do not provide information about the number of lags in the VAR. Consequently,

the model selection problem in this paper is solved using the above-mentioned in-

formation criteria, and for a given number of factors, also the standard Akaike and

Schwartz information criteria.

Since the initial work of Forni, Hallin, Lippi & Reichlin and Stock &Watson, dy-

namic factor models have been used in an increasing number of applications7 starting
5In the �rst generation exact factor models like Ross (1976) or Geweke (1977), Sargent & Sims

(1977) and Geweke & Singleton (1981), the idiosyncratic components are orthogonal. However, the
approximate factor models allow for some "local" correlation among the idiosyncratic components.

6Stock & Watson (2002a) show that the space spanned by the true number of factors, F; can be
consistently estimated by the non-parametric principal component method when the cross-section
dimension (N) and the time dimension (T ) of the panel are large and the number of principal
components is at least as large as the true number of factors.

7A detailed account of empirical applications can be found in Reichlin (2003) and Breitung &
Eickmeier (2006).
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with the construction of coincident indicator indices as in Forni et al. (2001), fore-

casting where dynamic factors enter the forecasting equation, cf. Stock & Watson

(2002a,b, 2006), and very recently nowcasting as in Giannone et al. (2008) where

dynamic factor analysis of large panels is used to assess the current-quarter eco-

nomic conditions. The use of dynamic factors in �nancial asset pricing applications

includes the estimation of the conditional risk-return relation in Ludvigson & Ng

(2007) and bond market applications by Mönch (2008) and Ludvigson & Ng (2008).

Finally, a number of papers to which this paper is particularly related adopt the

factor approach for monetary policy analyses with at least two advantages over the

traditional VAR.

Firstly, the curse of dimensionality in the VAR is turned into a "blessing" of

dimensionality in the factor models as expressed by Stock & Watson (2006) which is

particularly useful for representing the data-rich environment in which central banks

and professional forecasters actually operate.

Secondly, to assess the current and expected future state of the economy in pol-

icy decision making, the central banks are faced with a variety of data in di¤erent

frequencies, with missing observations and in a preliminary or revised form. There-

fore, it can be argued that empirical policy analysis researchers should look at the

real-time data that the central bank had at its disposal instead of the revised data

and this can be achieved by the dynamic factor model, cf. the approach by Giannone

et al. (2008).

Giannone et al. (2004) perform a real-time monetary policy study and �nd that

the US economy is driven by two stochastic shocks (real and nominal) which im-

plies that the federal funds rate should mainly track these two shocks, they argue.

Bernanke & Boivin (2003) also consider a real-time dataset in addition to a larger

cross-section of revised time series. They �nd that the scope of the dataset (the

number of variables in the cross-section, N) is more important for the forecasting

performance of expected in�ation and real activity in the forward-looking Taylor

rule than the real-time feature. In a similar setup, Favero et al. (2005) study a

revised cross-section of US and Euro area data. Common for these studies is the es-

timation of the factors by principal component methods which are then included in a

low-order VAR in the second step to allow for impulse response analysis of monetary

policy shocks and these responses are found to be more in line with the predictions

from theory. However, a critical step in the empirical monetary policy analysis is a

proper disentanglement of the federal funds rate from the estimated factors and the
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paper by Bernanke et al. (2005) is particularly clear about this identi�cation issue.

As an alternative to the two-step principal component estimation method, one-

step Bayesian estimation techniques are applied in Bernanke et al. (2005) as well as in

Banbura et al. (2008). The former choose thirteen lags in their FAVAR speci�cation

while the latter also estimate this variant in addition to lag speci�cations deter-

mined by the BIC criterion. The fully parametric one-step EM algorithm method

has recently been applied to large panels in Jungbacker & Koopman (2008) that

estimate a dynamic factor model with a VAR(1) in the orthogonal factors and in

Reis & Watson (2008) that estimate pure in�ation with a VAR(4) in absolute-price

and relative-price components.

Based on this selective literature overview there seems to be a need for exploring

the consequences of model selection for not only policy evaluation but also in terms

of statistical signi�cance of parameters and statistical �t of the various components

in the economy such as in�ation, employment, production etc. This issue is taken

up in this paper and consequently several model speci�cations ranging from a few

correlated factors with only one lag to many correlated factors with rich factor dy-

namics are estimated in an EM algorithm setup. I show how identifying restrictions

can easily be imposed on the parameters including restrictions on the VAR para-

meters, if needed. This is in contrast to the Bayesian approach where these kinds

of restrictions seemingly lead to excessive computational cost, cf. Bernanke et al.

(2005).

Furthermore, though the EM algorithm �nds the vicinity of the maximum quickly,

the convergence to the maximum is almost excruciatingly slow (linear convergence

rate) and consequently hybrid methods combining the EM algorithm and the BFGS

have been proposed in the literature. Therefore, I also apply the hybrid EM-BFGS

as described by Jungbacker & Koopman (2008) in order to speed up the convergence.

The rest of the paper is organized as follows. The factor-augmented VAR is

presented in section 1.2 while identi�cation issues and the estimation method are

presented in section 1.3. Section 1.4 details the empirical results and section 1.5

concludes. The appendices contain details on the Kalman �lter and smoother as

well as the EM algorithm.
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1.2 Model framework: The factor-augmented VAR

Two ingredients need to be combined to set up the FAVAR. The �rst ingredient

is the dynamic factor model and the second ingredient is the standard VAR with

observed variables. Before mixing the ingredients, one thing is important to note:

the federal funds rate (FFR) is both part of the observed variables in the panel (the

measured part of the state space system) and also part of the state variables (the

state transition equation in the state space system) which include the dynamic latent

factors. Therefore, to allow for this feature the standard dynamic factor model is

modi�ed and this is described in detail below.

This section will center around the static representation of the dynamic factor

model in state space form which can be seen as a special case of the large dimen-

sional generalized dynamic factor model; see Bai & Ng (2007) for a clear exposition.

Following the presentation of the dynamic factor model, the FFR is properly iden-

ti�ed in the panel and then added to the state transition variables. This may sound

like a backward description of the factor-augmented VAR but nevertheless I �nd

this the most intuitive route towards the FAVAR.

The key implication of the dynamic factor model is that the variation of each of

the N observed variables in the panel X can be decomposed into two orthogonal

components, that is a component � common to all variables and an idiosyncratic

component � speci�c to each variable. The common component is driven by a few

common factors and this component accounts for the covariation of the observed

variables at all lags and leads. Consequently, the ith variable in the panel X8 at

time t can be written as:

xit = �it + �it (1.1)

for i = 1; ::; N and t = 1; ::; T with E
�
�it�js

�
= 0 8 i; j; t; s but with a potentially

limited amount of correlation among the idiosyncratic components in the new gener-

ation of dynamic factor models. The following description encompasses the dynamic

factor model, which is characterized by the dynamic loading on the common factors

as well as the static representation of the dynamic factor model characterized by

the static loadings. The distinguishing features of the models will become useful in

later discussions.

8All variables in the panel are transformed into stationary variables with mean zero and unit
variance. See section 1.4.1.
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Consider as in Forni et al. (2005), the speci�cation of the N � 1 vector of the
common component at time t to be dynamically explained by the q common factors

ft such that �t = �> (L) ft; where � (L) is a q � N matrix polynomial in the lag-

operator L of �nite order s9. To facilitate an interpretation of the panel being driven

entirely by q primitive iid shocks, the common component is sometimes written as

�t = � (L) "t, where � (L) represents the impulse-response functions and accordingly

for each variable records the responses in terms of sign, magnitude and lag-structure

following a shock to the underlying primitive shocks, "t10: Inserting the speci�cation

of the common component in (1:1) results in a dynamic factor model driven by q

dynamic factors:

xit = �>i (L) ft + �it (1.2)

where �i (L) = �i;0 + �i;1L + � � � + �i;sL
s: Stacking contemporaneous and s lagged

values of ft in the q (s+ 1) dimensional vector Ft and the matching values of �i in

q (s+ 1) dimensional vector �i results in the static representation of the dynamic

factor model in (1:2), which is driven by r = q (s+ 1) factors, Ft :

xit = �>i Ft + �it (1.3)

=

266664
�i;0

�i;1
...

�i;s

377775
> 266664

ft

ft�1
...

ft�s

377775+ �it

Notice how the dimension of Ft; r = q (s+ 1) depends on the heterogeneity in the

response of the data to the factors ft through � (L) or equivalently to the primitive

shocks "t through � (L).

Furthermore, Ft is governed by a dynamic process which depends on how compli-

cated the process governing ft is relative to the response heterogeneity of the panel.

Assuming that ft is an AR(h) process, Bai & Ng (2007)11 show that Ft can be rep-

resented as a VAR(p) process with p = max (1; h� s) : Intuitively, if the dynamic

process of ft is particular simple then a VAR(1) should be su¢ cient. Interestingly,

a su¢ ciently heterogeneous dynamic response of the data may substitute for some

otherwise complicated dynamics of ft; cf. the term (h� s) in max (1; h� s) : I will

9In�nite order of the lag-polynomiums is considered in the generalized dynamic factor model of
Forni et al. (2000).
10Rewrite the factors in terms of the primitive shocks, ft = a (L) "t and as a result � (L) =

� (L) a (L) : See Forni et al. (2007) for a thorough discussion.
11They also discuss MA(h) and ARMA processes.
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refer to this result later in the discussion of the empirical results.

The static representation of the dynamic factor model is now closed and can be

written in state space form:

Xt = �Ft + �t

Ft = �(L)Ft�1 +�"t
(1.4)

whereXt = (x1;t; :::; xN;t)
>, �t =

�
�1t;; :::; �N;t

�>
is i.i.dN (0; R)12 and � = (�1; :::;�N)

>

is a N � r loading matrix. The state transition equation is stationary so that the

eigenvalues of the pth order matrix polynomial � (L) are less than 1 in modulus,

� is a r � q matrix and "t is i.i.d N (0; Q). The unknowns in this Gaussian state

space model are the parameters in � = f�; R;� (L) ;�; Qg and the latent dynamic
factors Ft:

The �nal step towards the FAVAR is the inclusion of the FFR in both Xt and

Ft (FFR is added to and ordered last in Ft). Speci�cally, the FFR in Xt loads with

unity on the last factor in Ft and zeros on the remaining latent factors, such that

the corresponding row in � for FFR is [0; :::; 0; 1]. In principle, an idiosyncratic

error could be attached to the FFR to capture the transition between discretionary

changes in the policy rate. In line with Bernanke et al. (2005), I argue that the FFR

is indeed measured without error whereas the other variables may be measured with

error. Applying these minor changes to the state space form in (1:4) leads to the

preferred FAVAR speci�cation. However, some identifying restrictions need to be

imposed on the econometric formulation to achieve distinct factors, which, together

with the estimation procedure is the topic of the following section.

1.3 Identi�cation and estimation by the EM al-

gorithm

This section starts with a discussion of identi�cation schemes and then proceeds

to a brief description of the estimation procedure, that is the EM algorithm. I

12Note that the assumption of i.i.d idiosyncratic components in (1:4) de�nes an exact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
where local cross-sectional correlation within a group of similar variables should be expected. As
such, equation (1:4) represents a misspeci�ed model. However, Doz et al. (2006) generate data
under the assumption of an approximate factor model and show, for large N and T; that the exact
factor model consistenly estimates the factors by a Gaussian (quasi)maximum likelihood method.
Speci�cally, they propose to use the EM algorithm.
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also demonstrate how linear parameter restrictions can easily be imposed. Finally,

a hybrid estimation method that combines the EM algorithm and the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method with analytical derivatives is described.

The state space model in (1:4) is not econometrically identi�ed as it is possible to

form observationally equivalent models by arbitrary rotations of the latent factors,

Ft; and the loadings �: For any non-singular matrix H we can form a model that

is observationally equivalent to (1:4) by a rotation of the factors ~Ft = HFt and

loadings ~� = �H�1 :

Xt = ~� ~Ft + �t

~Ft = ~� ~Ft�1 + ~"t

where the dynamics of the factors are simpli�ed to a VAR(1) with � = I: Moreover,

~"t = H"t: Consequently, it is not possible to estimate a unique set of parameters

�̂ with the data unless identifying restrictions are imposed on �: This is a well-

known problem of classical factor analysis and the principal component approach

to dynamic factor analysis by Stock & Watson. Typically, these models are iden-

ti�ed by restricting the factors to be orthogonal or alternatively the loadings to be

orthogonal. However, neither of these identi�cation schemes are su¢ cient in the

one-step estimation of the state space model because the factors are identi�ed by

both the measurement equation and state transition equation in (1:4) : Therefore,

more restrictions are needed to obtain an econometrically identi�ed model and this

issue is addressed by the following three requirements:

1. Ensure invariance of the model under invertible linear transformation of the

factors.

2. Ensure that the number of moments in the data, 1
2
N (N + 1) exceeds the

number of free parameters in �:

3. The loading matrix � must have full rank in order to avoid identi�cation

problems; see Geweke & Singleton (1981) and Aguilar & West (2000). Under

the assumption that the number of factors is known and equal to r the rank

of � must be r:

The second requirement is easily satis�ed because the cross-sectional dimension

N is very large compared to the number of factors. The third requirement is the-

12



oretically satis�ed13 from the parameter restrictions I impose to satisfy the �rst

requirement. Consequently, I focus on the �rst requirement in the following.

Generally, the �rst identi�cation requirement is about separating the contribu-

tions of the di¤erent latent factors to the variation in the panel X: The predominant

starting point is uncorrelated factors which implies that the identi�cation of the

sources of variation in X is then a matter of imposing an identifying structure on

the loading matrix; in particular a structure that embodies the separation of the con-

tribution of the factors to the variation in X. Alternatively, the assumption about

uncorrelated factors can be relaxed by allowing for correlated factors. However, less

restricted factor dynamics would have to be paid by a more restrictive structure on

the loading matrix in order to be able to separate the sources of variation. In other

words, the speci�c identi�cation scheme applied is a matter of choice but it does not

change the underlying idea that the factors are the sources of common variation in

X: either the variables in X covary because they load di¤erently on a set of common

uncorrelated factors or because they load on di¤erent factors which are themselves

correlated.

In the case of uncorrelated factors, the "hierarchical" structure of the loading

matrix in Geweke & Zhou (1996), Aguilar & West (2000) and chapter 8 of Harvey

(1989) is a popular identi�cation scheme that uniquely identi�es the loadings and

the factors by imposing a lower triangular structure on the loading matrix �. More

speci�cally, Q is assumed to be an identity matrix and the upper r � r block of

� is lower triangular with r positive diagonal elements. The term "hierarchical"

stems from the lower triangular form, where the �rst element in X only loads on

the �rst factor, the second variable on the �rst and second factor, etc14. Aguilar

& West (2000) further restrict the diagonal of the r � r block of � to unity and

then allow for a diagonal covariance matrix for the factors. It should be noted that

this "hierarchical" approach is in fact similar to the identi�cation scheme stated in

Proposition 1 in Geweke & Singleton (1981) in their frequency domain analysis of a

�rst generation dynamic factor model.

In the case of correlated factors, a more restricted and "simple" structure of the

loading matrix needs to be imposed to ensure identi�cation. Speci�cally, the upper

13The rank condition is never violated in the empirical application detailed in section 1.4.
14The ordering may potentially in�uence the statistical �t. However, I do not �nd such sensitivity

of the empirical results in this paper to the ordering. This issue is further discussed in the empirical
section. Aguilar & West (2000) present a similar discussion.
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r � r block of � is an identity matrix. This means that up to some measurement

error the �rst variable in X is assumed to be a direct measure of the �rst factor,

the second variable a direct measure of the second variable, etc. Notice, that the

unit restrictions do not guarantee that the speci�c factor turns out to explain the

restricted variable well. On the contrary, the other of variables in X may be far

better explained by a factor that is fairly di¤erent from the restricted variable and

consequently the restricted variable will have a large measurement error. Interest-

ingly, Proposition 2 in Geweke & Singleton (1981) can be used when the factors are

correlated and corresponds to the identity matrix restriction on the loadings.

In this paper, the identi�cation scheme with correlated factors is preferred. The

reason for this preference is that if economic interpretation is to be attached to the

estimated factors, for instance a "real activity factor" or an "employment factor",

then it makes more sense to have correlated factors because theoretically but also

empirically such economic quantities should be correlated and not orthogonal. Yet

another argument for correlated factors is found in the typical view of the monetary

transmission mechanism, which is investigated empirically in section 1.4. According

to this view, a contractionary monetary policy shock is expected to decrease produc-

tion and employment with some time lags and then even later also in�ation. More

precisely, the inclusion of more correlated factors in a low order VAR in the state

transition equation combined with di¤erent loadings on these factors in the mea-

surement equation is able to produce an empirically plausible monetary transmission

mechanism.

The identifying restrictions in this paper can be summarized as follows. Consider

the panel X with the rows reordered such that the restricted variables are found in

the top r rows of X. In this case, the loading restrictions simply amount to imposing

an identity matrix in the top r � r block of �: In the current application, the rows

of X are not reordered so the loading restrictions are imposed as follows:

1. The FFR in Xt with row index `r in � loads only on the last dynamic factor

in Ft which is a monetary policy factor (the FFR itself). Hence, for the r

columnwise elements in row `r in �; the restricted loading is:

��`r = [0; :::; 0; 1] :

2. The remaining (r � 1) latent dynamic factors ordered before the monetary pol-
icy factor in the VAR each load with unit restriction on a single "slow-moving"
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variable (see below), which is assumed to respond with a lag to changes in the

FFR. Let the selected slow-moving variables with restricted loadings be in-

dexed by row f`1; ::; `r�1g of Xt, which means that the restricted rows of �

can be written as:
��`1 =

h
1
1�1

0
1�(r�2)

0
i

...

��`j =
h

0
1�(j�1)

1
1�1

0
1�(r�j)

i
...

��`r�1 =
h

0
1�(r�2)

1
1�1

0
i

(1.5)

whereas the remaining elements of � are left free.

This identi�cation scheme allows for correlated factors and the zero restrictions

on � ensure that the factors explain distinct parts of the variation in the panel. A

separate identi�cation issue, which is relevant for the identi�cation of the monetary

policy shocks in the VAR by a recursive identi�cation scheme requires the factors

to be associated with slow-moving variables such that `j 2 f`1; ::; `r�1g should be
chosen from this group of variables. Therefore, Bernanke et al. (2005) propose to

categorize the variables into "slow-moving" variables such as production and unem-

ployment variables and "fast-moving" variables like �nancial market variables15; see

section 1.4.1 for more details.

1.3.1 The EM algorithm

The linear Gaussian state space model in (1:4) with its latent factors Ft is well repre-

sented in a Kalman �lter setting. However, the Kalman �lter needs the parameters

� = f�; R;� (L) ;�; Qg as input and therefore does not estimate these. Building
on the seminal work by Dempster et al. (1977), Shumway & Sto¤er (1982) introduce

the Expectation Maximization (EM) algorithm to estimate the parameters in state

space models as the model above. Essentially, the EM algorithm is an iterative

maximum likelihood procedure applicable to models with "missing data", which in

this context are the unobserved factors.

15Notice, that if the factors also are allowed to be fast-moving then a simultaneity problem arise
in the identi�cation of the monetary policy factor in the sense that both the monetary policy factor
and the fast-moving factor(s) should be allowed to respond contemporaneously to either of these
shocks. Bjørnland & Leitemo (2009) solve this by long-run restrictions.
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The complete data likelihood of the Gaussian state space model in equation (1:4)

is given in equation (1:19) in Appendix B.3. However, the complete data likelihood

cannot be calculated due to the unobserved Ft, but it is possible to calculate the

expectation of the complete data likelihood conditional on the observed data and

input of parameter estimates (denoted �(j)); see Appendix B.3. Essentially, this

expectation depends on smoothed moments of the unobserved variables from the

Kalman smoother and hence on the data and �(j): The Maximization step results

in the following closed form estimators at iteration j

vec
�
�(j)

�
= vec

�
DC�1

�
(1.6)

R(j) =
1

T

�
E �DC�1D>� (1.7)

vec
�
�(j)

�
= vec

�
BA�1

�
(1.8)

Q(j) =
1

T

�
C �BA�1B>� (1.9)

where the following moments are available from the Kalman smoother (indicated by

subscript tjT ):

A =
PT

t=1

�
F̂t�1jT F̂

>
t�1jT + P̂t�1jT

�
B =

PT
t=1

�
F̂tjT F̂

>
t�1jT + P̂ft;t�1gjT

�
C =

PT
t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
D =

PT
t=1XtF̂

>
tjT

E =
PT

t=1XtX
>
t

and where Ft is approximated by F̂tjT = E [Ftj XT ] : XT = fX1; ::; XTg denotes the
information set, P̂tjT = var (Ftj XT ) is the variance and P̂ft;t�1gjT = cov (Ft; Ft�1j XT )
is the lag-one covariance.

These estimates can then be used in the Expectation step to compute a new set

of moments from the Kalman smoother. Subsequently, the estimates are supplied

to the maximization step above and the procedure continues until convergence of

the likelihood.

In practical implementation, a VAR(1) usually does not pose any problem and

neither should a VAR(p) because any lags of Ft can be included in an augmented

state vector if the autoregressive parameters in � (L) are represented in a �rst order

form (companion matrix) as in Hamilton (1994) chapter 10. The autocovariances

in the B matrix needed in the � estimate should then follow automatically from

the �rst order form; cf. Watson & Engle (1983). However, this paper follows a
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slightly di¤erent route similar to Koopman et al. (1999) but with an implementation

in matlab16, where the smoothed autocovariance matrix of the state variables is

constructed directly and explicitly through recursions, cf. de Jong & Mackinnon

(1988), de Jong (1989) and Koopman & Shephard (1992). For instance, the lag-

one covariance smoother needed for the �̂1 estimate in a VAR(1) is de�ned in the

latter-mentioned paper as:

P̂ft;t�1gjT =
h
I � P̂ xxtjt�1Nt�1

i
Lt�1P̂

xx
t�1jt�2

and the lag-two covariance smoother needed for the �̂2 estimate in a VAR(2) is:

P̂ft;t�2gjT =
h
I � P̂tjt�1Nt�1

i
Lt�1Lt�2P̂t�2jt�3

whereNt�1 and Lt�1 in Appendix B.2 are matrices de�ned recursively in the Kalman

smoother and Kalman �lter, respectively. Furthermore, the state smoothing recur-

sions are also stated in the appendix.

Parameter restrictions in the EM algorithm

In order to implement the identifying restrictions in (1:5), the estimators in (1:6)�
(1:9) subject to linear restrictions need to be derived. Shumway & Sto¤er (1982)

and Wu et al. (1996) present the restricted ��17 and Bork et al. (2008) show how

the restricted �� estimator subject to a linear restriction in the form H� vec� = ��

can be derived:

vec (��) = vec
�
DC�1

�
+
�
C�1 
R

�
H>
�

�
H�

�
C�1 
R

�
H>
�

��1 �
�� �H� vec

�
DC�1

�	
(1.10)

where �� is a � � 1 vector and the restriction matrix H� is of dimension � � Nr:

Notice that the unrestricted estimator in (1:6) appears if � = 0 restrictions are

imposed.

16A small dynamic factor model with N = 12 observed variables, r = 2 factors and p = 4 lags,
was simulated and subsequently estimated with noisy initial estimates of the parameters to check
the code.
17shown in the appendix.

17



1.3.2 The hybrid EM-BFGS optimization method

The EM algorithm is known to converge rather slowly due to its linear convergence

rate. However, the EM algorithm robustly �nds the vicinity of the maximum quickly

and therefore it has been proposed by for instance Lange (1995) to combine the

good properties of the EM algorithm in the early stage of the optimization process

with the fast convergence properties of quasi-Newton methods in the late stage

of the optimization process. This hybrid requires analytical derivatives and in an

application by Jungbacker & Koopman (2008), these are derived. Moreover, whereas

I often experience computing time in hours for the heavily parameterized models

presented here, they report computing time in minutes. The analytical derivatives

from Jungbacker & Koopman (2008) in terms of Kalman smoothed quantities are

given Appendix C.

The performance of this hybrid method is here somewhat mixed. Often it is

found that the EM algorithm has to get very near the optimum before it is reliably

to shift to the BFGS method; otherwise the BFGS method fails to �nd an optimal

solution. However, when the hybrid is succesful, it is indeed relatively fast and

therefore continued research into this hybrid is worthwhile.

1.4 Empirical results

In this section, I present empirical evidence that a factor model with more factors

but fewer lags performs equally well, if not better, in terms of statistical �t (increased

R2): Moreover, the empirical monetary policy analysis results in equally plausible

impulse responses. For instance, the price puzzle is almost eliminated and compara-

ble to Bernanke et al. (2005). Moreover, unemployment responds more negatively to

contractionary monetary policy shocks but still reverts to the baseline within four

years (similar to Bernanke et al. (2005)). Finally, I also show that the empirical

evidence accords with the theoretical insight from section 1.2: that complicated fac-

tor dynamics (many lags) may be substituted by cross-sectional information (more

factors).

Throughout this section, I compare the results that I obtain from various model

speci�cations with the principal component FAVAR and the Bayesian FAVAR by

Bernanke et al. (2005).18 The di¤erences in the empirical results may then be

18I use exactly the same dataset as these authors.
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attributed to the di¤erences in the estimation methods, i.e. the EM algorithm

versus the methods of the Bernanke et al. (2005)19 as well as the factor con�guration

in terms of the number of factors, r, and the number of lags, p: Accordingly, an

EM algorithm equivalent to the preferred model by Bernanke et al. (2005) with

four factors including the monetary policy factor and thirteen lags is calculated

(abbreviated BBE-EM ) and makes up a �rst step in the comparison. The second

step in the comparison is then made with reference to the preferred model in this

paper with eight factors and three lags, a model choice that is explained below.

I �nd that the results from the BBE-EM model are comparable to the results by

Bernanke et al. (2005) in the sense that a similar overall R2 for the panel seems to

be achieved as well as similar and equally plausible impulse responses. Furthermore,

the preferred eight factor model with three lags improves the results signi�cantly

in the sense that a ten percentage point increase in the overall R2 for the panel is

achieved without compromising the plausibility of the impulse responses.

It should be emphasized that the empirical analysis in this paper focuses on

the identi�cation of monetary policy shocks and the economy-wide responses to

these shocks while remaining agnostic about other structural shocks. Furthermore,

I impose that the number of static factors equals the number of dynamic factors,

i.e. r = q and that � = I; which generates a structural shock to each of the factors.

Hence, the focus is on the determination of the number of static factors including the

monetary policy factor, which amounts to r = 8 factors in this paper, rather than

on the determination of the q dynamic factors driven by q � r structural shocks.20

The preferred model with eight factors and three lags is the outcome of a careful

model selection process where a large number21 of estimated FAVAR models were

evaluated in terms of information criteria, test statistics, and model parsimony con-

siderations to be detailed below. The motivation for evaluating a large number of

19Although seemingly unreported by the authors, it seems that they employ uncorrelated factors
in contrast to the correlated factors employed in this paper.
20For example, f1;t and f1;t�1 count as r = 2 static factors in the static representation of the

factor model whereas in the dynamic factor model, they represent the contemporanenous and
lagged values of q = 1 dynamic factor driven by one structural shock. Accordingly, r is the rank of
the covariance matrix of the common component � whereas q is the rank of the spectral density
matrix of �: For further discussion of structural factor models, refer to Forni et al. (2007) and
Stock & Watson (2005).
21I programmed the estimation procedure as a matlab function that takes the dataset, r and

p as arguments and then looped over this function from r = 3; ::; 10 and p = 1; ::; 13: To make
this excercise computationally feasible, a maximum of 10,000 iterations in the EM algorithm were
allowed, which explains the few missing factor models.
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models is twofold: 1) What is the sensitivity of the empirical policy analysis to

the number of lags included in the VAR? The monthly frequency of the data asks

for several lags, but is the thirteen lags chosen by Bernanke et al. (2005) necessary

across di¤erent number of factors? Fortunately not. Nearly identical impulse re-

sponses emerge from a factor model with eight factors and three lags and from a

factor model with four factors and thirteen lags22. I ascribe this observation to the

theoretical result mentioned previously, that complicated VAR dynamics in terms of

many lags can be substituted by cross-section information in terms of more factors.

2) Obviously, more factors imply a better statistical �t of the panel, but what is

the optimal number of factors for this panel and which part of the panel gains from

including more factors? Price indices for instance are far better explained when

more than �ve factors are added, at least in this paper. That more factors need

to be included for a proper explanation of the price indices seems to be a special

feature of the correlated factor approach in this paper in contrast to the orthogonal

factor approach. The reason is that although the �t is not inferior, it involves more

correlated factors before the model picks up to the price dimension in the dataset.

The rest of this section now presents detailed results behind some of the conclu-

sions stated above. Firstly, the data and the transformation of the data are described

followed by an account of how the identifying restrictions are imposed. Secondly, a

number of panel information criteria from Bai & Ng (2002) are calculated as well

as the usual AIC/SIC information criteria and a multivariate Portmanteau test tai-

lored to latent variables in a VAR. Moreover, the autocorrelation function for the

VAR residuals and an average R-square for each factor model are plotted. All these

measures guide me in the model selection choice. Thirdly, impulse responses and

forecast error variance decompositions are calculated.

1.4.1 Data description and data transformation

The dataset used in this paper is exactly the same as the dataset that Bernanke

et al. (2005)23 analyze. The data consist of N = 120 monthly time series covering

a large part of the US economy over the period 1959:1 to 2001:8; see Appendix A.1

page 162 for a description of the dataset and in particular the classi�cation into

22Notice that both models involve approximately the same number of autoregressive coe¢ cients
in the VAR.
23I thank Jean Boivin for kindly making the data set available on his website, HEC Montréal,

Canada
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slow-moving variables and fast-moving variables. The time series in the panel are

transformed into stationarity by taking logs and/or di¤erencing24. The next step

involves standardizing the transformed data so that all series have mean zero and

unit variance, which is typical especially for principal component analysis. Denote by

Xt the transformed and standardized data at time t consistent with equation (1:4)

page 11. However, when studying impulse responses, the interest centers around

the observed variables in levels (e.g. the price level) rather than the transformed

variables (e.g. in�ation) and therefore a reverse transformation of the responses is

required, denoted by D (L) such that the reverse-transformed data ~Xt = D (L)Xt
25.

1.4.2 The imposition of the identifying restrictions

A number of identifying restrictions need to be imposed on r rows of the loading

matrix � as explained in equation (1:5). However, the speci�c set of r rows in �

which are jointly restricted to an identity matrix needs to be determined. In other

words, this amounts to choosing a set of r variables assumed to be a direct measure

of the r factors.

I propose a two-step procedure to determine the speci�c set of r variables in the

panel X which should be a direct measure of the r factors. The �rst step involves

principal component analysis (PCA) where r principal components are calculated

from the panel X: This choice is based on the insight that principal components

consistently estimate the space spanned by the (independent) factors; cf. Bai &

Ng (2002) and Forni et al. (2000, 2005). Subsequently, each of the N variables is

regressed on the r principal components resulting in a N � r matrix of individual

R2: The dominant R2�s for each factors is then used to infer the characteristics of

each factor. Typically, this approach reveals that the �rst factor can be interpreted

as an industrial production factor. In the second step, I impose the exactly identi-

fying restrictions on the inferred dominant factors and �lter the factors with very

weak priors on the initial parameter estimates. In particular, the loading matrix

was �lled with with zeros except for the exactly identifying unit restrictions and a

complete estimation by the EM algorithm is undertaken. Finally, another evaluation

24The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Bernanke
et al. (2005) for details on the data set and on the transformation which results in a sample size
of T = 511: The data transformation decisions are similar to Stock & Watson (2002b) and based
on judgemental and preliminary data analysis of each series, including unit root tests.
25For instance, if the data in Xt are in growth rates, the diagonal elements of D (L) would need

to be multiplied by 1
1�L in order to have the data in levels in

~Xt:
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of the dominant factors from the EM algorithm is undertaken as the factors are now

correlated.26

Consequently, this pre-study reveals that the �rst factor is robustly associated

with industrial production. The second factor is related to unemployment, the third

factor is associated with NAPM indices (production or employment), the fourth

factor with production hours, and the �fth factor with price indices. Based on these

�ndings, the restrictions are imposed on the following list of variables in increasing

order of the number of factors included:

f`1; `2; ::; `9g = f11; 27; 18; 47; 112; 23; 17; 50; 16g

where numbers refer to the variable number listed in Appendix A.1 page 162. No-

tice that the restrictions are not imposed on variables that are deemed a priori to

be particularly important variables such as the unemployment rate for all workers

(#26), the consumer price index all items (#108) etc. Instead, a variable that is

closely related or correlated with this variable is selected such that the potentially

most important variables are maximally explained and minimally restricted.

Admittedly, an alternative restriction index, `1; ::; `r�1 may improve the overall

�t although the improvement is deemed modest because of the performed two-step

procedure. Finally, it should be noted that the particular characteristics of an

estimated factor are not determined by the single unit restriction in a particular

column in � but rather by how important this factor is for the fraction of variance

explained. Table 1.1 supports the argument that the imposition of unit restrictions

on an arbitrary set of variables does not change the underlying characteristics of

the factors and the statistical �t. Hence, the statistical �t of the preferred model is

robust to an alternative set of restrictions.

1.4.3 Model selection: information criteria and test statis-

tics

An important choice in factor analysis concerns the unknown number of factors

r that span the factor space. A number of papers mentioned in the introduction

address this challenge and in this paper di¤erent panel information criteria developed

26Finally, to use a somewhat more informed starting values I use PCA of r subsets of the dataset
where the principal component of each subset represents an initial estimate of one of the r factors.
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by Bai & Ng (2002) are applied. Essentially, the proposed information criteria re�ect

the usual trade-o¤ between model parsimony and statistical �t using a penalty

function. However, this penalty function depends on both T and N so that the

usual AIC/SIC cannot readily be applied and furthermore the information criteria

should also take account of the fact that the factors are unobserved. However,

the criteria by Bai & Ng (2002) do not address the number of lags in the VAR

and therefore the AIC/SIC will have a comeback when the VAR order needs to be

determined.

Principal component analysis with r factors extracted from dataset in X allows

for the calculation of the sum of squared residuals V (r) = (NT )�1
PT

t=1 �̂t�̂
>
t ; where

�̂t is a N � 1 vector of the estimated idiosyncratic errors. Based on this quantity
Bai & Ng (2002) suggest a number of information criteria of which some of the most

popular are shown below:

min
r
ICp2 (r) = ln (V (r)) + r

�
N + T

NT

�
lnC2NT

min
r
ICp3 (r) = ln (V (r)) + r

�
lnC2NT
C2NT

�
where the sequence of constants C2NT = min fN; Tg represents the convergence rate
for the principal component estimator. Furthermore, the following panel information

criteria are also calculated:

min
r
PCp2 (r) = V (r) + r�̂2

�
N + T

NT

�
lnC2NT

min
r
PCp3 (r) = V (r) + r�̂2

�
lnC2NT
C2NT

�
where �̂2 = (NT )�1

PN
i=1

PT
t=1E [�t]

2 is a penalty function scaling term and usually

calculated using some maximum number of factors rmax:

Application of the ICp2 and ICp3 however points towards a large number of

factors (r = 16), which is similar to what Bernanke & Boivin (2003) and Forni

et al. (2007) experience with this criterion. Nevertheless, instead of relying on the

estimation of the sum of squared residuals from principal component analysis, I

calculate V (r) ; �̂2 from the actually estimated models using the EM algorithm and

then calculate the above information criteria27. These calculations point strongly

towards r = 8 which can be seen in �gure 1.1. ICp2; PCp2 and PCp3 lead to exactly

27I used C2NT to represent the imperfect convergence rate for the EM algorithm estimator.
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the same result and are therefore not shown.

[Insert Figure 1.1]

An alternative and less formal method consists of calculating the average ex-

plained variation of the variables in the panel relative to the total variation, the

average R2 measure, which is primarily in�uenced by the number of factors and less

by the number of lags in the VAR. Based on the average R2 measure adjusted for

degrees of freedom, denoted �R2; this alternative measure could be used to evaluate

the incremental value of adding more factors. Figure 1.2 shows �R2 for each estimated

model and it can be seen that the incremental value of �R2 diminishes as more and

more factors are included in the FAVAR. A decision on when to stop adding factors

is subjective, but based on these results, I maintain that r = 8 seems to be a good

choice.

[Insert Figure 1.2]

The �R2 weights each variable equally in the panel so that for instance industrial

production, e.g. mining (#14), receives the same weight as the total industrial

production index (#16) even though the former is probably of less interest. In other

words, improved �t for some variables does not show up clearly in �R2: The purpose

of Figure 1.3 is to show that the �t of some variables such as unemployment and

in�ation, improves dramatically when more factors are added whereas others such

as industrial production, e.g. mining and foreign exchange rates, are never well

explained. More details about the preferred model are provided later.

[Insert Figure 1.3]

Towards a well-speci�ed VAR

Ultimately, the preferred model is to be used for impulse response analysis of shocks

to the monetary policy factor and therefore a well-speci�ed VAR is sought for. In

the previous paragraphs, I argue for eight factors but the number of lags in the VAR
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also needs to be determined. For this purpose, the Akaike (AIC), Schwarz (SIC)

and Hannan & Quinn (HQIC) information criteria are calculated in Tables 1.2, 1.3

and 1.4 respectively. The maximum number of lags to be included does not exceed

six, which is somewhat surprising. An alternative procedure would be to test if the

pth autoregressive coe¢ cient matrix is signi�cant in terms of a likelihood ratio test.

Apparently, for the preferred model with eight factors, the number of lags should

be either three or six.

[Insert Tables 1.2, 1.3 and 1.4]

Given the di¤erent fr; pg factor model speci�cations, the VAR residuals are also
inspected to see if they are approximately white noise by tailoring the multivariate

Portmanteau test to latent variables and by inspecting the VAR residuals visually.

Consider the multivariate Portmanteau test which tests whether the hth order resid-

ual autocorrelation is zero. However, recall that we approximate the true factors Ft
by the smoothed factors F̂tjT ; i.e. Ft = F̂tjT +

�
Ft � F̂tjT

�
, which means that it is

the residuals of the true factors that interest centers around. Accordingly, I modify

the standard Portmanteau test to use smoothed quantities instead. The standard

multivariate Portmanteau test statistic (see Lütkepohl (2007)) is:

Q (h) = T
hX
i=1

tr
�
Ĉ>i Ĉ

�1
0 ĈiĈ

�1
0

�
� �2r2(h�p); i = 1; :::; h

where the (auto)covariances of the VAR residuals are:

Ĉi =
1

T

TX
t=i+1

("̂t � E ["̂t]) ("̂t;t�i � E ["̂t;t�i])
> ; i = 0; 1; :::; h

which are replaced by the (auto)covariances of the smoothed residuals from the

Kalman smoother, cf. (1:18) page 36:

Ĉ0 = "̂tjT "̂
>
tjT + P "tjT

Ĉi = "̂tjT "̂
>
t�ijT + P "ft;t�igjT :

The upper panel of Table 1.5 shows that all factor models reject the null hy-

pothesis of absence of residual autocorrelation when the smoothed quantities from

a VAR(1) are used. However, the lower panel of the same table shows that when a
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VAR(2) is considered, the null is not rejected when a su¢ cient number of lags is em-

ployed (r � 8) : Table 1.6 shows that whiteness of the residuals is further improved
when a VAR(3) is considered and that the null of absence of residual autocorrelation

cannot be rejected for a FAVAR model with eight factors, whereas a model with four

factors is rejected. However, when a VAR(4) is considered, also r = 4 cannot be

rejected for most h: An overall conclusion from these tests, is that the number of

lags needed in the VAR seems to be decreasing in the number of factors. This is

particularly pronounced for r � 8 where a maximum of three lags is needed. For

the benchmark FAVAR with four factors, a VAR with six or seven lags seems to do

well, which is also what Bernanke & Boivin (2003) �nd.

[Insert Tables 1.5 and 1.6]

Finally, a visual inspection of the autocorrelation functions of the smoothed

residuals is also performed and combined with the multivariate Portmanteau test,

and �R2 the best FAVAR speci�cation among r = f3; 4; ::; 10g is selected. Attention
to model parsimony in�uences the choice when competing FAVAR speci�cations

are encountered28. This selection of best speci�cations will be used in an evalua-

tion of the robustness and sensitivity of di¤erent factor model speci�cations for the

empirical monetary policy analysis.

To facilitate the interpretation of the following results, I introduce some short-

hand notation for the various models. The notation r8p3 means r = 8 factors

including the monetary policy factors with p = 3 lags in the FAVAR. The notation

r8p3 (2) indicates a special focus on factor number two among the total of eight

factors. Likewise, r4p13 (4) indicates a special focus on the last factor among the

four factors each with thirteen lags; in fact, this is the monetary policy factor as this

is always the last factor. The best speci�cations model among r = f3; 4; ::; 10g is
fr3p7; r4p7; r5p6; r6p4; r7p5; r8p3; r9p3; r10p2g with the overall preferred model in
bold. Figure 1.4 shows the autocorrelation functions for best speci�cations versus

their VAR(1) counterpart. These autocorrelation functions are calculated for the

monetary policy factor residuals and it should be noted that the improvement for

28For instance the speci�cation with eight factors and three lags is preferred to the speci�cation
with eight factors and six lags. Similarly, the speci�cation with six factors and four lags is preferred
to the speci�cation with six factors and eight lags.
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the other variables in the VAR is often more pronounced than for the policy factor

itself.

[Insert Figure 1.4]

The list of best FAVAR speci�cations is shortened marginally by removing r3p7

because of inferior �t and because of less plausible impulse responses. Also r10p3 is

removed because of computational complexity and because this model does not add

anything in terms of �t or interpretation.

The revised list fr4p7; r5p6; r6p4; r7p5; r8p3; r9p3g is now used in the empirical
monetary policy analysis against the benchmark BBE-EM model denoted r4p13:

Figure 1.5 illustrates the gain in terms of increased �t for each obserserved vari-

able of using the preferred model versus the BBE-EM and the preferred model by

Bernanke et al. (2005).

[Insert Figure 1.5]

For the sake of brevity, the parameter estimates are not presented in detail.

However, it should be mentioned that the estimates of the loadings are generally

as expected in terms of signs and magnitude. For instance, the industrial produc-

tion variables all load positively on the �rst "industrial production" factor with a

coe¢ cient close to unity. The unemployment variables generally load positively on

the second "unemployment" factor whereas the largest loadings for the employment

variables are generally negativ. For the monetary policy factor, it should be noted

that the bond yields are positively related to this factor with loadings for the short-

duration bonds close to unity, as expected. For the autoregressive parameters in �

it should be noted that all eigenvalues of � are less than 1 in modulus.implying that

the system is stationary.

1.4.4 A look at the factors

Given the choice of the preferred model that involves eight factors, the following

o¤ers some description and "labeling" of these latent dynamic factors. Figures 1.6

and 1.7 show the time series properties of the factors. Figures 1.8, 1.9, 1.10 and 1.11

show the correlation coe¢ cients with the panel.
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[Insert Figures 1.6, 1.7, 1.8, 1.9, 1.10 and 1.11]

Factor one is clearly an industrial production factor with a correlation with

industrial production variables often exceeding 85%. Factor two is primarily related

to unemployment with a correlation often exceeding 70% and secondarily related

to Moody�s BAA yield spread. Factor three is labeled a NAPM factor because it

is primarily related to NAPM production, PMI, NAPM employment and NAPM

orders, where correlation often exceeds 80%. Factor four is an "(overtime) hours

in production" factor that is negatively related to dividend yield (proxy for risk

aversion) and positively related to consumer expectations. Factor �ve is an in�ation

factor with correlation with in�ation variables often exceeding 80%. Factor six is

an employment factor closely related to help-wanted ads. and of course negatively

related to unemployment, though this factor picks up something di¤erent from the

unemployment, which can be seen from the correlations in Figure 1.10. Factor seven

is a capacity utilization factor29 and factor eight is the monetary policy factor.

1.4.5 Impulse response analysis

Having estimated the FAVAR model, we would like to study the dynamic responses

of the variables in the panel following a shock to the federal funds, i.e. a shock to the

VAR innovation for the monetary policy factor. However, to identify this innovation

as a structural monetary policy shock, identifying restrictions need to be imposed

and I follow Bernanke et al. (2005) by applying a recursive identi�cation scheme

proposed by Sims (1980). The recursive identi�cation scheme (sometimes called

a Wold causal ordering) implies that the �rst factor in the VAR is only a¤ected

by its own shock. The second factor is a¤ected by its own shock and the �rst

shock and so on. The monetary policy shock is in�uenced by all r shocks, so that

if we for a minute interpret the �rst factor as output, the second as employment

and so on, then output and employment shocks a¤ect the monetary policy shock

contemporaneously. However, monetary policy shocks do not a¤ect output and

employment shocks contemporaneously because monetary policy a¤ects these with

a lag.

29This factor is quite correlated with the employment factor number six. Although the correlation
coe¢ cient is 0.83 the capacity utilization factor is still di¤erent from factor six, which is apparent in
the beginning of the period. Admittedly, this may be a weakness of the correlated factor approach,
that factors can become quite correlated.
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This recursive structure can be achieved by specifying the VAR innovations "t in

terms of a new set of orthogonal residuals multiplied by a lower triangular matrix,

such that "t = Pet: This particular example corresponds to a Cholesky decomposi-

tion of the covariance of "t; i.e. Q̂ = PP>: However, shocks of size one rather than

size one standard deviation are sought for, so consider instead the decomposition

Q̂ = W�eW
>; where �e = DD> is diagonal and W = PD�1 has ones along the

diagonal. Accordingly, for the VAR in F the response of the jth element of F at

time t+ i due to a change in the kth element of F at time t is:

@Ê [Fj;t+ijFk;t; Ft�1; Ft�2; :::]
@Fk;t

=
@Ê [Fj;t+ijFk;t; Ft�1; Ft�2; :::]

@Fk;t

@"k;t
@ek;t

=  iwj

for i = 1; :2; ::::::h; where  i is the VAR moving average coe¢ cient matrix and wj
is the jth column of the matrix W:  i can be calculated recursively

30 from � (L)

in the stationary system in (1:4), and monetary policy shocks corresponding to 25

basis point are now simply a matter of multiplying wj by this (standardized) shock

size. However, interest centers around the observed variables in levels ~X rather than

the transformed and standardized variables in X and therefore a multiplication of

the loadings � is required, followed by a reverse transformation of the responses,

i.e. D (L) [� iwj], cf. section 1.4.1. Consequently, the �gures in the following

correspond to a plot of fD (L) [� iwj]g
h
i=1 which tracks the dynamic responses of

the observed variables measured in standard deviation units to a 25 basis point

shock to the FFR.

Figure 1.12 shows that the FAVAR model estimated by the EM algorithm de-

livers robust results in terms of impulse responses. Impulse responses for each of

the best speci�cations in fr4p7; r5p6; r6p4; r7p5; r8p3; r9p3g are plotted against the
benchmark BBE-EM (r4p13) for key macroeconomic variables. Moreover, the re-

sponses are very much in line with the results of Bernanke et al. (2005), although

including con�dence intervals around the impulse responses would further sharpen

the conclusions.

[Insert Figure 1.12]

Each model delivers the same shape of the impulse response functions, i.e. the

industrial production decreases by 0.6-0.7 standard deviations within one year fol-

30 i =
Pi

j=1  i�j�j for i = 1; 2; :::: and  0 = I: See Lütkepohl (2007) chapter 2.
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lowing a contractionary monetary policy shock, and it can be seen that the preferred

model r8p3 returns more quickly to the starting point than BBE-EM. However, the

speed of reversion is similar to the results in Figure II in Bernanke et al. (2005). For

the price index, we see that the price puzzle noted by Sims31 is almost eliminated, as

there is a pronounced decrease in the price level following a contractionary monetary

policy shock. The response is similar for all models but the preferred model has a

particularly small initial positive e¤ect and a pronounced negative response after

one year, which is in line with Bernanke et al. (2005). The unemployment increases

more than in the aforementioned example and most in the preferred model after one

year but reverts to the starting point within four years. Furthermore, the response

of NAPM commodity prices, capacity utilization rate, and average hourly earnings

is also more pronounced than in Bernanke et al. (2005).

To summarize the impulse response analysis, I conclude that the FAVAR models

deliver robust results across di¤erent speci�cations. Moreover, the preferred model

eliminates the price puzzle and yields plausible impulse responses as in Bernanke

et al. (2005). Compared to the aforementioned result some di¤erences in the impulse

responses following a contractionary policy shock can be noted. Firstly, the NAPM

variables such as commodity price index, employment, new orders, and also capacity

utilization rate are comparably a¤ected more negatively, i.e. the impulse response

shapes are "deeper". Similarly, unemployment peaks at a comparably higher level.

However, comparably the same magnitude of the responses is seen for industrial

production, CPI and the federal funds rate.

1.4.6 Forecast error variance decomposition

An alternative way of evaluating monetary policy shocks is to consider what role

these shocks play in forecast errors. Speci�cally, in a forecast error variance decom-

position, I calculate for a given forecast horizon what fraction of the total forecast

error variance for a particular variable is due to a speci�c shock, for instance the

31A typical �nding in standard VAR analysis of monetary policy is an increase in the price level
following a contractionary monetary policy shock - hence the notion of a price puzzle, because we
would expect a decrease. This can be explained as follows. Consider a simple policy rule that is
linear in current in�ation, current output gap and the Fed�s expectations about future in�ation.
If the Fed expects future in�ation to rise, it will accomodate this partly by increasing the federal
funds rate. Consider now a VAR in the federal funds rate, in�ation and output gap. Here, the
information about the Fed�s expectations is for obvious reasons not included in the VAR and is left
in the residuals as a positive shock which happens alongside an increase in the price level (under
the assumption that the Fed predict the rise in the price level correctly.)
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monetary policy shock. Hence, the forecast error variance decomposition is similar

to the R2 measure but for forecast errors at di¤erent horizons. The proportion of

the forecast error variance at horizon h of variable Xj due to the kth innovation ek;t
is given by:

!jk (h) =
d2kk
Ph�1

i=0

�
	2jk;0 +	

2
jk;1 + :::+	2jk;h�1

�
MSE

�
X̂j;t+hjt

�
+Rj;j

where the N � r matrix 	jk;i is the (j; k) element of (�j iW ) as a function of

horizon i 2 h; d2kk is the (k; k) element of the diagonal matrix DD>; MSE
�
X̂j;t+hjt

�
is the mean square error of

�
Xj;t+h � X̂j;t+hjt

�
and Rj;j is the variance of the jth

idiosyncratic term. Details about the derivation are given in Appendix A.

The percentage of the forecast error variance explained by a monetary policy

shock for the group of key macroeconomic variables is shown in Figure 2.3. Gener-

ally, a monetary shock rarely explains more than 10% of the forecast error variance,

except for capacity utilization rate, (un)employment and new orders where forecast

error variance is roughly doubled. The results are in line with similar �ndings in the

literature, with only minor di¤erences to be explained below.

[Insert Figure 1.12]

As only one structural shock, the monetary policy shock, is identi�ed in this

paper, it makes little sense to comment on impulse responses and variance decom-

positions for the other shocks. Nevertheless, the purpose of the upper panel of

Table 2.3 is to illustrate that the fraction of the total forecast error variance of all

the factors accounts for 40-50% and that the idiosyncratic component accounts for

a signi�cant fraction, on average 50-60%. This is also what Stock & Watson (2005)

report. The di¤erence between employing correlated versus uncorrelated factors as

in the aforementioned result also shows up in the variance decomposition in the

lower panel of Table 2.3. Whereas 93% of all of the forecast error variance for in-

dustrial production is explained by the �rst out of their seven factors in Stock &

Watson (2005), only 50% shows up in the �rst correlated factor in this paper and

the remaining 47% is spread evenly between the remaining seven factors.

[Insert Table 2.3]
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Stock & Watson (2005) also estimate a principal component variant of Bernanke

et al. (2005) and despite minor di¤erences in the dataset, some comparisons with the

two aforementioned papers, the closely related paper by Ahmadi & Uhlig (2008),

and this one can be made. Generally, the monetary policy shocks play a larger

role in the forecast error variance in this paper than in Stock & Watson (2005),

except for the FFR and the bond yields; see below. Further, the forecast error

variance decompositions in this paper are generally similar to those in Ahmadi &

Uhlig (2008), although in this paper we see the largest in�uence of monetary policy

shocks on the forecast error variance of unemployment peaking around 24 months at

35% but also the NAPM related variables such as new orders and employment are

highly in�uenced. In contrast, the numbers in Stock & Watson (2005) are almost

zero for the same variables, whereas in Bernanke et al. (2005) the corresponding

numbers are somewhere in between. Moreover, in this paper, we see the smallest

in�uence of the monetary shock on the FFR itself and in particular on the bond

yields, although the variance decomposition in Ahmadi & Uhlig (2008) is roughly

similar. In contrast, Bernanke et al. (2005) report that the fraction of the total

forecast error variance of the FFR explained by its own shock is 45% compared to

3% in this paper, around 5% in Ahmadi & Uhlig (2008) and 7% in Stock & Watson

(2005) for the long horizon. Strikingly, the fraction increases to 20% and 40% for the

three-month T-bill and the �ve-year T-bond in the last-mentioned result. Finally,

it can be noted that for all four papers, the forecast error variance of consumption

and money supply is generally never explained by more than roughly 5%.

1.5 Conclusion

Three important issues are addressed in this paper. Firstly, an alternative identi�-

cation scheme is applied that allows for correlated factors, which is desirable if one

seeks a macroeconomic interpretation of the latent factors. For instance, in the cor-

related factor approach here, the industrial production factor and the unemployment

factor are allowed to be correlated, and they are estimated to have a correlation of

0.23.

Secondly, I investigate the EM algorithm as an alternative estimation method

to the two-step principal component method and the one-step Bayesian method. In

general, it is easy to impose parameter restrictions on both the measure equation

and the state transition equation, which is illustrated plentifully in Bork et al. (2008)

where explicit interpretation of the factors is achieved through identi�cation.
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Thirdly, the sensitivity of the statistical �t and impulse response analysis to dif-

ferent factor speci�cations is evaluated as well as a careful model selection. The

combination of the panel information criteria by Bai & Ng (2002) for the number

of factors and the standard Akaike, Schwarz or Hannan-Quinn information criteria

for the VAR order results in a preferred FAVAR model with eight factors and only

three lags. This model naturally delivers a better �t than models with fewer factors

without compromising well-speci�ed factor dynamics or the plausibility of the im-

pulse response analysis. Interestingly, some of the key macroeconomic variables such

as industrial production and employment seem to respond somewhat more in the

preferred model compared to the EM algorithm equivalent of Bernanke et al. (2005)

with four factors and thirteen lags. Furthermore, the NAPM indices (commodity

price, new orders, and employment) as well as unemployment respond somewhat

more to a monetary policy shock than in the aforementioned model(s).

Generally, it is found that the FAVAR models investigated here deliver robust

results in terms of �t, impulse responses and forecast error variance decompositions

across the best-speci�ed models for the di¤erent numbers of factors included. I

�nd that the fewer the factors used in the FAVAR the more lags are needed to

achieve a well-speci�ed model and vice versa. Hence, it seems possible to trade o¤ a

model with a few factors but necessarily many lags for a model with more factor but

fewer lags; speci�cally, it is possible to trade o¤ a four-factor and seven-lag model

for an eight-factor and three-lag model with the bene�t of a ten percentrage point

increase in the overall R2. This observation accords with the theoretical result that

complicated factor dynamics may be substituted by the information in the panel

dataset. One objection might be that more factors are the result of the correlated

factor approach in contrast to the uncorrelated factor approach. However, besides

the above-mentioned theoretical result, it should be noted that the four-factor and

thirteen-lag benchmark model performs equally well in terms of �t and plausibility

of the impulse responses to the uncorrelated factor approach in Bernanke et al.

(2005). On this basis, there is no clear sign that the correlated factor approach

needs relatively more factors to achieve the same �t.
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A Forecast error variance decomposition

Consider the forecast error of the optimal h�step ahead forecast for the jth observed
variable:

Xj;t+h � X̂j;t+hjt =

h�1X
i=1

h
�j iW

i
et+h�i + �j;t+h

=

h�1X
i=1

	iet+h�i + �j;t+h

=
KX
k=1

(	jk;0ek;t+h +	jk;1ek;t+h�1 + :::+	jk;h�1ek;t+1) + �j;t+h

where et is the orthogonal residual de�ned from the VAR residuals, "t = Pet

where P is the Cholesky factor from the decomposition of the covariance of "t into

Q̂ = PP>: This covariance matrix is further rewritten as explained in section 1.4.5

as Q̂ = W�eW
>; where �e = DD> is diagonal and W = PD�1 has ones along the

diagonal. Moreover, 	i = �j iW is a N�r matrix and �j;t+h is the jth idiosyncratic
term. The mean square error of

�
Xj;t+h � X̂j;t+hjt

�
is denoted MSE

�
X̂j;t+hjt

�
and

given by:

MSE
�
X̂j;t+hjt

�
=

KX
k=1

�
	2jk;0d

2
kk +	

2
jk;1d

2
kk + :::+	2jk;h�1d

2
kk

�
+Rj;j

where d2kk is the (k; k) element of the diagonal matrix DD> and Rj;j is the

variance of the jth idiosyncratic term. The proportion of the forecast error variance

at horizon h of variable Xj due to the kth innovation ek;t is given by:

!jk (h) =
d2kk
Ph�1

i=0

�
	2jk;0 +	

2
jk;1 + :::+	2jk;h�1

�
MSE

�
X̂j;t+hjt

�
+Rj;j
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B Kalman �lter, Kalman smoother and the EM

algorithm

B.1 The Kalman �lter

The Kalman �lter is an algorithm for sequentially updating a linear projection for

a dynamic system. Denote the information set X t = fX1; :::; Xtg and by F̂t+1jt =
E [Ft+1j X t] the linear projection of Ft+1 on Xt: The variance is denoted P̂t+1jt =
var (Ft+1j X t) : The Kalman �lter recursions for t = 1; ::; T can then be written as:

F̂t+1jt = �F̂tjt�1 +Kt

�
Xt � �F̂tjt�1

�
P̂t+1jt = �P̂tjt�1L

>
t +Q

(1.11)

where
�t
n�1

= Xt � �F̂tjt�1

P ��tjt�1
n�n

= �P̂tjt�1�
> +R

Kt
k�n

= �P̂tjt�1�
>
�
�P̂tjt�1�

> +R
��1

Lt
k�k

= ��Kt�

B.2 Kalman smoothing

Kalman smoothing reconstructs the full state sequence fF1; ::; FTg given the obser-
vations fX1; ::; XTg. Smoothing provides us with more accurate inference on the
state variables since it uses more information than the basic �lter. The Kalman

smoother recursions are based on the e¢ cient smoother by de Jong & Mackinnon

(1988) and de Jong (1989) which is used in Koopman & Shephard (1992) and given

by:
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F̂tjT = F̂tjt�1 + P̂tjt�1�
>
h
P̂ ��tjt�1

i�1
�t (1.12)

+P̂tjt�1L
>
t rt (1.13)

= F̂tjt�1 + P̂tjt�1rt�1 (alternatively)

P̂tjT = P̂tjt�1 � P̂tjt�1Nt�1P̂tjt�1 (1.14)

P̂ft;t�1gjT =
�
I � P̂tjt�1Nt�1

�
Lt�1P̂t�1jt�2, (1.15)

for t = T � 1; :::; 1 (1.16)

cov
�
Ft � F̂tjT ; Fj � F̂jjT

�
= P̂tjt�1L

>
t L

>
t+1 � � � L>j�1

h
I �Nj�1P̂jjj�1

i
(1.17)

for j � t

where:

rt�1 = �>
h
P̂ ��tjt�1

i�1
�t + L>t rt; for 1 � t < T and rT = 0

Nt�1 = �>
h
P̂ ��tjt�1

i�1
� + L>t NtL for 1 � t < T and NT = 0

Lt = ��Kt� = �� �P̂tjt�1�>
h
P̂ ��tjt�1

i�1
�:

The smoothed residuals given by Koopman (1993) are used in for instance the

Portmanteau test:

"̂tjT = E ["tj XT ] = F̂tjT � �F̂t�1jT
= Q�>rt; t = 1; ::; T (1.18)

and variance and covariance:

var ("tj XT ) = P "tjT

= Q�Q�>Nt�Q

cov
�
"t � "̂tjT ; "j � "̂jjT

�
= P "ft;jgjT

= �Q�>L>t+1 � � �L>j�1L>j Nj�Q; j = t+ 1; :::; T

with the convention that L>t � � �L>T�1 = Ir when t = T and L>t � � �L>T�1 = L>T�1
when t = T � 1:
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B.3 The complete data likelihood and the incomplete data

likelihood

Under the Gaussian assumption including F0 � N (�0; P0) and ignoring the con-

stant, the complete data likelihood of equation (1:4) page 11 assuming a VAR(1)

for simplicity and ignoring � is written as:

�2 lnLF ;X (�) = ln jP0j+ (F0 � �0)
> P�10 (F0 � �0)

+T � ln jQj+
TX
t=1

(Ft � �Ft�1)>Q�1 (Ft � �Ft�1)

+T � ln jRj+
TX
t=1

(Xt � �Ft)>R�1 (Xt � �Ft)

(1.19)

given that we can observe the states FT = fF0; ::; FTg as well as the observations
XT = fX1; ::; XTg. However, given XT and initial values of the parameter estimates
(denoted �(j�1)), the conditional expectation of the complete data likelihood can be

written as:

Q
�
�j�(j�1)

�
= E

�
�2 lnLF ;X (�)

��XT ;�(j�1) �
= ln jP0j+ tr

�
P�10

��
F̂0jT � �0

��
F̂0jT � �0

�>
+ P0jT

��
+T � ln jQj+ tr

�
Q�1

�
C �B�> � �B> + �A�>

	�
+T � ln jRj

+tr

"
R�1

TX
t=1

��
Xt � �F̂tjT

��
Xt � �F̂tjT

�>
+ �P̂tjT�

>
�#
(1.20)

where the following moments can be calculated from the Kalman smoother listed

above:

A =
PT

t=1

�
F̂t�1jT F̂

>
t�1jT + P̂t�1jT

�
B =

PT
t=1

�
F̂tjT F̂

>
t�1jT + P̂ft;t�1gjT

�
C =

PT
t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
D =

PT
t=1XtF̂

>
tjT

E =
PT

t=1XtX
>
t

A useful trick to arrive at (1:20) is to consider the decomposition of the true
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state variable Ft = F̂tjT +
�
Ft � F̂tjT

�
; which explains the terms in for instance C;

where:

P̂tjT = E

��
Ft � F̂tjT

��
Ft � F̂tjT

�>����XT� :
The estimator of �� subject to linear restrictions is:

vec (��) = vec
�
BA�1

�
+
�
A�1 
Q

�
H>
�

�
H�

�
A�1 
Q

�
H>
�

��1 �
�� �H� vec

�
BA�1

�	
(1.21)

where �� is a %� 1 vector and the restriction matrix H� is of dimension %� r2:

C Analytical derivatives of the log likelihood func-

tion

The following is primarily from Jungbacker & Koopman (2008) and Koopman &

Shephard (1992). A key result @ logLY (�)
@Q

���
Q=Q�

= @Q(�j��)
@Q

���
Q=Q�

is from Louis (1982).

Consider the following derivatives of the log likelihood function for the state

space model with incomplete data:

@ logLY (�)

@Q

����
Q=Q�

=
@Q (�j��)

@Q

����
Q=Q�

= Q�1 (S � T �Q)Q�1 � 1
2
diag

�
Q�1 (S � T �Q)Q�1

�
where:

S = C �B�> � �B> + �A�>

and where Q is the covariance matrix of the innovation error in the transition equa-

tion:

@ logLY (�)

@�

����
�=��

=
@Q (�j��)

@�

����
�=��

= Q�1 (B � �A)

where � contains the autoregressive parameters in the transition equation. More-

over, the derivative with respect to � is:
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@ logLY (�)

@�

����
�=��

=
@Q (�j��)

@�

����
�=��

= R�1

 
TX
t=1

ytF̂
>
tjT � �C

!
where � is the loading matrix, R is the covariance of the measurement errors, yt is

the data in the panel data set at time t and F̂>tjT is the smoothed dynamic factor.

Finally, the derivative with respect to the covariance of the measurement errors is:

@ logLY (�)

@R

����
R=R�

=
@Q (�j��)

@R

����
R=R�

= R�1 (M � T �R)R�1 � 1
2
diag

�
R�1 (M � T �R)R�1

�
:

where

M = E �D�> � �D> + �C�>
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Table 1.1: The statistical �t in the preferred speci�cation is robust to
alternative restrictions and an alternative factor ordering.

mean R2 for groups of variables
Preferred restrictions Alternative restrictions

Real output and income (21) 58% 58%
Employment and hours (27) 55% 56%
Price Indexes (16) 58% 57%
Key economic variables (20) 62% 61%

The table supports the argument that a di¤erent set of restricted variables does not
signi�cantly change the estimated factors. Moreover, the R2�s are robust to an
alternative factor ordering. Consider for instance a unit restriction imposed on
"Industrial Production: Mining" as an alternative to the a unit restriction on "Industrial
Production: Manufacturing" as in the preferred speci�cation. This alternative restriction
does not lead to a signi�cantly di¤erent R2 for "Industrial Production: Mining" as R2

stays within 8-9 percent in both speci�cations.

Notes: "Real output and income", "Employment and hours" and "Price Indexes" in the
left column correspond to the organization of the panel into groups of similar variables;
see the data appendix. The column heading "Key economic variables" corresponds to the
set of variables used in the forecast error variance decomposition (the set is also used by
Bernanke, Boivin and Eliasz (2005)). The numbers in parentheses refer to the number of
variables in the categories. The alternative exactly identifying restrictions are imposed on
variable numbers 109,24,14,46,23,106,19,77.
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Table 1.2: Akaike information criterion for a given number of factors.
number of factors

lags 3 4 5 6 7 8 9 10
1 - 11.467 - 13.271 - 17.625 - 24.756 - 22.658 - - 30.480 - 43.801
2 - 11.634 - 14.151 - 23.221 - 27.482 - 24.302 - 35.706 - 35.812 - 45.512
3 - 11.616 - 16.646 - 19.462 - - - 37.692 - 40.605 - 50.218
4 - 11.663 - 16.182 - 18.741 - 28.607 - - 36.904 - 38.251 - 48.553
5 - 11.562 - - 19.479 - 26.748 - 30.378 - 37.673 - -
6 - 11.904 - 15.653 - 20.636 - 26.683 - 24.834 - 38.726 - 37.483 - 48.733
7 - 11.784 - 15.918 - 19.039 - - - 37.302 - 37.034 -
8 - 10.627 - 14.955 - 18.993 - 28.004 - - 37.888 - -
9 - 10.671 - 15.037 - 19.456 - 26.212 - 26.262 - - -
10 - 10.670 - 15.257 - 20.138 - 25.987 - 26.582 - - -
11 - 10.898 - 15.212 - 19.939 - - - - -
12 - 11.459 - 15.112 - - - - - -
13 - - 15.045 - 20.121 - - - - -

A bold number represents a minimum.

Table 1.3: Schwarz information criterion for a given number of factors.
number of factors

lags 3 4 5 6 7 8 9 10
1 - 11.392 - 13.139 - 17.418 - 24.457 - 22.252 - - 29.809 - 42.972
2 - 11.485 - 13.886 - 22.806 - 26.885 - 23.490 - 34.645 - 34.469 - 43.854
3 - 11.393 - 16.248 - 18.841 - - - 36.100 - 38.590 - 47.731
4 - 11.365 - 15.651 - 17.912 - 27.413 - - 34.782 - 35.565 - 45.237
5 - 11.189 - - 18.443 - 25.255 - 28.347 - 35.020 - -
6 - 11.456 - 14.857 - 19.392 - 24.893 - 22.397 - 35.543 - 33.454 - 43.759
7 - 11.262 - 14.990 - 17.588 - - - 33.588 - 32.333 -
8 - 10.030 - 13.894 - 17.335 - 25.616 - - 33.643 - -
9 - 9.999 - 13.843 - 17.590 - 23.526 - 22.606 - - -
10 - 9.924 - 13.930 - 18.066 - 23.002 - 22.520 - - -
11 - 10.078 - 13.753 - 17.659 - - - - -
12 - 10.563 - 13.520 - - - - - -
13 - - 13.320 - 17.426 - - - - -

Table 1.4: Hannan and Quinn information criterion for a given number
of factors.

number of factors
lags 3 4 5 6 7 8 9 10
1 - 11.438 - 13.219 - 17.544 - 24.639 - 22.499 - - 30.217 - 43.476
2 - 11.576 - 14.047 - 23.058 - 27.248 - 23.984 - 35.290 - 35.285 - 44.862
3 - 11.529 - 16.490 - 19.219 - - - 37.068 - 39.815 - 49.243
4 - 11.546 - 15.974 - 18.416 - 28.139 - - 36.072 - 37.198 - 47.253
5 - 11.416 - - 19.073 - 26.163 - 29.582 - 36.633 - -
6 - 11.729 - 15.341 - 20.148 - 25.981 - 23.879 - 37.478 - 35.904 - 46.783
7 - 11.580 - 15.554 - 18.470 - - - 35.846 - 35.191 -
8 - 10.393 - 14.539 - 18.343 - 27.068 - - 36.224 - -
9 - 10.408 - 14.569 - 18.724 - 25.159 - 24.829 - - -
10 - 10.378 - 14.737 - 19.326 - 24.817 - 24.990 - - -
11 - 10.577 - 14.640 - 19.045 - - - - -
12 - 11.108 - 14.488 - - - - - -
13 - - 14.369 - 19.064 - - - - -
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Table 1.5: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(1)
h r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
1 140:00�

f0:000g
218:04�
f0:000g

252:36�
f0:000g

304:13�
f0:000g

312:15�
f0:000g

362:92�
f0:000g

360:50�
f0:000g

384:54�
f0:000g

2 161:83�
f0:000g

250:56�
f0:000g

294:05�
f0:000g

363:69�
f0:000g

387:10�
f0:000g

442:70�
f0:000g

450:37�
f0:000g

471:28�
f0:000g

3 181:62�
f0:000g

276:12�
f0:000g

329:30�
f0:000g

419:71�
f0:000g

460:05�
f0:000g

505:91�
f0:000g

532:32�
f0:000g

548:44�
f0:000g

4 188:83�
f0:000g

296:30�
f0:000g

361:72�
f0:000g

480:70�
f0:000g

531:55�
f0:000g

558:04�
f0:000g

623:72�
f0:000g

630:75�
f0:000g

5 210:70�
f0:000g

324:65�
f0:000g

401:96�
f0:000g

535:43�
f0:000g

607:16�
f0:000g

613:96�
f0:000g

731:48�
f0:000g

742:25�
f0:000g

6 230:42�
f0:000g

347:53�
f0:000g

444:24�
f0:000g

593:32�
f0:000g

685:95�
f0:000g

675:11�
f0:000g

825:78�
f0:000g

837:65�
f0:000g

7 243:14�
f0:000g

368:32�
f0:000g

482:16�
f0:000g

650:24�
f0:000g

755:09�
f0:000g

734:22�
f0:000g

906:11�
f0:000g

922:48�
f0:000g

8 288:93�
f0:000g

418:07�
f0:000g

540:25�
f0:000g

732:82�
f0:000g

866:36�
f0:000g

799:02�
f0:000g

1; 024:43�
f0:000g

1; 045:57�
f0:000g

9 308:38�
f0:000g

440:20�
f0:000g

573:01�
f0:000g

782:47�
f0:000g

927:33�
f0:000g

849:77�
f0:000g

1; 094:50�
f0:000g

1; 123:82�
f0:000g

10 320:56�
f0:000g

459:57�
f0:000g

598:82�
f0:000g

819:95�
f0:000g

991:55�
f0:000g

884:62�
f0:000g

1; 182:08�
f0:000g

1; 210:20�
f0:000g

12 344:19�
f0:000g

497:36�
f0:000g

643:14�
f0:000g

869:03�
f0:000g

1; 043:41�
f0:000g

942:27�
f0:000g

1; 272:57�
f0:000g

1; 302:48�
f0:000g

13 377:01�
f0:000g

539:93�
f0:000g

702:67�
f0:000g

935:97�
f0:000g

1; 108:93�
f0:000g

1; 011:22�
f0:000g

1; 359:05�
f0:000g

1; 386:90�
f0:000g

14 404:69�
f0:000g

576:69�
f0:000g

738:00�
f0:000g

990:09�
f0:000g

1; 174:94�
f0:000g

1; 064:53�
f0:000g

1; 442:79�
f0:000g

1; 470:31�
f0:001g

15 425:71�
f0:000g

617:82�
f0:000g

788:63�
f0:000g

1; 040:62�
f0:000g

1; 240:25�
f0:000g

1; 122:43�
f0:000g

1; 515:66�
f0:000g

1; 549:43�
f0:003g

Test statistics based on smoothed residuals from a VAR(2)
h r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
1 58:66�

f0:000g
59:48�
f0:000g

88:26�
f0:000g

88:05�
f0:000g

120:09�
f0:000g

127:29�
f0:000g

150:73�
f0:000g

158:01�
f0:000g

2 69:11�
f0:000g

72:03�
f0:000g

105:40�
f0:000g

110:30�
f0:003g

162:96�
f0:000g

178:34�
f0:002g

227:23�
f0:001g

220:72
f0:150g

3 73:66�
f0:000g

90:34�
f0:000g

138:02�
f0:000g

161:16�
f0:001g

222:99�
f0:000g

240:76�
f0:010g

313:06�
f0:002g

297:66
f0:527g

4 93:25�
f0:000g

113:36�
f0:000g

180:74�
f0:000g

209:08�
f0:000g

287:91�
f0:000g

303:90�
f0:021g

397:97�
f0:003g

393:07
f0:588g

5 118:35�
f0:000g

139:77�
f0:000g

218:54�
f0:000g

250:64�
f0:000g

342:75�
f0:000g

360:20
f0:060g

466:35�
f0:019g

457:32
f0:915g

6 128:73�
f0:000g

154:08�
f0:000g

244:03�
f0:000g

284:04�
f0:001g

391:37�
f0:000g

402:32
f0:250g

519:99
f0:139g

526:91
f0:986g

7 166:25�
f0:000g

185:86�
f0:000g

277:94�
f0:000g

333:40�
f0:000g

475:13�
f0:000g

477:40
f0:163g

609:53
f0:105g

633:67
f0:965g

8 185:63�
f0:000g

204:51�
f0:000g

299:97�
f0:000g

366:12�
f0:001g

521:55�
f0:000g

528:66
f0:296g

663:27
f0:330g

688:64
f0:998g

9 193:90�
f0:000g

221:42�
f0:000g

322:41�
f0:000g

393:23�
f0:005g

570:79�
f0:000g

579:33
f0:453g

731:97
f0:462g

782:77
f0:998g

10 216:72�
f0:000g

246:77�
f0:000g

352:08�
f0:000g

439:60�
f0:003g

624:22�
f0:000g

612:92
f0:773g

810:22
f0:491g

858:89
f1:000g

12 242:06�
f0:000g

279:14�
f0:000g

402:61�
f0:000g

492:10�
f0:001g

679:98�
f0:000g

658:83
f0:887g

872:45
f0:665g

943:96
f1:000g

13 257:49�
f0:000g

294:25�
f0:000g

421:62�
f0:000g

532:21�
f0:001g

730:13�
f0:000g

711:68
f0:927g

935:29
f0:796g

1; 020:73
f1:000g

14 270:65�
f0:000g

319:49�
f0:000g

460:12�
f0:000g

567:78�
f0:001g

782:21�
f0:000g

757:77
f0:969g

995:82
f0:895g

1; 084:72
f1:000g

The rows represent test statistics of residual autocorrelation up to order h. H0: Residual
autocorrelation up to lag h is zero. p-values in fg: � indicates rejection on 5 pct. level.

42



Table 1.6: Multivariate Portmanteau tests.

Test statistics based on smoothed residuals from a VAR(3)
h r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
1 26:30�

f0:002g
52:15�
f0:000g

49:16�
f0:003g

fa iled max. iterations 64:70
f0:452g

100:79
f0:068g

97:81
f0:543g

2 31:19�
f0:027g

71:02�
f0:000g

87:50�
f0:001g

- - 102:85
f0:950g

178:52
f0:178g

160:17
f0:983g

3 46:73�
f0:011g

92:27�
f0:000g

118:99�
f0:001g

- - 156:50
f0:972g

247:82
f0:402g

239:47
f0:996g

4 64:98�
f0:002g

106:51�
f0:001g

147:55�
f0:001g

- - 194:08
f0:999g

306:45
f0:751g

299:03
f1:000g

5 74:80�
f0:004g

123:08�
f0:001g

174:07�
f0:003g

- - 224:64
f1:000g

344:81
f0:986g

367:33
f1:000g

6 99:72�
f0:000g

155:54�
f0:000g

212:95�
f0:001g

- - 284:73
f1:000g

419:23
f0:987g

446:80
f1:000g

7 114:30�
f0:000g

166:46�
f0:001g

231:74�
f0:003g

- - 328:48
f1:000g

468:23
f0:999g

496:79
f1:000g

8 120:55�
f0:000g

185:85�
f0:001g

260:84�
f0:003g

- - 370:56
f1:000g

527:45
f1:000g

574:34
f1:000g

9 134:73�
f0:000g

199:94�
f0:001g

279:82�
f0:008g

- - 404:49
f1:000g

593:54
f1:000g

636:62
f1:000g

10 157:52�
f0:000g

212:42�
f0:004g

301:64�
f0:014g

- - 446:82
f1:000g

653:77
f1:000g

709:65
f1:000g

11 170:53�
f0:000g

239:61�
f0:001g

345:27�
f0:003g

- - 490:68
f1:000g

708:49
f1:000g

783:20
f1:000g

12 183:29�
f0:000g

253:33�
f0:002g

377:71�
f0:002g

- - 527:04
f1:000g

763:42
f1:000g

841:09
f1:000g

Test statistics based on smoothed residuals from a VAR(4)
h r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10
1 21:00�

f0:013g
28:82�
f0:025g

60:72�
f0:000g

24:66
f0:924g

- 64:46
f0:460g

125:89�
f0:001g

105:20
f0:341g

2 37:59�
f0:004g

43:90
f0:078g

92:43�
f0:000g

52:71
f0:957g

- 94:92
f0:987g

171:86
f0:283g

176:64
f0:882g

3 60:32�
f0:000g

63:89
f0:062g

121:33�
f0:001g

75:17
f0:993g

- 141:01
f0:998g

216:79
f0:886g

230:63
f0:999g

4 67:40�
f0:001g

75:83
f0:148g

139:58�
f0:006g

89:52
f1:000g

- 166:00
f1:000g

256:54
f0:998g

288:91
f1:000g

5 90:86�
f0:000g

104:85�
f0:033g

175:20�
f0:002g

126:35
f0:999g

- 219:22
f1:000g

314:99
f1:000g

351:50
f1:000g

6 103:86�
f0:000g

110:88
f0:142g

191:64�
f0:012g

140:07
f1:000g

- 257:89
f1:000g

372:87
f1:000g

404:90
f1:000g

7 109:69�
f0:000g

126:97
f0:158g

218:54�
f0:014g

162:72
f1:000g

- 292:05
f1:000g

447:16
f1:000g

478:20
f1:000g

8 121:38�
f0:000g

145:09
f0:143g

239:23�
f0:030g

185:96
f1:000g

- 323:48
f1:000g

512:27
f1:000g

535:13
f1:000g

9 143:21�
f0:000g

165:07
f0:110g

265:68�
f0:033g

217:70
f1:000g

- 363:93
f1:000g

570:38
f1:000g

599:09
f1:000g

10 155:96�
f0:000g

196:74�
f0:026g

314:68�
f0:003g

267:49
f1:000g

- 412:06
f1:000g

635:52
f1:000g

677:01
f1:000g

11 167:10�
f0:000g

212:70�
f0:031g

332:92�
f0:010g

284:29
f1:000g

- 447:43
f1:000g

685:14
f1:000g

728:51
f1:000g

The rows represent test statistics of residual autocorrelation up to order h. H0: Residual
autocorrelation up to lag h is zero. p-values in fg: � indicates rejection on 5 pct. level.
Unreported numbers show that a VAR(5) �xes the residual autocorrelation for r = 5,
whereas for r = 3, the problem remains.
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Table 1.7: Forecast error variance decompositions for key macroeconomic
variables.

F (8; 1) F (8; 2) F (8; 3) F (8; 4) F (8; 5) F (8; 6) F (8; 7) FFR) F� total Idio:
6m 0:06 0:03 0:02 0:06 0:07 0:07 0:04 0:04 0:39 0:61
12m 0:06 0:03 0:04 0:07 0:07 0:06 0:06 0:05 0:43 0:57
24m 0:06 0:03 0:06 0:07 0:07 0:06 0:08 0:05 0:47 0:53
60m 0:06 0:03 0:10 0:07 0:07 0:05 0:09 0:04 0:51 0:49

60-month horizon F (8; 1) F (8; 2) F (8; 3) F (8; 4) F (8; 5) F (8; 6) F (8; 7) FFR
77) Federal funds rate 0:03 0:06 0:35 0:23 0:03 0:08 0:19 0:03
16) IP: total index 0:50 0:03 0:05 0:11 0:03 0:10 0:09 0:07
108) CPI-U: all items 0:02 0:07 0:20 0:09 0:42 0:02 0:09 0:02
78) US Tbill, 3m. 0:03 0:06 0:35 0:20 0:03 0:10 0:18 0:02
81) Tbond const 5yr. 0:04 0:07 0:38 0:17 0:05 0:18 0:09 0:01
96) Monetary base 0:00 0:02 0:02 0:02 0:01 0:01 0:03 0:00
93) Money stock: M2 0:01 0:06 0:03 0:01 0:03 0:03 0:06 0:01
74) FX: Japan 0:01 0:01 0:01 0:00 0:00 0:01 0:03 0:00
102) NAPM commodity prices 0:02 0:06 0:17 0:05 0:10 0:07 0:11 0:06
17) Capacity util rate 0:03 0:01 0:17 0:12 0:09 0:04 0:21 0:12
49) Pers cons exp: total 0:01 0:00 0:01 0:01 0:04 0:00 0:01 0:00
50) Pers cons exp: tot. dur 0:01 0:00 0:01 0:00 0:01 0:00 0:01 0:00
51) Pers cons exp: nondur. 0:01 0:00 0:01 0:00 0:03 0:00 0:01 0:00
26) Unempl. rate: all wrks 0:05 0:02 0:21 0:10 0:19 0:05 0:21 0:15
48) NAPM Empl. Index 0:02 0:01 0:20 0:12 0:07 0:10 0:22 0:15
118) Avg hr earnings constr. 0:01 0:01 0:01 0:00 0:01 0:00 0:01 0:00
54) Housing starts: nonfarm 0:02 0:07 0:14 0:04 0:07 0:04 0:20 0:06
62) NAPM new orders 0:03 0:02 0:18 0:10 0:04 0:11 0:23 0:14
71) SP500: dividend 0:05 0:08 0:30 0:03 0:08 0:03 0:14 0:02
120) Consumer expec. (Mich.) 0:02 0:05 0:15 0:09 0:21 0:03 0:04 0:05

The upper panel illustrates the total fraction that the eight factors can explain of the
forecast error variance at varying horizons. "Idio." means idiosyncratic variance. FFR
means federal funds rate, which is the shock in focus. The lower table shows the 60-month
ahead forecast error variance decomposition for key macroeconomic variables.
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Figure 1.1: The panel information criterion ICp3 of Bai & Ng (2002).
The criterion does not provide information about the number of lags in the VAR so the
criterion as a function of the number of static factors, r; is calculated for a given number
of lags. On top of each bar the number of factors is plotted. Eight factors seem to be a
good choice when model parsimony is taken into account.
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Figure 1.2: Adjusted average R2 of all variables in the panel for all models.

For each FAVAR model with r factors and p lags in the VAR, the �R2 is calculated. The
number on top of each bar represents the number of lags in the VAR with r factors.
Note how the incremental value of �R2 diminishes as more factors are added.
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Figure 1.4: Autocorrelation functions for the preferred speci�cation ver-
sus a VAR(1).
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The smoothed residual autocorrelation functions for the preferred speci�cations for
FAVARs with 3,4,...,10 factors versus their VAR(1) counterpart are plotted to empha-
size that VAR(1) dynamics are not su¢ cient for whiteness in the monetary policy factor
residuals. Unreported results show that there is virtually no di¤erence in the autocorre-
lation function for r4p7(4) versus BBE-EM version r4p13(4).
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Figure 1.5: R2 for the preferred model versus the BBE-EM and Bernanke,
Boivin and Eliaz.
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Figure 1.8: "Industrial production factor" and "unemployment factor".
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Figure 1.9: "NAPM factor" and "(overtime)hours factor".
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Correlation between factor 3 and each of the variables as a function of (�,Q,�).
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Figure 1.10: "In�ation factor" and "employment factor".
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Correlation between factor 5 and each of the variables as a function of (�,Q,�).
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Figure 1.11: "Capacity utilization factor" and "Monetary policy factor".

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n.

      real output and income (Un)employment/hours Cons Hous. Inv/orders Stocks FX Interest rates Money agg. Price indices Earn. Misc.

Major categories of the 120 variables in the panel. See appendix.7

Correlation between factor 7 and each of the variables as a function of (�,Q,�).
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Figure 1.13: Contribution of the monetary policy shock to forecast error
variance decomposition.
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The �gure plots the forecast error variance decomposition along the forecast horizon (the
horizontal axis). Dashed gridlines indicate a larger scale compared to the dotted gridlines.
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Abstract*

This paper presents a dynamic factor model in which the extracted factors and

shocks are given a clear economic interpretation. The economic interpretation of

the factors is obtained by means of a set of over-identifying loading restrictions,

while the structural shocks are estimated following standard practices in the SVAR

literature. Estimators based on the EM algorithm are developed. We apply this

framework to a large panel of US monthly macroeconomic series. In particular, we

identify nine macroeconomic factors and discuss the economic impact of monetary

policy stocks. The results are theoretically plausible and in line with other �ndings

in the literature.

JEL classi�cations: E3, E43, C51, E52, C33
Keywords: Monetary policy, Business Cycles, Factor Models, EM Algorithm.

*We thank Tom Engsted, Priscilla To¤ano and participants at the Danish PhD Workshop in

Finance (2008) for helpful comments and suggestions.
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2.1 Introduction

In recent years, factor models have become a standard tool in applied macroeco-

nomics and �nance. They have been applied in empirical macroeconomics for

predictions (Bernanke & Boivin (2003), Forni et al. (2005), and Stock & Watson

(2002a,b)); for structural analysis (Forni & Reichlin (1998), Forni et al. (2008), Gi-

annone et al. (2004, 2002), Houssa (2008a), Bernanke et al. (2005) and Stock &

Watson (2005)); and for constructing business cycle indicators (Forni et al. (2001),

Kose et al. (2003), Houssa (2008b), and Otrok & Whiteman (1998)). Applications

of factor models in �nance include the arbitrage pricing theory (Chamberlain &

Rothschild (1983) and Ingersoll (1984)); the measurement of risks (Campbell et al.

(1997), ch. 2); the estimation of the conditional risk-return relation in Ludvigson &

Ng (2007); bond market applications (Mönch (2008), Ludvigson & Ng (2008) and

Diebold et al. (2008)); and the prediction of the volatility of asset returns (Alessi

et al. (2007)).

The increasing popularity of factor models can be explained by two model fea-

tures. First, factor models distinguish measurement errors and other idiosyncratic

(series-speci�c) disturbances from structural shocks. As such, dynamic factor models

have a direct mapping from observed data to their theoretical counterparts1. Sec-

ond, large data sets are becoming increasingly available and classical multivariate

regression models generally perform poorly in �tting them. By contrast, Dynamic

Factor Models (DFM), exploiting the dynamic and cross-sectional structure of the

data set, allow a large panel to be analyzed through a (small) set of underlying

extracted factors. Moreover, various estimation techniques have been developed

recently to analyze factor models in large panels. For instance, Stock & Watson

(2002a,b) and Forni et al. (2000) proposed a non-parametric estimation approach

based on principal components. The former uses the time domain method while

the latter suggests a frequency domain estimation technique. In a related literature,

Otrok & Whiteman (1998) and Kim & Nelson (1999) propose a Bayesian estimation

technique whereas Doz et al. (2006, 2007) and Jungbacker & Koopman (2008) use

an estimation approach based on the EM algorithm.

While these studies have provided important contributions to the literature on

factor models, some identi�cation issues remain, however. In particular, it is often

1Typically, these theoretical counterparts are de�ned within a DSGE model (see for example
Altug (1989), Sargent (1989) and recently Boivin & Giannoni (2006)).
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the case that the (static) factors estimated in applied work do not necessarily have

a well-de�ned and unambiguous economic interpretation2. A standard procedure

amounts to inferring the economic interpretation of the factors from the dominant

factor loadings. This approach, however, neglects the non-dominant (but possibly

signi�cant) loadings and hence does not necessarily generate unambiguous and well-

de�ned interpretations of the factors.

In this paper we address this identi�cation problem by using a procedure that

imposes a speci�c and well-de�ned interpretation on the static factors. The economic

interpretation of the extracted static factors is based on a set of overidentifying

restrictions on factor loadings. Furthermore, a set of standard exclusion restrictions

on the impact matrix is used to identify the structural shocks. We employ the

iterative maximum likelihood estimation approach as in Doz et al. (2006, 2007) and

Jungbacker & Koopman (2008) which is an iterative maximum likelihood method.

We illustrate our approach by revisiting the large cross-section data analyzed

in Bernanke et al. (2005). We aim at identifying and extracting from the data

panel nine macroeconomic factors respectively related to in�ation, unemployment,

economic activity, consumption, state of the business cycle, residential investments,

�nancial markets and monetary policy. Given the identi�cation of these factors,

we assess and analyze (as in Bernanke et al. (2005)) the impact of monetary policy

shocks on a number of key observable through impulse response analysis and variance

decompositions.

Our paper is closely related to a number of recent studies. Boivin et al. (2009)

and Reis & Watson (2008) impose loadings restrictions to identify a measure of pure

in�ation for the US economy. In the same way, Forni & Reichlin (2001) and Kose

et al. (2003) use loading restrictions to di¤erentiate between world, regional and

country factors. Finally, Boivin & Giannoni (2006) employ loading restrictions to

estimate the theoretical concepts of variables de�ned in DSGE model. The main

di¤erence between these studies and ours is that we employ the EM algorithm to

derive closed form solutions for (linearly) restricted factor loadings. As such, we

2Static factors are related to the variance-covariance matrix of the data while dynamic factors
capture the property of their spectral density matrix. See Forni et al. (2000) for a literature
review. Recent studies provide a structural interpretation to dynamic factors (shocks), see for
example Giannone et al. (2004); Houssa (2008a) and Forni et al. (2008). The main di¤erence
between these studies and ours is that we identify (in economic and structural terms respectively)
the static and dynamic factors.
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can combine various loading restrictions allowing to obtain a clear macroeconomic

interpretation of the extracted factors (see sections 2 and 3).

The remainder of the paper is organized as follows. First, the methodological

approach is explained in Section 2.2. We introduce a dynamic factor model and

discuss the identi�cation restrictions. In addition, closed-form solutions for the pa-

rameter estimates, consistent with the identi�cation schemes and using results from

Shumway & Sto¤er (1982) and Wu et al. (1996), are presented. An empirical illus-

tration of the impact of US monetary policy shocks on the macroeconomic factors

is provided in Section 2.3. Section 2.4 concludes.

2.2 Methodology

We �rst introduce the DFM. More details can be found in Forni et al. (2000) and

Forni & Lippi (2001). Subsequently, we employ the quasi-maximum likelihood esti-

mation approach as in Doz et al. (2006, 2007) and Jungbacker & Koopman (2008).

We take this approach one step further by imposing (over-) identifying restrictions

on the loadings and on the impulse response function (IRF). This allows a clear

economic interpretation of the static factors and a structural identi�cation of the

shocks.

2.2.1 Dynamic Factor Model

Consider a panel of observable economic variables yi;t; where i denotes the cross-

section unit, i = 1; :::; N while t refers to the time index, t = 1; :::; T: The panel of

observed economic variables is transformed into stationary variables with zero mean

and unit variance. These transformed variables are labeled by xi;t. Dynamic factor

models assume that a variable xi;t can be decomposed into two components, the

common component, �it; and the idiosyncratic component �it:

xit = �it + �it: (2.1)

Furthermore, in exact dynamic factor models it is assumed that the idiosyncratic and

common components are uncorrelated at all leads and lags and across all variables,

E(�i;t�j;s) = 0; 8 s; t; i; j: The common component is assumed to be driven by a
small number r; r << N; of common factors ft = (f1t, f2t; � � � ; frt)>:
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xit = �>i ft + �it; (2.2)

where �i is a r � 1 vector of factor loadings measuring the exposure of xi;t to the
factors ft: On the other hand, the idiosyncratic component is driven by variable-

speci�c noises. Stacking equation (2.2) over all cross-section units, xi;t; i = 1; :::; N;

gives

Xt = �ft + �t; (2.3)

where Xt = (x1t; : : : ; xNt)
>, �t = (�1t; : : : ; �Nt)

>; and � is a N � r matrix of factor

loadings, � = (�1; :::; �N)>: Equation (2.3) is called a static factor model. "Static"

stands for the fact that the observed variables only load contemporaneously on the

factors.

To close the model, factor dynamics have to be speci�ed. We assume that the

r-dimensional vector of common factors ft has a VAR(p) representation

�(L)ft = ��t; (2.4)

where �(L) = I � �1L � �2L
2 � : : : � �pL

p; with �j denoting a r � r matrix of

autoregressive coe¢ cients (j = 1; : : : ; p): Moreover, given the stationarity of the

transformed panel; we impose that the roots of det (�(L)) are outside the complex

unit circle. The q-dimensional vector of dynamic factor innovations is denoted �t
and � represents a r � q transformation matrix. As in Doz et al. (2006) we make

additional distributional assumptions: �t � i:i:d N (0; Q) and �t � i:i:d N (0; R) ;

with Q and R denoting (semi)positive de�nite matrices3.

Using equations (2:3) and (2:4), the model can be summarized in �rst order,

with a rp� 1 state vector Ft; Ft = (f>t ; :::; f>t�p+1)>; by the measurement equation:

Xt = �Ft + �t; (2.5)

3Note that, by assuming i.i.d idiosyncratic components, (2:3)-(2:4) de�ne an exact dynamic
factor model. This is certainly a strong assumption, particularly in the case of large panel data
sets where cross-sectional and serial correlations are expected to be found. As such, (2:3)-(2:4)
represent a misspeci�ed model. However, Doz et al. (2006) show that, for large N and T; the exact
factor model estimators are consistent quasi-maximum likelihood estimators for the approximate
factor model.
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and the transition equation:

Ft = �Ft�1 + V Sut; (2.6)

where � is theN�rpmatrix loading, implied by �, � is the rp�rp companion matrix
corresponding to the VAR(p) in (2:4); V =

�
�>; 0>r(p�1)�q

�>
, and ut represents the

structural shocks that are identi�ed through the matrix S (see section 2.2.2 below):

Inverting the VAR in (2.6) and substituting Ft in (2.5) gives

Xt = B(L)ut + �t; (2.7)

where B(L) = �(I � �L)�1V S; represents the IRF to ut:

The state-space system, de�ned by equations (2.5) and (2.6), is not uniquely

identi�ed. We address the econometric identi�cation as well as the economic in-

terpretation of the static factors in section 2.2.2 Finally, the identi�cation of the

structural shocks ut is discussed in section 2.2.2.

2.2.2 Economic interpretation

Economic interpretation of the factors and shocks requires additional identi�cation

restrictions. We use two types of restrictions:

1. Loading restrictions allowing for a clear macroeconomic interpretation of the

(static) factors.

The section headed "Economic factors" details this approach.

2. Restrictions on the impact matrix identifying the structural shocks.

The section headed "Structural shocks" details this approach.

Economic factors

We impose a set of restrictions on the loading matrix � in (2:5) and denote the

restricted loading matrix by ��: The linear loading restrictions take the following

general form:

H�vec(�
�) = ��: (2.8)

where �� refers to a ` � 1 vector of ` linear combinations of restrictions of factor
loadings de�ned by H�; H� 2 R`�Nr:
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We use three types of loading restrictions, depending on the information content

of the observables. In particular, economic identi�cation is achieved by means of (i)

unbiasedness restrictions (ii) one-to-one restrictions or (iii) exclusion restrictions.4

The unbiasedness restriction implies that observable xj is an unbiased and direct

information variable for factor fl; l = 1; 2; : : : ; r; :

��j;l = 1; �
�
j;k 6=l = 0: (2.9)

This type of restrictions is used on observables that are assumed to be a direct

measure (up to some measurement error) of the underlying factor. For instance,

our empirical application assumes that the observable �CPI-U: All items�in�ation

is a direct measure for the in�ation factor. As such, the unbiasedness restrictions

imply a unit loading of �CPI-U: All items�in�ation on the in�ation factor and zero

loadings on all other factors. Note that these unbiasedness restrictions allow for

the econometric identi�cation of the DFM as the static factors are now uniquely

de�ned. Our identi�cation approach is an application of Proposition 2 in Geweke &

Singleton (1981) and further discussed in Bork (2008).

The one-to-one restriction implies a one-to-one link between an observable and

a factor. Unlike unbiasedness restrictions, we allow other common factors to a¤ect

the observable as well, i.e. we do not impose ��j;k 6=l = 0. Formally, one-to one

restrictions between observable xj and factor l are ensured by imposing:

��j;l = 1: (2.10)

Finally, contemporaneous exclusion restrictions, i.e. the case where variable xj is

(contemporaneously) not related to the factor fl; take the form of:

��j;l = 0: (2.11)

Note that this identi�cation scheme formalizes and extends the standard informal

identi�cation procedures used in the literature. The standard approach identi�es

the factors from the principal factor loadings of the economic variables, disregard-

ing the smaller loadings. Our identi�cation procedure formalizes this approach by

(i) imposing exclusion restrictions on the non-informative variables, which ensures

4To conform to the static factor structure of the model, all loadings on lagged factors are set to
zero.
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that only information of relevant variables is incorporated in the factor and (ii) fa-

cilitating interpretation of the factors by means of the unbiasedness or one-to-one

restrictions imposing a direct mapping between the observables and the static factor.

The economic interpretation of the factors is obtained by imposing at least one

unbiasedness or a one-to-one restriction per factor. However, while exclusion and

unbiasedness restrictions exclude some observables from the information set of a

factor, we allow for feedback e¤ects across factors. Speci�cally, through the VAR

speci�cation in (2:6) we allow for dynamic interactions among factors. As such,

factors can be correlated and structural shocks are eventually transmitted across all

observables.

Structural shocks

In equation (2:7), structural shocks are identi�ed. We follow the standard iden-

ti�cation procedure in the SVAR literature by choosing an appropriate matrix S

such that the implied restricted IRF, B(L)�; has an economic justi�cation. For

instance, the Blanchard & Quah (1989) long-run restrictions can be obtained by

choosing S such that appropriate elements of B(1)� are equal zero. Sign restric-

tions, recently introduced by Uhlig (2005), can also be ful�lled by choosing S such

that the time path of some elements of B(L)� have an appropriate sign. Popular

sign restrictions include the fact that prices cannot increase following a negative de-

mand shock. Finally, structural identi�cation can be obtained by imposing the Sims

(1980)�s triangular representation on the matrix S. This is the approach followed in

our empirical application in section 2.3.

We �rst impose that the number of static factors equals the number of dynamic

factors, i.e. q = r: This generates a structural shock to each of the static factors.

Thereafter, we use the exclusion restrictions implied by the Cholesky decomposition

of Q = SS 0; with S lower triangular. The structural interpretation of the shocks is

then implied by the ordering of the static factors and discussed in more details in

section 2.3.

2.2.3 Estimation: the EM algorithm

Given the latent nature of the static factors, a standard EM algorithm is used

to estimate the parameters and to extract the implied factors. Denote by �� =

f��; R;�; Qg the set of parameters to be estimated with �� satisfying the set of
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identi�cation restrictions listed in equation (2:8). Conditional on the estimates of

the factors, F̂ (and matrices measuring uncertainty P̂ ); the elements of �� can be

estimated by (Maximization step):

vec (��) = vec (DC�1)

+ (C�1 
R)H>
�

�
H� (C

�1 
R)H>
�

��1
�f�� �H� vec (DC

�1)g ;

R = 1
T

�
E �DC�1D>� ;

vec (�) = vec (BA�1) ;


 = V QV > = 1
T

�
C �BA�1B>� ;

(2.12)

where the estimator for �� follows from a straightforward extension of Wu et al.

(1996). Appendix B.1 o¤ers a derivation of ��:

Conditional on the estimated parameters, �; the latent factors can be extracted

by means of the Kalman smoother and the required moments can be computed

(Expectation step). In particular, the following expectations are generated:

A =
PT

t=1

�
P̂t�1jT + F̂t�1jT F̂

>
t�1jT

�
;

B =
PT

t=1

�
F̂tjT F̂

>
t�1jT + P̂ft;t�1gjT

�
;

C =
PT

t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
;

D =
PT

t=1XtF̂
>
tjT ;

E =
PT

t=1XtX
>
t

(2.13)

with:
F̂tjT = E [Ft j XT ] ;

P̂tjT = E
h
(Ft � F̂tjT )(Ft � F̂tjT )

> j XT
i
;

P̂ft;t�1gjT = E
h
(Ft � F̂tjT )(Ft�1 � F̂t�1jT )

> j XT
i
;

(2.14)
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where E [� j XT ] denotes the expectations operator conditional on the information set
XT = fX1; : : : ; Xtg as implied by the Kalman smoother (as a function of �). See for
instance de Jong &Mackinnon (1988) or de Jong (1989). We iterate sequentially over

the M-step in equation (2:12) and the E-step in equation (2:13) until convergence

of the likelihood starting from di¤erent sets of initial values.5

In our empirical application discussed in section 2.3 the unrestricted model in-

volves 1; 614 parameters to be estimated. This is computationally feasible with

the EM algorithm method. Doz et al. (2006) suggest to initialize the Kalman �l-

ter by the parameters implied by principal components and then �lter the factors.

However, principal component analysis results in orthogonal factors and we prefer

correlated factors6. Consequently, we suggest entertaining an oblique rotation of

the orthogonal factors, which is a common tool in con�rmatory factor analysis and

described in Lawley & Maxwell (1971). This approach does not change the initial

�t but rotates the factors towards a target loading matrix which we choose to be the

exactly identifying loading restrictions. The result is a set of correlated factors from

which a set of implied initial parameters7 consistent with the identifying loading

restrictions can be derived.

2.3 Empirical Application

We illustrate our procedure by revisiting the large data panel analyzed in Bernanke

et al. (2005)8. This data set includes 120 monthly time series covering a large part

of the US economy over the period 1959:1 to 2001:89.

5We de�ne convergence using a relative tolerance of 10�8 for the log-likelihood.
6The Geweke & Singleton (1981) identi�cation scheme allows the factors to be correlated which

is relevant if any macroeconomic interpretation is going to be attached to these factors.
7We experimented with many di¤erent sets of starting values in order to address the sensitivity

of the EM algorithm to starting values. In one of the experiments we imposed very weak priors
on the initial parameter estimates �� = f��; R;�; Qg : In particular, the loading matrix was �lled
with with zeros except for the exactly identifying unit restrictions as explained in equation (2:9).
In another experiment, principal component analysis (PCA) on the panel X generated a set of
orthogonal factors from which a set of starting values of � can be derived. We also experimented
with PCA of r subsets of the dataset where the principal component of each subset represents an
initial estimate of one of the r factors. In the end, we prefer the oblique factor rotation as this
approach results in improved likelihood values and statistical �t compared to the other approaches.

8We thank Jean Boivin for kindly making the data set available on his website, HEC-Montréal,
Canada.

9The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Bernanke
et al. (2005) for details on the data set and on the transformation which results in a sample size
of T = 511: The data transformation decisions are similar to Stock & Watson (2002b) and based
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The focus of our empirical analysis is to extract a number of factors with an

unambiguous (macro) economic interpretation. Moreover, we analyze the economic

impact of monetary policy shocks on the US economy.

We �rst discuss the identi�cation of the factors in section 2.3.1. Then in section

2.3.2 the statistical and economic signi�cance of the over-identifying restrictions

are evaluated by means of standard information criteria, R-squared and a likelihood

ratio test. The results are then presented in section 2.3.2 and the empirical monetary

policy analysis undertaken in section 2.3.2.

2.3.1 Identi�cation

The identi�cation of the factors and the structural monetary policy shocks are now

discussed in an empirical setting. Firstly, the number of factors is discussed in section

2.3.1. Subsequently, we follow the structure represented by the two numbered items

in 2.2.2 by a discussion of 1) economic interpretation in of the identi�ed factors in

section 2.3.1 and 2) structural monetary policy shocks in section 2.3.1. Thus, the

economic identi�cation in 1) and the structural identi�cation in 2) are discussed

separately but it should be mentioned that the order in which the factors enters

into the VAR in (2:6) is in�uenced by the recursive structural identi�cation of the

shocks.

Determining the number of factors

An important choice in factor analysis concerns the unknown number of static factors

r that span the factor space. Bai & Ng (2007, 2002), Stock & Watson (2002b) and

Hallin & Liska (2007) represent important contributions to the literature on the

determination of the number of factors. However, applications of the proposed

tests usually result in substantial variation in the number of factors. For example,

Giannone et al. (2004) �nd that the number of shocks (dynamic factors) driving the

US economy is equal to two (i.e. bq = 2). Stock & Watson (2005) analyzing a similar
large US data set set, but with a di¤erent method, argue that seven dynamic factors

and nine static factors are required ( bq = 7 and br = 9). Bai & Ng (2007) and Hallin
& Liska (2007) �nd that bq = 4:
on judgemental and preliminary data analysis of each series, including unit root tests.
Prior to the estimation, we de-mean the series and divide them by their standard deviation such

that the resulting series have zeros mean and unit variance.
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Part of the di¤erence in the number of factors can be attributed to the fact

that earlier research focussed primarily on �tting the leading statistical indicators

for economic activity and in�ation. Stock & Watson (2005) demonstrate, however,

that additional factors are required to �t the other dimensions of the data panel.

Bernanke et al. (2005) do not use the popular information criteria by Bai & Ng

(2002) because this test does not address the number of lags of the factors. They

prefer a model with four factors of which three are latent and the last is the federal

funds rate. Bork (2008) also consider the same data as in Bernanke et al. (2005)

and based on various information criteria including the criteria by Bai & Ng (2002)

he �nds that an exactly identi�ed factor-augmented VAR with r̂ = 8 explains the

data well.

Based on the reasoning by Stock &Watson (2005) and the results of Bork (2008)

we allow for nine factors and include six lags in the dynamics of the factors (r =

q = 9 and p = 6)10: The motivation for introducing more factors is based on the

observation that our approach, unlike the latent factor approach, imposes a large

number of over-identifying restrictions on the loading matrix. These over-identifying

restrictions most likely reduce the �t of each of the factors. This decrease in �exibility

is compensated for by increasing the number of factors.

Economic interpretation of the factors

We identify the nine retained static factors using a relatively wide array of economic

concepts or interpretations, relevant for empirical monetary policy analysis. The

identi�cation of seven out of the nine factors is motivated by small-scale macroeco-

nomic theoretical models. In particular, we retain four (aggregate supply) factors:

an in�ation factor (�); an economic activity factor (y); an hours in production fac-

tor (hrs) functioning as a bu¤er to changes in demand and an unemployment factor

(un). The standard aggregate demand equation motivates the identi�cation of the

following three factors: a consumption factor (c); a housing factor (h) approximat-

ing (residential) investment; and a monetary policy factor (i)11.

The remaining two factors have an interpretation either as additional information

10Our results are robust to including more lags and to reducing the number of lags to p = 4:
Choosing a lower order VAR than p = 4 seems to leave some of the endogeneous response of the
monetary policy in the VAR residuals which in turn a¤ects the impulse response functions; see the
following sections for a discussion.
11For more details we refer to Bernanke et al. (2005) for a nice exposition on the mapping

between a small-scale macro model and a factor model.
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factors or as �nancial factors.12 More precisely, we identify a stock market factor (s)

which may capture wealth e¤ects on consumption, a Tobin�s q e¤ect on investments

as well as serving as an information factor for monetary policy in the sense that

deciphering the forward-looking expectations of the private sector embedded in stock

prices is relevant information for policy makers. Finally, we de�ne a commodity

price factor (pcom) which is intended to indicate nascent in�ation upon which the

monetary policy makers may respond to. We experimented with various factor

speci�cations and discuss these later in section 2.3.1.

[Insert Table 2:1]

Table 2.1 o¤ers an overview of the identi�cation restrictions. The identi�cation

of the respective factors is obtained in two steps. First, we identify the factors by

imposing a set of unbiasedness restrictions. In particular, we impose unbiasedness

restrictions on nine observables closest to the economic interpretation of each of

the factors (see shading areas in Table 2.1).13 This results in an exactly identi�ed

system (along the lines of Proposition 2 in Geweke & Singleton (1981)). This exactly

identi�ed latent factor model is labelled as the �unrestricted model�.

Second, to enhance economic interpretation of the factors we impose overidentifying

restrictions in the form of exclusion restrictions (see empty boxes in Table 2.1).

Generally, the identi�cation scheme is based on two strategies. First, exclu-

sion restrictions are primarily imposed on slow-moving variables while fast-moving

12Information variables (or information factors) are assumed to be monitored by central banks
because they may display relevant information that is not available in typical macroeconomic
variables. See Leeper et al. (1996), Christiano et al. (1999) and very recently Bjørnland & Leitemo
(2009) for a discussion. Generally, information variables are fast-moving variables that respond
contemporaneously to all variables. Examples of fast moving variables include auction market
commodity prices, stock prices, and options on �nancial instruments.
13The target observables of the factors are: the CPI-all items index (series 108) for the in�ation

factor (�); the Unemployment Rate all workers (series 26) for the unemployment factor (un);
the Industrial Production-total index (series 16) for the economic activity factor (y); Personal
Consumption Expenditure all items (series 49) for the consumption factor (c); Average weekly
Hours of Production in manufacturing (series 47) for the hours in production factor (hrs); Housing
Starts non-farm (series 54) for the housing factor (h); NAPM commodity price index (series 102)
for the commodity price factor (pcom); The e¤ective federal funds rate (series 77) by the monetary
policy rate factor (i); and �nally the NYSE stock price index (series 66) for the stock market factor
(s). See appendix A.1 page 162 for the de�nition and numbers assigned to each observable in the
data panel.
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observables are left unrestricted (except for housing starts and stock market obser-

vations).14 This modeling choice is motivated by the idea that fast moving variables,

containing a speculative component, can be considered as general and timely infor-

mation variables for macroeconomic developments. Second, we di¤erentiate between

nominal, real, information, and policy factors.

We de�ne: one nominal factor (in�ation factor); four real factors (unemploy-

ment, economic activity, consumption, and hours in production factors); three in-

formation factors (housing, commodity price, and stock market factors); and one

policy factor (monetary policy factor).

In our identi�cation strategy, nominal factors exclude all types of real observables

as (contemporaneous) information variables. In the same way, real factors exclude

nominal variables. Information factors exclude all slow-moving real and nominal

observables. Finally, the policy factor loads freely on all observables (except for

the necessary unbiasedness restrictions). Details on the restrictions per variable are

described in more detail in Appendix A and displayed in terms of shaded and empty

cells in Table 2.1.

Identi�cation of structural monetary policy shocks

Dynamic factor models (DFMs) or related models such as FAVARs (e.g. Bernanke

et al. (2005)) or large Bayesian VARs (Banbura et al. (2008)) are increasingly used to

assess the economic impact of monetary policy shocks. The main advantages of these

models over the commonly-used small-scale VAR models are well understood: (i) a

large information set is used in the former models leaving less scope for the omitted

variable problem or the fundamentalness problem (see e.g Forni et al. (2008)); (ii)

the results are more robust, i.e. less dependent on the particular choice of variables

than in a small-scale VAR; (iii) the formal structure of the DFMs, FAVARs or

BVARs, is su¢ ciently strict to contain estimation problems.

The structural analysis of monetary policy shocks proceeds as in conventional

small-scale VAR models in several respects. First of all, the factors in DFMs,

FAVARs or BVARs play the role of the variables in the conventional VAR. Provided

14We use the de�nition of fast- and slow-moving variables of Bernanke et al. (2005) except
housing starts and stock market returns, which we assume not to respond contemporaneously to
some factors. This assumption helps empirically to distinguish a housing factor from a stock market
factor.
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that one of the factors is the federal funds rate, the issue of identifying the structural

monetary policy shock from the reduced form VAR residuals therefore applies ex-

actly similar to the conventional VAR. Accordingly, the identi�cation schemes often

entertained in the structural VAR (SVAR) literature apply equally well.

In the following a brief introduction to empirical monetary policy analysis us-

ing SVARs is presented; thorough expositions are given in Leeper et al. (1996) and

Christiano et al. (1999). The �rst thing to realize is that most monetary policy

actions are systematic, i.e. the actions are predominantly endogenous response to

the state of the economy. As such, the systematic e¤ects of monetary policy on the

economy are di¢ cult to assess on the basis of historical aggregate time series. How-

ever, not all of the variation in the monetary policy instrument can be characterized

as a response to the state of economy. The unaccounted variation is formalized

with the notion of an exogenous monetary policy shock and a non-exhaustive list of

exogenous policy shocks includes changes in the mix of the board of policy makers,

changes in the preferences of the board15, and technical factors like measurement

errors arising from real-time data versus revised data. An empirical identi�cation

of these shocks is interesting because only when policy makers deviate from the en-

dogenous response it becomes possible to collect empirical evidence of the response

of actual economies to such shocks. Furthermore, the empirical evidence facilitates

a comparison with a similar shock in model economies; cf. Christiano et al. (1999)

for a further discussion.

The VAR model introduced by Sims (1980) represents a widely used model for

evaluating the dynamic response of a monetary policy shock. In particular, all the

variables (or factors) in the VAR are endogenous and can be written in a moving-

average (MA) form of the reduced form VAR residuals. However, these reduced

form VAR residuals lack any economic content because they are linear combinations

of underlying structural shocks but identi�cation of the structural shocks of interest

would lead to a structural MA form of the VAR which in turn allow for an impulse

response analysis of the monetary policy shocks.

The notion of systematic responses of monetary policy and monetary policy

shocks is formalized in a standard fashion by a linear reaction function f for the

15For instance a shift toward more weight on in�ation versus unemployment.
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monetary policy instrument:

it = f (Ft) + �i"
i
t

where Ft are the variables that the policy makers look at (time t information set),
"it is the monetary policy shock normalized to have zero mean and unit variance and

�i is the standard deviation of monetary policy shock. We follow Christiano et al.

(1999) and more recently Bernanke et al. (2005) and apply a recursive identi�ca-

tion approach to the identi�cation of the structural monetary policy shock. This

approach assumes that the monetary policy shock is contemporaneously orthogonal

to the variables that enter the reaction function, i.e. that the variables in Ft do
not respond contemporaneously to time t shock but instead respond with a lag.

This e¤ectively allows for a recovery of the monetary policy shock from the VAR

residuals.

A standard approach in the literature is to relate the reduced form VAR residuals

et to the structural innovations ut by et = Sut where S is a lower triangular Cholesky

decomposition of the covariance matrix of et. Moreover, this particular identi�cation

approach leaves the dynamic impact on all the variables in the VAR to a monetary

policy shock invariant to the ordering of the variables. This result is due to the

proposition in Christiano et al. (1999)16. Nonetheless, the actual ordering of the

variables is based on economic theory as follows.

In�ation is ordered �rst in the VAR as in�ation responds with long and variable

lags to changes in the monetary policy through complex transmission mechanisms.

Delayed response of aggregate demand to changes in monetary policy, periodic wage

negotiations and staggered price-setting among �rms all lead to a drawn out re-

sponse of in�ation. Unemployment is ordered second, industrial production ordered

third and consumption fourth. Underlying this ordering is the idea that a monetary

policy shock will impact consumption before industrial production which in turn af-

fects unemployment that �nally a¤ects in�ation via some rigidity in wage and price

setting. The �fth factor is de�ned as (overtime) hours in production and this factor

is assumed to respond relatively faster. The sixth factor is housing starts and the

seventh factor is a commodity price factor which partly represents commodity prices

determined in auction-like markets and partly represents producer prices including

16However, for non-policy shocks the impulse responses are sensitive to the ordering of the
variables in the VAR.
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crude and intermediate components of the producer price index. The eighth factor

is the monetary policy instrument (federal funds rate). The ninth factor is a stock

market price index factor and obviously fast-moving. We order this last serving as

a informational variable for the monetary policy makers17. Using the previously de-

�ned notation the factors in F are therefore ordered as f�; un; y; c; hrs; h; pcom; i; sg:

Alternative factor speci�cations

The factor speci�cation described above is motivated by theoretical and empirical

monetary policy as well as by the characteristics of the distinct factors in the panel

data. The factors representing in�ation (�) ; output (y) ; and the monetary policy

interest rate (i) follows readily from theoretical small-scale models within monetary

theory18 whereas another standard theoretical ingredient in the form of potential

output
�
yN
�
has not been represented by a factor.

According to Giordani (2004) the omission of the potential output in empirical

VARs results in a �price puzzle� as �rst noted by Sims (1992).19. Typically, the

literature on empirical monetary policy analysis includes a commodity price index

in the VARs in order to mitigate the price puzzle. The reason is, that commodity

prices contain useful information about potential output (to be precise the output

gap given by y � yN). Inspired by this we tried to approximate the output gap

by the capacity utilization rate given by a single series in the data by imposing an

unbiasedness restriction on this. However, in order to achieve a precise measure of

the capacity utilization rate one would need to impose many exclusion restrictions

on the slow-moving variables resulting in a thinly de�ned factor that most likely will

be dominated by the fast-moving variables20.

17Notice, that if structural shocks to stock market prices are considered then a simultaneity
problem arise in the sense that both the federal funds rate and stock market prices should be
allowed to respond contemporaneously to either of these shocks. Bjørnland & Leitemo (2009) solve
this by long-run restrictions. However, we do not consider shocks to the stock market and order
the stock market factors last. Ordering stock market last implies that stock prices can respond
contemporaneously to all other shocks inlcuding the federal funds shock. However, the monetary
policy shock respond with a lag to shocks to stock market prices; the underlying assumption is
that the monetary authority wants to evaluate whether the shock is fundamental or not.
18See the backward-looking models of e.g. Svensson (1997) and Rudebusch & Svensson (1999).
19A typical �nding in standard VAR analysis of monetary policy is an increase in the price level

following a contractionary monetary policy shock - hence the notion of a price puzzle, because we
would expect a decrease.
20Notice, that whenever we tried to mix the capacity utilization rate with other slow-moving

variables the signal get too blurred to represent in�ation expectation and/or supply shocks and
consequently resulted in a price puzzle.
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We suggest including more proxies for the output gap in the data set if an output

gap factor should be extracted. The same problem with thinly de�ned factors applies

to the NAPM commodity prices index, but we solve this problem by imposing one-

to-one restrictions on the closely related intermediate and sensitive materials among

the producer price indices.

Summing up the discussion, we choose to include a commodity price factor to

proxy the output gap and to construct a hours in production factor which is quite

correlated with the capacity utilization rate.

2.3.2 Empirical results

Evaluating the over-identifying restrictions

Our identi�cation scheme involves more than 400 over-identifying restrictions and

the validity of these restrictions is tested statistically. Speci�cally, a likelihood

ratio (LR) test is used to test the over-identifying restrictions against the exactly

identi�ed "unrestricted model". As expected all the restrictions lumped together

are clearly statistically level rejected at any signi�cance level but interestingly the

economic signi�cance of the restrictions is indeed small. As discussed in details

below the consequence of imposing more than 400 over-identifying restrictions is an

approximately 3 percentage points decrease in overall adjusted R2. We conclude

that little is lost by imposing the over-identifying restrictions and we are willing

to pay the price of a slight reduction in overall R2 for economically interpretable

factors.

Similar �ndings have been found by Reis & Watson (2008). In a related dynamic

factor model they estimate a measure of pure in�ation by imposing a unit loading

on each of 187 US sectoral price indices. Their restrictions are rejected in t-tests

but they �nd that for eighty percent of the series the decrease in terms of R2 is less

than 3%.

In order to examine whether some of our restrictions are particularly restrictive,

we impose the restrictions sequentially using 23 blocks of restrictions of varying sizes.

The model is re-estimated for each added set of restrictions. Table 2.1 represents

the loading matrix and displays the exactly identifying restrictions, the 23 blocks

of over-identifying restrictions and the free parameters of our preferred model as
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follows. Firstly, the exactly identifying restrictions are indicated by shaded entries

with either a 1 or 0 and constitute the unrestricted model. The numbers in Table

2.1 represent estimated free parameters of our preferred model.

For the �rst factor (�) a total of �fteen exclusion restrictions are lumped together

in block [1] and imposed on industrial production. These over-identifying restrictions

are in fact accepted in a likelihood ratio test21. Then an additional four over-

identifying restrictions in block [2] are imposed on � which are rejected, although

the overall adjusted R2 is unchanged. Subsequently, the restrictions in block [3] to

block [23] are added implying that when the block [23] is reached all restrictions are

imposed yielding the preferred model. For each block of restrictions we calculate

the LR-test, the adjusted R2, AIC and BIC. We also report the panel information

criteria ICp2 from Bai & Ng (2002) targeted towards principal component dynamic

factor models. However, to comply with the EM algorithm the ICp2 criteria is

slightly modi�ed in terms of the convergence rate of the estimated factors towards

the true factors and is denoted IC�p2; see Doz et al. (2006) for the convergence rate

of
�p

T ; N
logN

�
.

The rectangles represents the blocks of exclusion restrictions starting with the

�rst block of 15 over-identifying restrictions on the �rst factor � in the upper left

corner. Notice the small [1] in the upper right corner of the rectangle which de-

notes block number [1]. Within the rectangle the overall adjusted R2 is reported

along with the above mentioned criteria if space allow. We then move downwards

in the � column and impose block number [2]. This particular rectangle is not

completely closed because an element in the rectangle does not belong to the set

of over-identifying restrictions. We intend to indicate the opening part of the rec-

tangle in the same way as the symbol [ and the closing part of the rectangle as ].

One-to-one restrictions are indicated by unit integers without any decimal places.

When all blocks of restrictions have been imposed and subsequently estimated we

end up in the lower right rectangle of the table denoted [23]. The adjusted R2 from

this rectangle equalling 52.5% is the �t of preferred model to be compared with an

adjusted R2 of 55.9 in the unrestricted model.

21To save space a full table of the 23 likelihood ratio tests is not reported. A likelihood ratio test
of the over-identifying restrictions in block [1] cannot be rejected at a 1%, 5% or 10% signi�cance
level. However, the restrictions in block [2] to block [23] are clearly rejected. Likelihood ratio tests
were also calculated from block [i] to block [i+ 1] and in this marginal sense we could not reject
the restrictions imposed on block [5] and on block [22].
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As expected, the adjusted R2 measures in Table 2.1 decrease and the AIC/SIC

measures increase as more and more restrictions are imposed. Moreover, all blocks of

restrictions are rejected in a likelihood ratio test, except the �rst block and the �fth

block, where the latter is only accepted in a marginal sense, i.e. the log likelihood

value for block [5] is not signi�cantly di¤erent from the log likelihood value of block

[4].

An evaluation of the economic signi�cance of the restrictions shows that some

of the restriction blocks result in a clear decrease in R2 up to half a percentage

point and a relative clear increase in the AIC/SIC. On the other hand, some of the

other restriction blocks do not change the R2 nor the AIC/SIC. Consider each of

the factors in turn. Five of the six blocks of restrictions imposed on the in�ation

factor result in a very small decrease in R2 whereas the last block restriction on

housing starts and stock returns seems to be somewhat restrictive. We suspect that

this block restriction signi�cantly changes the nature of the �rst factor towards a

clear in�ation factor thus eliminating any potential residential investment compo-

nent and stock market component in this factor which in turn may deteriorate the

�t of housing starts and stock returns. For the unemployment factor, the economic

activity factor, the consumption factor and the stock market factor there are no

particular restrictive block restrictions. The three factors, hours in production, res-

idential investment and commodity prices, are more narrowly de�ned factors and

consequently one should expect reduced explanatory power of these factors com-

pared to the fully latent factors. In fact, this illustrates the tradeo¤we face between

economic interpretability and statistical �t in the sense that some of the explana-

tory power of the fully latent factors has to be sacri�ced to achieve an unambiguous

economic interpretation of the factors22. In that respect, restriction block [16] is

relatively restrictive for the residential investment factor, which could be explained

by the exclusion of e.g. unemployment variables in the measurement equation23.

For the (NAPM) commodity price factor, restriction block [18] is relative restrictive

which may be explained by the exclusion of other NAPM survey measures whereas

the exclusion of CPI in�ation is unrestrictive.

22Furthermore, the de�ned factors should also be relevant for empirical monetary policy analysis.
23The exclusion of unemployment and employment variables in the housing factor may eliminate

any potential employment component (distinct from the unemployment factor) which in turn may
deteriorate the �t of the employment variables. In other words, if any employment component is
embedded in the housing factor the exclusion restrictions eliminate this component such that a
clearer interpretation of the factor emerges.
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Implied factors

Figure 2.1 displays the factors as retrieved from the panel. Overall, these factors

are well in line with the leading measures and trends in the US economy over the

sample period. Speci�cally, the general in�ation factor captures almost perfectly

the overall CPI series while the economic activity factor picks up most of the peaks

and troughs as identi�ed by the NBER and indicated by shaded bars in the �gure.

Insert Figure 2.1 and Table 2.2

Table 2.2 reports the factor loadings as well as the total variance explained by the

common factors (R-squared) for a number of leading economic measures24. Overall,

the statistics reported in Table 2.2 and Figure 2.1 support the economic interpreta-

tion of the latent factors. Speci�cally, we �nd that the in�ation factor (�) closely

tracks the CPI-U: All items in�ation. Moreover, the R-squared is higher than the

one based on the in�ation factor identi�ed by Bernanke et al. (2005) (96% instead

of 87%).25 The estimated factor loadings on other CPI and PPI in�ation series are

signi�cantly positive and the common component captures a substantial part of the

variation in these series.

The unemployment factor (un) captures almost half of the variation in all of the

23 (un)employment series while the R-squared for the four unemployment duration

series is almost 70%. Moreover, this factor contributes predominantly to the �t of

the capacity utilization rate measured by unreported marginal R-squared.

The economic activity factor (y) explains up to 97% of growth in industrial pro-

duction and also �ts reasonably well the di¤erent components of industrial produc-

tion (R-squares above 50% for half of the 16 series). Moreover, loadings for industrial

production components are in general positive. The economic activity factor also

contributes to the variation of payroll, income and employment variables.

The consumption factor (c) is restricted to load only on the �ve personal expen-

diture series in addition to the fast-moving variables. The one-to-one restrictions

help to extract a consumption factor that explains half of the variation in the per-

sonal expenditure series which is signi�cantly higher than the 6-10% reported by

24To save space we have not reported the estimated covariance matrices Q̂ and R̂ as well as the
companion matrix �̂: These results are available on request. It should be noted that all eigenvalues
of �̂ are less than one in absolute values such that the system is stationary.
25Bernanke et al. (2005) use an exactly-identi�ed four-factor FAVAR model.
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Bernanke et al. (2005) and Bork (2008). Our identi�cation approach therefore al-

lows to target a group of variables in the panel which otherwise have little chance

of showing up in a distinct factor. The price for this may be a reduced overall �t of

the panel but as reported above this appears to be only modest in our application.

The hours in production factor (hrs) explains average weekly overtime hours for

production workers in manufacturing almost perfectly. Furthermore, this factor also

helps explaining capacity utilization and help-wanted ads measured by unreported

marginal R-squared. The commodity factor (pcom) captures close to half of the

variation in monthly commodity price in�ation as measured by movement in the

NAPM commodity price index. The housing factor (h) explains on average 66%

of the variation in the seven housing start series while the stock market factor (s)

explains more than 80% of the variation for four out of �ve stock prices.

Finally, the overall, unadjusted average R2 of the panel is 53%, which is com-

parable to the R2 reported by Bai & Ng (2007), Bork (2008) and Yu (2008) where

over-identifying restrictions are not imposed26. Moreover, for the targeted concepts,

e.g. in�ation, economic activity, we obtain signi�cantly higher values for the R-

squared. Also, the reported average R2 corresponds to the average R2 that one

would obtain from the Stock & Watson principal components approach to factor

models if six factors are entertained for this particular panel data. This suggests

that the over-identifying restrictions and the implied economic interpretation of the

factors can be obtained without major loss in �tting the dominant sources of varia-

tion in the panel.

Measuring the impact of monetary policy

We use our model to analyze the overall impact of monetary policy shocks on the

US economy. To facilitate comparison with other papers including Bernanke et al.

(2005), we do not present the impulse response functions (IRFs) of the factors them-

selves but instead focus on the IRFs of twenty key measures covering the US econ-

omy, as implied by the factor model. More speci�cally, we analyze the federal funds

rate, the level of industrial production, the consumer price level (CPI), monetary

aggregates, the capacity utilization, the (un)employment level, the average hourly

earnings, the level of consumption and consumer con�dence expectations as key

26Stock & Watson (2002a) �nd 39% for r = 6 in a panel of 215 US monthly series.
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indicators for the macroeconomy. Additionally, we cover housing starts and three

�nancial market variables: the dividend yield on the S&P, the �ve year treasury

yield and the USD-YEN foreign exchange rate.

Insert Figure 2.2 and Table 2:3

Figure 2.2 displays the IRFs of each of these variables to a 25 basis point mon-

etary policy shock. The unit of the impulse response functions is the standard

deviation of the respective series.

Christiano et al. (1999) survey and estimate monetary policy shocks using dif-

ferent VAR speci�cations and conclude that there is considerable agreement in the

literature about the qualitative e¤ects of a monetary policy shock. Speci�cally,

monetary policy shocks explain only a modest fraction of the variation in output

and prices as measured by forecast error variance decomposition. Furthermore, a

contractionary monetary policy shock is followed by an increase in interest rates

and a fall in output and employment whereas wages respond only modest and prices

decrease slowly with a signi�cant time lag. Our impulse response functions depicted

in Figure 2.2, are as expected and in line with this �nding27. Therefore, the plausi-

bility of the impulse response functions suggests that the model is able to identify

accurately the key macroeconomic transmission mechanisms and shocks. Several

observations can be made in this respect.

First, in line with recent FAVAR or BVAR models and unlike standard small-

scale VAR models, we do no longer observe a persistent price puzzle. The (per-

manent) de�ationary e¤ects of monetary policy tightening do appear with about

a one-year lag. Second, we observe long-run neutrality. Monetary policy shocks

only have a temporary e¤ect on production and consumption, although it holds

only marginally for the latter. Long-run neutrality also holds for both the depicted

unemployment series and employment series. Third, note that the impact of tem-

porary policy shocks is initially negative on the consumption expectations but then

reverses before the impact becomes neutral in the long-run. Finally, the results show

a signi�cant impact of monetary policy shocks on �nancial markets. Monetary pol-

icy tightening increases the bond yields with the short-term yields responding more

27The impulse response functions (IRFs) for the monetary aggregates are somewhat puzzling as
we would expect a decrease in the monetary aggregates following a positive monetary policy shock.
However, the uncertainty surrounding these IRFs are very wide implying that any interpretation
should be made with caution.
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than the long-term yields, as illustrated by the IRF of the 3 month and 5 year yield.

However, given the moderate persistence of the policy shocks (see the IRF of the

federal funds rate), the impact on bond yields of monetary policy shocks remains

relatively small and temporary. Real estate markets, as illustrated by the IRF of

the housing starts, initially respond strongly to the monetary policy shock although

there is no long-run e¤ect. On the other hand, price-dividend ratio tends to adjust

downwards following a monetary tightening. These IRFs match both the responses

reported in Banbura et al. (2008), using a BVAR and Bernanke et al. (2005) using

a FAVAR.

Table 2:3 reports the variance decomposition of the selected variables at alter-

native forecasting horizons. This variance decomposition allows us to assess the

relative importance of monetary policy shocks in the overall variation of the series.

Our results are broadly in line with those reported both in Banbura et al. (2008) and

Bernanke et al. (2005). In line with these studies, we observe that monetary shocks

do not have important long-run impact on the forecast error variance of a broad

selection of twenty key macroeconomic and �nancial variables. Speci�cally, we �nd

that a monetary policy shock explains less than 10% of the variation in industrial

production, consumer prices, commodity prices, (un)employment, new orders for

any forecast horizon and virtually zero for consumption. For the bond yields the

portion of the variance explained is decreasing in the maturity of the bond and does

not exceed 15% in the long run. Unlike Bernanke et al. (2005), we do not �nd a

large signi�cant long-run e¤ect of monetary policy shocks on the federal funds rate.

The estimates reported in Table 2:3 indicate that monetary policy shocks are only

mildly persistent and only account for approximately 15% of total long-run variation

in the federal funds rate. Banbura et al. (2008), reporting similarly small numbers,

argue that this may be explained by the size of the model28.

2.4 Conclusion

This paper has proposed a methodology to identify factors within the framework

of Dynamic Factor Models. We impose an economic interpretation on the static

factors through a set of over-identifying restrictions on the factor loadings. We

28The larger the model, the more shocks can be identi�ed and the smaller the likelihood of
misspeci�cation of the monetary policy shocks. In this model we identify nine structural shocks,
which is signi�cantly higher than the number of structural shocks identi�ed by Bernanke et al.
(2005).
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modify the standard estimation methodology to incorporate these over-identifying

loading restrictions. In particular, following Shumway & Sto¤er (1982) and Wu

et al. (1996), we derive the appropriate parameter estimators and �lters based on

the EM algorithm.

In the application, we focus on identifying a set of nine factors with unambiguous

economic interpretation. These factors represent key measures of the US economy

such as in�ation, unemployment, economic activity, consumption, state of the in-

dustrial production, residential investments, �nancial markets and monetary policy.

The obtained factors are empirically plausible measures for each of the targeted key

concepts, listed above. Subsequently, we use the model to assess the overall impact

of monetary policy on the US economy. Our results are in line with the results those

obtained using alternative methods on large panels, e.g. FAVARs or large BVARs.

The framework proposed in this paper has many other applications in economics

and �nance. For instance, the identi�cation restrictions can be used to generate

factor pricing models, where factors can be economically interpreted. This type

of model could be used to evaluate and analyze the types and the importance of

macroeconomic risks in stock and bond markets.
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A Over-identifying loading restrictions

The speci�c set of (over-) identifying restrictions can be summarized as follows;

the in�ation factor (�) is identi�ed by the unbiasedness restriction on "CPI-U:

All items". Additionally, we allow other in�ation measures to load on the in�a-

tion factor. With the in�ation factor being a nominal factor, we exclude from the

information set all real variables, e.g. industrial production.

For the four real factors, we impose exclusion restrictions on nominal variables

(e.g. CPI in�ation). Additional exclusion restrictions limit the type of real variables

acting as information variables for each of the factors. In particular, the unemploy-

ment factor (un) is identi�ed by the unbiasedness restriction on "Unemployment:

All workers". Other (un)employment variables and measures of payroll statistics

and capacity utilization are included as additional information variables. All other

slow-moving variables are excluded from the information set. The economic activity

factor (y), identi�ed by the unbiasedness restriction on the "Industrial Production:

Total index" uses other industrial production (IP) variables next to employment

and payroll series as additional state variables. The hours in production factor

(hrs) measures the current over (under) production and is identi�ed (by means of

an unbiasedness restriction) through the overtime hours in production and manu-

facturing.

As additional information variables we include variables such as capacity utiliza-

tion rate, survey-based production indices (PMI, PMP) and help-wanted advertising

to enter freely. We exclude (un)employment and IP growth as we consider them less

informative with respect to the level of over and underproduction. The last real fac-

tor, i.e. the consumption factor (c) ; is �ltered from the observed consumption series

in the panel with an unbiasedness restriction on "Personal Consumption Expendi-

ture" series and one-to-one restrictions on two consumption observables. Moreover,

due to consumption smoothing, we do not expect strong contemporaneous correla-

tions between production employment based statistics and consumption (growth).

Therefore, we impose exclusion restrictions on production related variables.

The information and the policy factors measure particular features in the econ-

omy. More precisely, the housing factor (h) is included as a residential investment

factor. This factor is identi�ed through an unbiasedness restriction on the total

number of housing starts and uses as additional information variables other hous-
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ing starts or authorization variables. We consider the housing factor to be mainly

a forward-looking variable containing all relevant information. As such, exclusion

restrictions are imposed on all slow-moving variables. The commodity price factor

(pcom) aims at measuring cost-push factors due to price increases of raw materi-

als or intermediate products. It is identi�ed by means of the NAPM commodity

price index. Moreover, the commodity price factor retrieves additional information

from PPI data for crude and intermediate materials and from the index of sensi-

tive materials. The monetary policy factor (i) is directly measured by the e¤ective

federal funds rate. Finally, the stock market factor (s) is related to returns on the

NYSE index and uses S&P500 stock market component indices as additional state

variables. We allow all other fast-moving variables to load freely on the stock mar-

ket factor allowing for direct interactions across �nancial markets. Notice that the

imposition of an unbiasedness loading restriction on the stock market factor seems

to prevent this factor from responding contemporaneously to shocks to the other

factors which seems inappropriate for a �nancial market factor. However, the com-

bination of the stock market factor ordered last in the VAR and a lower triangular S

(consistent with a standard recursive identi�cation scheme) makes the stock market

factor respond contemporaneously to all shocks.
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B The EM algorithm, the Kalman �lter and the

Kalman smoother

The EM algorithm is an iterative maximum likelihood procedure applicable to mod-

els with "missing data", which in this context is the unobserved factors. The com-

plete data likelihood of the Gaussian state space model in equations (2:5)-(2:6) is

given in equation (2:21) below. Although the complete data likelihood cannot be

calculated due to the unobserved factors, it is nevertheless possible to calculate the

expectation of the complete data likelihood conditional on the observed data and

inputs of parameters, denoted �(j) at the jth iteration. Essentially, this expecta-

tion depends on smoothed moments of the unobserved variables from the Kalman

smoother and hence on the data as well as parameters in �(j): Finally, "updated"

values of the parameters at iteration j + 1 denoted �(j+1) are available in closed

form and follows from the �rst-order conditions of the conditional expectation of

the complete data likelihood. The updated parameters �(j+1) can then be used to

�lter and smooth a new set of moments to be used in the calculation of the condi-

tional expectation of the complete data likelihood. This algorithm continues until

convergence of the likelihood value.

The following o¤ers a brief description of the Kalman �lter and the Kalman

smoother. Then the complete data likelihood and the incomplete data likelihood

for a state space model are stated. Finally the moments used in the closed form

parameters estimators in (2:12) are stated.

The Kalman �lter

Denote by X t = fX1; :::; Xtg the information set available at time t. The condi-
tional expectation and variance of the factor are: F̂t+1jt = E [Ft+1j X t] and P̂t+1jt =

var (Ft+1j X t) ; respectively:

The Kalman �lter recursions for t = 1; ::; T can then be written as
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F̂t+1jt = �F̂tjt�1 +Kt

�
Xt � �F̂tjt�1

�
;

P̂t+1jt = �P̂tjt�1L
>
t +Q;

(2.15)

where
�t
n�1

= Xt � �F̂tjt�1;

P ��t
n�n

= �P̂tjt�1�
> +R;

Kt
k�n

= �P̂tjt�1�
>
�
�P̂tjt�1�

> +R
��1

;

Lt
k�k

= ��Kt�:

Kalman smoothing

Kalman smoothing is the name for the reconstruction of the full state sequence

fF1; ::; FTg given the observations fX1; ::; XTg. Smoothing provides us with more
accurate inference on the state variables since it uses more information than the

basic �lter.

The Kalman smoother recursions for t = T; :::; 1; based on the e¢ cient smoother

by de Jong & Mackinnon (1988), de Jong (1989) and used in Koopman & Shephard

(1992) are given by

F̂tjT = F̂tjt�1 + P̂tjt�1�
>
h
P̂ ��tjt�1

i�1
�t + P̂tjt�1L

>
t rt (2.16)

= F̂tjt�1 + P̂tjt�1rt�1 (alternatively) (2.17)

P̂tjT = P̂tjt�1 � P̂tjt�1Nt�1P̂tjt�1 (2.18)

P̂fT;T�1gjT = [I �KT�]�P̂T�1jT�1 (2.19)

P̂ft;t�1gjT =
�
I � P̂tjt�1Nt�1

�
Lt�1P̂t�1jt�2, t = T � 1; :::; 1 (2.20)

where

rt�1 = �>
h
P̂ ��tjt�1

i�1
�t + L>t rt; for 1 � t < T and rT = 0

Nt�1 = �>
h
P̂ ��tjt�1

i�1
� + L>t NtL for 1 � t < T and NT = 0

Lt = ��Kt� = �� �P̂tjt�1�>
h
P̂ ��tjt�1

i�1
�:
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The complete data likelihood and the incomplete data likelihood

Under the Gaussian assumption including F0 � N (�0; P0) and ignoring the constant,

the complete data likelihood of Equations (2:3)-(2:4) page 64 can be written as

�2 lnLF ;X (�) = ln jP0j+ (F0 � �0)
> P�10 (F0 � �0)

+T ln jQj+
TX
t=1

(Ft � �Ft�1)>Q�1 (Ft � �Ft�1)

+T ln jRj+
TX
t=1

(Xt � �Ft)>R�1 (Xt � �Ft) : (2.21)

given that we can observe the states FT = fF0; ::; FTg as well as the observations
XT = fX1; ::; XTg. However, given XT and some input of parameter estimates
(denoted �(j�1)) the conditional expectation of the complete data likelihood can be

written as

Q
�
�j�(j�1)

�
= E

�
�2 lnLF ;X (�)

��XT ;�(j�1) �
= ln jP0j+ tr

�
P�10

��
F̂0jT � �0

��
F̂0jT � �0

�>
+ P0jT

��
+T � ln jQj+ tr

�
Q�1

�
C �B�> � �B> + �A�>

	�
+T � ln jRj

+tr

"
R�1

TX
t=1

��
Xt � �F̂tjT

��
Xt � �F̂tjT

�>
+ �P̂tjT�

>
�#
(2.22)

where the following moments can be calculated from the Kalman smoother listed

above.

C =

TX
t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
(2.23)

B =
TX
t=1

�
F̂tjT F̂

>
t�1jT + P̂ft;t�1gjT

�
(2.24)

A =
TX
t=1

�
F̂t�1jT F̂

>
t�1jT + P̂t�1jT

�
(2.25)
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B.1 The Loading Estimator Subject to Linear Restrictions

Within the EM algorithm approach we want to derive analytically the estimate of

� subject to linear restrictions H� vec� = ��. Consider therefore the part of the

conditional expectation of the likelihood function in equation (2:22) which involve

�

�1
2
tr

"
R�1

(
nX
t=1

�
Xt � �F̂tjT

��
Xt � �F̂tjT

�>
+

nX
t=1

�P̂tjT�
>

)#
= �1

2
tr
�
R�1

�
E �D�> � �D> + �C�>

	�
where

C =
PT

t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
D =

PT
t=1XtF̂

>
tjT

E =
PT

t=1XtX
>
t

The maximization of the likelihood problem can be rewritten as the minimization

problem:

minimize :
1

2
tr
�
R�1

�
E �D�> � �D> + �C�>

	�
subject to : H� vec� = ��:

The Lagrangian is:

L (�) := 1

2
tr

�
R�1
N�N

�
E

N�N
� D

N�r
�>
r�N

� �
N�r

D>
r�N

+ �
N�r

C
r�r
�>
r�N

��
��>

"
H�
��Nr
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and the di¤erential of the Lagrangian is (keeping only d�), cf. Magnus & Neudecker

(2007)
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The �rst-order conditions are

1) :

"
vec

(��
C
r�r
�>
r�N

� D>
r�N

�
R�1
N�N

�>)#>
� �> H�

��Nr
= 0 (2.26)

2) : H�
��Nr

vec� = ��
��1

(2.27)

Rewrite (2:26) as�
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pre-multiply by H� (C
�1 
R)
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substitute from the constraint in (2:27)
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Consider the term vec (R�1D) : Using Theorem 2 in ch. 2.4 of Magnus & Neudecker

91



(2007) which allows to rewrite vec (R�1D) =
�
D> 
R�1

�
vec (I) ; which is going to

be used in the curly brackets above, i.e. in the term (C�1 
R) vec (R�1D) :

Consider this last mentioned term, post-multiply by vec (IN) and use equation

(4), ch. 2.4 of Magnus & Neudecker (2007)�
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Substituting the last result into (2:29) and solving for vec (�) yields the restricted

loadings estimator denoted vec (��) in (2:12).
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Table 2.1: Estimated factor loadings and test statistics.

π  u y c hrs h pcom i s

1) IP: products, total [1]   [7] 0.92  [12] [15] [16] [18] -0.01  [22] 

2) IP: final products 0.87  0.01 
3) IP: consumer 55.9%  55.4%  0.75  55.1%  54.4%  53.9%  53.2%  -0.02  52.5% 

4) IP: durable cons. 0.72  -0.00 
5) IP: nondurable cons. AIC: 1.449  AIC: 1.457  0.43  AIC: 1.462  AIC: 1.480  AIC: 1.490  AIC: 1.502  -0.04  AIC: 1.518 

6) IP: bus. Equip SIC: 1.684  SIC: 1.683  0.71  SIC: 1.672  SIC: 1.676  SIC: 1.680  SIC: 1.686  0.01  SIC: 1.688 

7) IP: intermediate IC(2) : -0.410  IC(2) : -0.398  0.73  IC(2) : -0.386  IC(2) : -0.367  IC(2) : -0.355  IC(2) : -0.340  -0.05  IC(2) : -0.321 

8) IP: materials IC(2)*: -0.565  IC(2)*: -0.553  0.87  IC(2)*: -0.540  IC(2)*: -0.522  IC(2)*: -0.510  IC(2)*: -0.495  0.01  IC(2)*: -0.476 

9) IP: durable goods 0.87  0.04 
10) IP: nondur. Goods 0.40  -0.04 
11) IP: manufacturing 1.01  0.01 
12) IP: dur. Manuf 0.97  0.02 
13) IP: nondur. Manuf. 0.70  -0.04 
14) IP: mining 0.23  0.03 
15) IP: utilities 0.12  -0.07 
16) IP: total index 0  0  1  0  0  0  0  0  0 
17) Capacity util rate [2]   -0.74  0.16  [12] 0.25  [16] [18] 0.19  [22] 

18) Pmi [7] 0.50  0.25  -0.11 
19) NAPM prod. 55.8%  0.54  0.14  -0.20 
20) Pers. Income AIC: 1.450  0.31  [15] -0.05 
21) Pers. Inc. - trans. SIC: 1.685  0.54  -0.05 
22) Help-wanted [3] 0.03  0.44  -0.01  [19] -0.13 
23) Empl. Help-wanted -0.71  0.01  0.31  0.33 
24) Civ. Labor: empl., -0.06  0.39  [15] 0.04 
25) Civilian labor: empl., -0.10  0.43  0.03 
26) Unempl. Rate: all wrks 0  1  0  0  0  0  0  0  0 
27) Unemp dur: mean [3]   0.62  0.22  [12] [15] [16] [19]   -0.29  [22] 

28) Unemp by dur. < 5 wks 0.71  -0.04  0.28 
29) Unemp by dur. 5-14 w 0.79  -0.02  0.11 
30) Unemp by dur. 15+ w 0.80  0.13  -0.06 
31) Unemp by dur. 15-26 w 0.82  0.06  -0.01 
32) Nonag payrl.: total 55.8%  -0.21  0.73  52.7%  0.05 
33) Nonag payrl.: total, -0.16  0.76  0.08 
34) Nonag payrl.: goods AIC: 1.451  -0.18  0.81  AIC: 1.516  0.05 
35) Nonag payrl.: mining SIC: 1.682  -0.11  0.18  SIC: 1.696  0.17 
36) Nonag payrl.: contract IC(2) : -0.407  -0.04  0.36  IC(2) : -0.327  -0.04 
37) Nonag payrl.: manuf IC(2)*: -0.561  -0.18  0.81  IC(2)*: -0.481  0.05 
38) Nonag payrl.: durable -0.18  0.80  0.07 
39) Nonag payrl.: nondur -0.11  0.56  -0.03 
40) Nonag payrl.: service -0.24  0.38  0.03 
41) Nonag payrl.: trans. -0.07  0.14  0.04 
42) Nonag payrl.: sale -0.12  0.42  0.04 
43) Nonag payrl.: finance -0.19  0.21  0.11 
44) Nonag payrl.: services -0.15  0.33  0.10 
45) Nonag payrl.: gov. -0.25  -0.02  -0.13 
46) Avg. Wkly hrs. prod [4] [7] [11] [12] 0.97  -0.15 
47) Avg. Wkly overtime prod 0  0  0  0  1  0  0  0  0 
48) NAPM Empl. Index 55.7%  -0.53  0.48  [12] [15] [16] [19] 0.07  [22] 

49) Pers cons Exp: total 0  0  0  1  0  0  0  0  0 
50) Pers cons Exp: tot. [5] [8] [11] 1  [14] [16] [20] 0.05  [23] 

51) Pers cons Exp: nondur. 55.7%  1  0.07 
52) Pers cons Exp: services AIC: 1.452  0.16  -0.09 
53) Pers cons Exp: new cars SIC: 1.682  1.04  0.10 
54) Housing starts: nonfarm 0  0  0  0  0  1  0  0  0 
55) Housing starts: N.E [6] [8] [11] [13] [14] 0.48  [20] -0.21  [23] 

56) Housing starts: M.W 55.4%  55.3%  55.2%  55.1%  54.9%  0.57  52.5%  -0.38  52.5% 

57) Housing starts: S AIC: 1.457  AIC: 1.461  AIC: 1.460  AIC: 1.462  AIC: 1.467  0.94  AIC: 1.519  0.27  AIC: 1.518 

58) Housing starts: S SIC: 1.686  SIC: 1.684  SIC: 1.677  SIC: 1.669  SIC: 1.670  0.85  SIC: 1.697  0.00  SIC: 1.685 

59) Housing auth. Tot new IC(2) : -0.399  IC(2) : -0.395  IC(2) : -0.393  IC(2) : -0.385  IC(2) : -0.381  1.00  IC(2) : -0.323  0.06  IC(2) : -0.321 

60) Mobile homes IC(2)*: -0.553  IC(2)*: -0.549  IC(2)*: -0.548  IC(2)*: -0.539  IC(2)*: -0.535  0.61  IC(2)*: -0.478  0.32  IC(2)*: -0.475 

=
2
aR

=2
aR

=2
aR

=2
aR

=2
aR =2

aR =
2
aR =2
aR=2

aR

=2
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=2
aR =2

aR =2
aR

=
2
aR =2

aR =2
aR =2

aR =2
aR =2

aR =2
aR

The consequence of imposing more and more over-identifying loadings restrictions is shown in this table and explained
in details in the text. 23 blocks of restrictions of varying sizes are imposed sequentially. Each block is denoted by a
number in a bracket in the upper right corner of the rectangles. For each added set of restrictions we estimate the
model and calculate the mean adjusted R-squared

�
�R2a
�
, AIC and SIC as well as the ICp2 panel information criteria

from Bai & Ng (2002) and IC�p2 which takes into account the convergence rate of Doz et al. (2006).
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Table 2.1 continued

π  u y c hrs h pcom i s

61) NAPM inventories 0.06  -0.39  0.08  0.00  0.01  0.27  0.16  0.04  -0.05 
62) NAPM new orders -0.09  0.08  0.39  -0.01  0.07  0.26  0.30  -0.29  0.00 
63) NAPM vendor deliv. 0.04  -0.29  0.15  -0.01  0.26  0.21  0.15  0.14  -0.09 
64) New orders: cons goods 0.00  0.08  0.50  0.13  -0.06  0.00  -0.01  -0.07  0.07 
65) New orders: nondefense 0.04  0.01  0.06  0.12  0.03  0.03  0.03  -0.05  0.00 
66) NYSE: composite 0  0  0  0  0  0  0  0  1 
67) S&P  composite [6] [8] [11] [13] [14] [17] [20] 0.00  1.01 
68) S&P  industrials -0.00  1.00 
69) S&P  capital -0.02  0.92 
70) S&P  utilities 0.01  0.61 
71) S&P: dividend 0.08  0.30  -0.02  -0.00  -0.49  -0.09  0.32  0.31  -0.03 
72) S&P: price earnings -0.06  -0.17  0.01  -0.01  0.48  0.05  -0.30  -0.37  -0.00 
73) FX : switzerland -0.08  -0.02  0.17  0.08  0.06  -0.19  0.08  0.14  0.07 
74) FX : japan -0.12  -0.13  0.09  -0.00  0.01  -0.18  0.06  0.19  -0.04 
75) FX : united 0.10  -0.03  -0.16  -0.05  0.03  0.13  -0.01  -0.15  0.01 
76) FX : canada -0.01  0.07  0.13  0.04  -0.01  -0.04  0.01  -0.02  -0.24 
77) Federal funds 0  0  0  0  0  0  0  1  0 
78) US Tbill, 3m. -0.06  0.12  0.02  -0.01  0.03  -0.03  0.12  0.96  0.01 
79) US Tbill, 6m. -0.08  0.16  0.01  -0.01  0.03  -0.03  0.17  0.94  0.00 
80) Tbond const 1yr. -0.12  0.24  0.01  -0.02  0.04  -0.04  0.23  0.91  0.00 
81) Tbond const 5yr. -0.17  0.54  -0.02  -0.02  0.10  -0.02  0.28  0.76  -0.01 
82) Tbond const 10yr. -0.14  0.62  -0.02  -0.02  0.13  -0.00  0.26  0.69  -0.01 
83) Bond yield: Moody AAA -0.06  0.65  -0.05  -0.02  0.19  0.07  0.12  0.65  -0.02 
84) Bond yield: Moody BAA -0.06  0.65  -0.05  -0.01  0.11  0.08  0.10  0.64  -0.00 
85) Spread 3m – fed funds -0.21  0.38  0.07  -0.03  0.10  -0.09  0.39  -0.88  0.04 
86) Spread 6m – fed funds -0.24  0.47  0.04  -0.03  0.08  -0.09  0.50  -0.92  0.01 
87) Spread 1y – fed funds -0.38  0.75  0.02  -0.05  0.11  -0.12  0.70  -0.79  0.01 
88) Spread 5y – fed funds -0.29  0.93  -0.03  -0.04  0.18  -0.04  0.49  -0.85  -0.01 
89) Spread 10y – fed funds -0.21  0.93  -0.03  -0.03  0.19  -0.00  0.40  -0.87  -0.01 
90) Spread AAA – fed funds -0.09  0.91  -0.07  -0.02  0.26  0.10  0.17  -0.85  -0.02 
91) Spread BAA – fed funds -0.09  1.00  -0.08  -0.02  0.17  0.12  0.15  -0.72  -0.01 
92) Money stock: M1 0.17  0.31  -0.05  0.08  -0.21  0.29  -0.08  -0.13  0.05 
93) Money stock: M2 0.02  0.03  0.00  0.03  -0.59  0.51  -0.14  0.02  0.04 
94) Money stock: M3 0.03  -0.12  -0.04  0.06  -0.44  0.59  -0.07  0.18  0.06 
95) Money supply---M2 1992 -0.53  -0.01  0.02  0.03  -0.44  0.40  -0.13  -0.00  0.04 
96) Monetary base 0.25  0.25  -0.04  0.01  0.14  0.23  -0.13  -0.05  0.02 
97) Depository inst reserves 0.04  0.16  0.02  -0.06  -0.21  0.17  -0.09  -0.05  -0.00 
98) Dep. Inst. Res. Nonbor. 0.10  0.07  -0.15  -0.01  -0.16  0.07  -0.18  -0.09  0.06 
99) Comm. & indust. Loans -0.24  -0.22  0.03  0.03  0.19  -0.08  0.23  0.31  0.02 
100) Wkly rp lg com. -0.13  0.02  0.03  -0.02  0.34  -0.06  0.22  0.23  0.10 
101) Cons credit outst. -0.21  -0.06  0.02  0.05  -0.09  0.36  0.29  0.08  -0.03 
102) NAPM cmodity prices 0  0  0  0  0  0  1  0  0 
103) PPI: finished 0.79  [9] [10] [13] [14] [17] 0.03  -0.12  [23] 

104) PPI: finished 0.76  0.05  -0.17 
105) PPI: intermed [6] 0.28  0.23 
106) PPI: crude 0.20  -0.01 
107) Index of sensitive mat. 0.33  -0.14 
108) CPI-U: all items 1  0  0  0  0  0  0  0  0 
109) CPI-U: apparel & upkeep 0.44  [9] [10] [13] [14] [17] [21] -0.02  [23] 

110) CPI-U: transportation 0.85  -0.20 
111) CPI-U: medical care 0.23  55.2%  55.2%  53.8%  52.5%  0.41 
112) CPI-U: commodities 1.02  0.06  -0.21 
113) CPI-U: durables 0.58  [21] 0.11 
114) CPI-U: services 0.51  AIC: 1.461  AIC: 1.461  AIC: 1.491  AIC: 1.519  0.33 
115) CPI-U: less food 0.85  SIC: 1.683  SIC: 1.680  SIC: 1.678  SIC: 1.696  0.10 
116) CPI-U: less shelter 1.01  IC(2) : -0.393  IC(2) : -0.392  IC(2) : -0.353  IC(2)*: -0.322  -0.09 
117) CPI-U: less medical 1.00  IC(2)*: -0.548  IC(2)*: -0.547  IC(2)*: -0.508  IC(2)*: -0.477  -0.02 
118) Avg hr earnings constr. 0.10  -0.15  -0.13  0.07  -0.12  0.04  0.07  -0.03 
119) Avg hr earnings manuf. 0.30  -0.04  0.31  -0.03  -0.21  0.03  0.11  -0.00 
120) U. Of mich. Index -0.67  -0.23  0.12  0.00  0.11  0.03  0.23  -0.12  0.02 

=
2
aR=2

aR =2
aR =2

aR

The consequence of imposing more and more over-identifying loadings restrictions is shown in this table and explained
in details in the text. 23 blocks of restrictions of varying sizes are imposed sequentially. Each block is denoted by a
number in a bracket in the upper right corner of the rectangles. For each added set of restrictions we estimate the
model and calculate the mean adjusted R-squared

�
�R2a
�
, AIC and SIC as well as the ICp2 panel information criteria

from Bai & Ng (2002) and IC�p2 which takes into account the convergence rate of Doz et al. (2006).
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Table 2.2: Estimated factor loadings.
Variable Names � u y c hrs h pcom i s R2

1) IP: products, total 0:92 �0:01 79:7

2) IP: �nal products 0:87 0:01 70:5

3) IP: consumer 0:75 �0:02 53:0

4) IP: durable cons. 0:72 0:00 47:0

5) IP: nondur. cons. 0:43 �0:04 16:4

6) IP: bus. Equip 0:71 0:01 46:5

7) IP: intermediate 0:73 �0:05 50:8

8) IP: materials 0:87 0:01 76:5

9) IP: durable goods 0:87 0:04 74:8

10) IP: nondur. goods 0:40 �0:04 14:7

11) IP: manufacturing 1:01 0:01 97:4

12) IP: dur. manuf 0:97 0:02 90:9

13) IP: nondur. manuf. 0:70 �0:04 46:5

14) IP: mining 0:23 0:03 3:5

15) IP: utilities 0:12 �0:07 0:5

16) IP: total index 1 96:4

17) Capacity util rate �0:74 0:16 0:25 0:19 72:7

18) Pmi 0:50 0:24 �0:11 36:6

19) NAPM prod. 0:54 0:14 �0:20 41:1

20) Pers. Income 0:31 �0:05 8:4

21) Pers. Inc. - trans. 0:54 �0:05 27:4

22) Help-wated 0:03 0:44 �0:01 �0:13 20:3

23) Empl. Help-wanted �0:71 0:01 0:31 0:33 67:7

24) Civ. Labor: empl., �0:06 0:39 0:04 13:2

25) Civilian labor: empl., �0:10 0:43 0:03 16:6

26) Unemp rate: all 1 72:7

27) Unemp dur: mean 0:62 0:22 �0:29 42:4

28) Unemp dur. < 5 w. 0:71 �0:04 0:28 75:4

29) Unemp dur. 5-14 w 0:79 �0:02 0:11 73:3

30) Unemp dur. 15+ w 0:80 0:13 �0:06 66:1

31) Unemp dur. 15-26 w 0:82 0:06 �0:01 70:4

32) Nonag payrl.: total �0:21 0:73 0:05 54:6

33) Nonag payrl.: total, �0:16 0:76 0:08 55:6

34) Nonag payrl.: goods �0:18 0:81 0:05 64:8

35) Nonag payrl.: mining �0:11 0:18 0:17 3:5

36) Nonag payrl.: contrct �0:04 0:36 �0:04 12:0

37) Nonag payrl.: manuf �0:18 0:81 0:05 65:3

38) Nonag payrl.: durable �0:18 0:80 0:07 63:0

39) Nonag payrl.: nondur �0:11 0:56 �0:03 31:7

40) Nonag payrl.: service �0:24 0:38 0:03 19:1

41) Nonag payrl.: trans. �0:07 0:14 0:04 0:6

42) Nonag payrl.: sale �0:12 0:42 0:04 17:2

43) Nonag payrl.: �nance �0:19 0:21 0:11 6:1

44) Nonag payrl.: services �0:15 0:33 0:10 10:7

45) Nonag payrl.: gov. �0:25 �0:02 �0:13 8:6

46) Avg. wkly hrs. prod 0:97 �0:15 87:6

47) Avg. wkly overtime 1 93:0

48) NAPM Empl. Index �0:53 0:48 0:07 52:1

49) Pers cons exp: total 1 66:6

50) Pers cons exp: tot. 1 0:05 94:4

51) Pers cons exp: nondur. 1 0:07 9:9

52) Pers cons exp: services 0:16 �0:09 1:7

53) Pers cons exp: new cars 1:04 0:10 84:9

54) Housing starts: n�farm 1 92:5

55) Housing starts: N.E 0:48 �0:21 28:6

56) Housing starts: M.W 0:57 �0:38 50:3

57) Housing starts: S 0:94 0:27 85:5

58) Housing starts: S 0:85 0:00 69:3

59) Housing auth. Tot new 1:00 0:06 95:1

60) Mobile homes 0:61 0:32 41:1

The factors are denoted by the symbols f�; u; y; c; hrs; h; pcom; i; sg and describe general in�ation, unemployment, eco-
nomic activity (growth), consumption growth, hours in production, residential investments, commodity pric in�ation,
federal funds rate and stock markets returns respectively. R2 denotes R-squared. Coe¢ cients in bold are statistically
signi�cant at the 5% level (the standard errors are two-sided �nite di¤erence approximations of the gradient of the
likelihood function.
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Table 2.2 continued
Variable Names � u y c hrs h pcom i s R2

61) NAPM inventories 0:06 �0:39 0:08 0:00 0:01 0:27 0:16 0:04 �0:05 44:7

62) NAPM new orders �0:09 0:08 0:39 �0:01 0:07 0:26 0:30 �0:29 0:00 60:1

63) NAPM vendor deliv. 0:04 �0:29 0:15 �0:01 0:26 0:21 0:15 0:14 �0:09 45:3

64) New orders: cons goods 0:00 0:08 0:50 0:13 �0:06 0:00 �0:01 �0:07 0:07 28:1

65) New orders: nondefense 0:04 0:01 0:06 0:12 0:03 0:03 0:03 �0:05 0:00 1:1

66) NYSE: composite 1 97:5

67) SP500 composite 0:00 1:01 100:0

68) SP500 industrials 0:00 1:00 98:7

69) SP500 capital �0:02 0:92 82:7

70) SP500 utilities 0:01 0:61 35:4

71) SP500: dividend 0:08 0:30 �0:02 0:00 �0:49 �0:09 0:32 0:31 �0:03 80:4

72) SP500: price earnings �0:06 �0:17 0:01 �0:01 0:48 0:05 �0:30 �0:37 0:00 69:3

73) FX : Switzerland �0:08 �0:02 0:17 0:08 0:06 �0:19 0:08 0:14 0:07 4:4

74) FX : Japan �0:12 �0:13 0:09 0:00 0:01 �0:18 0:06 0:19 �0:04 4:5

75) FX : U.K 0:10 �0:03 �0:16 �0:05 0:03 0:13 �0:01 �0:15 0:01 3:1

76) FX : Canada �0:01 0:07 0:13 0:04 �0:01 �0:04 0:01 �0:02 �0:24 5:3

77) Federal funds 1 100:0

78) US Tbill, 3m. �0:06 0:12 0:02 �0:01 0:03 �0:03 0:12 0:96 0:01 98:2

79) US Tbill, 6m. �0:08 0:16 0:01 �0:01 0:03 �0:03 0:17 0:94 0:00 98:7

80) Tbond const 1yr. �0:12 0:24 0:01 �0:02 0:04 �0:04 0:23 0:91 0:00 99:0

81) Tbond const 5yr. �0:17 0:54 �0:02 �0:02 0:10 �0:02 0:28 0:76 �0:01 100:0

82) Tbond const 10yr. �0:14 0:62 �0:02 �0:02 0:13 0:00 0:26 0:69 �0:01 99:7

83) Bond yield: AAA �0:06 0:65 �0:05 �0:02 0:19 0:07 0:12 0:65 �0:02 100:0

84) Bond yield: BAA �0:06 0:65 �0:05 �0:01 0:11 0:08 0:10 0:64 0:00 99:7

85) Spread 3m � FF �0:21 0:38 0:07 �0:03 0:10 �0:09 0:39 �0:88 0:04 80:2

86) Spread 6m �FF �0:24 0:47 0:04 �0:03 0:08 �0:09 0:50 �0:92 0:01 88:5

87) Spread 1y � FF �0:38 0:75 0:02 �0:05 0:11 �0:12 0:70 �0:79 0:01 90:3

88) Spread 5y � FF �0:29 0:93 �0:03 �0:04 0:18 �0:04 0:49 �0:85 �0:01 100:0

89) Spread 10y � FF �0:21 0:93 �0:03 �0:03 0:19 0:00 0:40 �0:87 �0:01 99:3

90) Spread AAA �FF �0:09 0:91 �0:07 �0:02 0:26 0:10 0:17 �0:85 �0:02 100:0

91) Spread BAA �FF �0:09 1:00 �0:08 �0:02 0:17 0:12 0:15 �0:72 �0:01 99:2

92) Money stock: M1 0:17 0:31 �0:05 0:08 �0:21 0:29 �0:08 �0:13 0:05 21:7

93) Money stock: M2 0:02 0:03 0:00 0:03 �0:59 0:51 �0:14 0:02 0:04 38:7

94) Money stock: M3 0:03 �0:12 �0:04 0:06 �0:44 0:59 �0:07 0:18 0:06 35:5

95) Money supply� M2(92) �0:53 �0:01 0:02 0:03 �0:44 0:40 �0:13 0:00 0:04 52:9

96) Monetary base 0:25 0:25 �0:04 0:01 0:14 0:23 �0:13 �0:05 0:02 13:9

97) Depository inst res 0:04 0:16 0:02 �0:06 �0:21 0:17 �0:09 �0:05 0:00 8:2

98) Dep. Inst. Res.. 0:10 0:07 �0:15 �0:01 �0:16 0:07 �0:18 �0:09 0:06 10:0

99) Comm. and indust. L �0:24 �0:22 0:03 0:03 0:19 �0:08 0:23 0:31 0:02 19:2

100) Wkly rp lg com. �0:13 0:02 0:03 �0:02 0:34 �0:06 0:22 0:23 0:10 14:5

101) Cons credit outst. �0:21 �0:06 0:02 0:05 �0:09 0:36 0:29 0:08 �0:03 29:0

102) NAPM comm. prices 1 38:0

103) PPI: �nished 0:79 0:03 �0:12 52:0

104) PPI: �nished 0:76 0:05 �0:17 46:5

105) PPI: intermed 0:28 0:23 17:2

106) PPI: crude 0:20 �0:01 3:6

107) Index of sensitive mat. 0:33 �0:14 12:4

108) CPI-U: all items 1 95:6

109) CPI-U: apparel, 0:44 �0:02 16:3

110) CPI-U: transport. 0:85 �0:20 52:5

111) CPI-U: medical 0:23 0:41 32:0

112) CPI-U: comm. 1:02 0:06 �0:21 85:8

113) CPI-U: durables 0:58 0:11 39:5

114) CPI-U: services 0:51 0:33 55:1

115) CPI-U: less food 0:85 0:10 79:5

116) CPI-U: less shelter 1:01 �0:09 88:1

117) CPI-U: less medical 1:00 �0:02 93:6

118) Avg hr earn. constr. 0:10 �0:15 �0:13 0:07 �0:12 0:04 0:07 �0:03 5:2

119) Avg hr earn. manuf. 0:30 �0:04 0:31 �0:03 �0:21 0:03 0:11 0:00 22:3

120) Consumer expec. �0:67 �0:23 0:12 0:00 0:11 0:03 0:23 �0:12 0:02 67:2

The factors are denoted by the symbols f�; u; y; c; hrs; h; pcom; i; sg and describe general in�ation, unemployment, eco-
nomic activity (growth), consumption growth, hours in production, residential investments, commodity pric in�ation,
federal funds rate and stock markets returns respectively. R2 denotes R-squared. Coe¢ cients in bold are statistically
signi�cant at the 5% level (the standard errors are two-sided �nite di¤erence approximations of the gradient of the
likelihood function.
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Table 2.3: Forecast error variance due to monetary policy shocks.

Average (all variables) � u y c hrs h pcom i s total Idio:
6 month 0:03 0:05 0:06 0:03 0:07 0:04 0:04 0:05 0:04 0:41 0:59
12 month 0:04 0:05 0:06 0:03 0:09 0:06 0:04 0:05 0:05 0:46 0:54
24 month 0:04 0:05 0:06 0:03 0:10 0:08 0:03 0:05 0:06 0:50 0:50
60 month 0:06 0:05 0:06 0:03 0:10 0:11 0:03 0:04 0:06 0:53 0:47

12 month horizon � u y c hrs h pcom i s total Idio:
77) Federal funds rate 0:02 0:06 0:06 0:03 0:41 0:15 0:04 0:16 0:08 1:00 0:00
16 ) IP: totalindex 0:05 0:21 0:32 0:01 0:12 0:09 0:02 0:09 0:05 0:95 0:05
108) CPI-U: all items 0:37 0:03 0:03 0:03 0:24 0:11 0:04 0:03 0:01 0:91 0:09
78) US Tbill, 3m. 0:03 0:03 0:04 0:02 0:38 0:15 0:09 0:12 0:08 0:94 0:06
81) Tbond const 5yr. 0:06 0:02 0:00 0:01 0:31 0:12 0:34 0:08 0:04 1:00 0:00
96) Monetary base 0:02 0:01 0:01 0:00 0:00 0:00 0:01 0:00 0:00 0:06 0:94
93) Money stock: M2 0:02 0:01 0:01 0:00 0:12 0:03 0:04 0:01 0:03 0:25 0:75
74) FX:Japan 0:01 0:00 0:01 0:00 0:01 0:00 0:01 0:00 0:01 0:05 0:95
102) NAPM comm prices 0:02 0:01 0:01 0:01 0:04 0:10 0:28 0:05 0:02 0:54 0:46
17) Capacity util rate 0:02 0:07 0:04 0:01 0:10 0:09 0:00 0:10 0:10 0:52 0:48
49) Pers cons : total 0:02 0:01 0:02 0:57 0:01 0:02 0:01 0:02 0:00 0:69 0:31
50) Pers cons : tot. dur 0:02 0:02 0:02 0:73 0:01 0:02 0:02 0:02 0:01 0:87 0:13
51) Pers cons : nondur. 0:01 0:01 0:01 0:35 0:01 0:01 0:01 0:01 0:00 0:41 0:59
26) Unempl.Rate: all 0:01 0:15 0:04 0:01 0:04 0:06 0:00 0:09 0:06 0:45 0:55
48) NAPM Empl. Index 0:02 0:06 0:09 0:00 0:06 0:06 0:00 0:05 0:05 0:40 0:60
118) Avg hr earn. constr. 0:00 0:01 0:01 0:00 0:00 0:00 0:00 0:00 0:00 0:03 0:97
54) Housing starts: n�farm 0:01 0:01 0:07 0:01 0:24 0:39 0:03 0:10 0:01 0:86 0:14
62) NAPM new orders 0:02 0:06 0:09 0:00 0:08 0:08 0:04 0:11 0:02 0:50 0:50
71) SP500: div. yield 0:02 0:00 0:02 0:02 0:06 0:02 0:21 0:04 0:01 0:40 0:60
120) Consumer expec. 0:20 0:01 0:03 0:01 0:07 0:03 0:02 0:03 0:03 0:43 0:57

60 month horizon � u y c hrs h pcom i s total Idio:
77) Federal funds rate 0:10 0:04 0:04 0:05 0:19 0:38 0:06 0:07 0:07 1:00 0:00
16 ) IP: totalindex 0:05 0:19 0:29 0:01 0:14 0:12 0:01 0:09 0:07 0:96 0:04
108) CPI-U: all items 0:35 0:04 0:04 0:04 0:19 0:19 0:03 0:05 0:03 0:94 0:06
78) US Tbill, 3m. 0:11 0:03 0:03 0:05 0:19 0:37 0:08 0:05 0:06 0:98 0:02
81) Tbond const 5yr. 0:16 0:02 0:02 0:05 0:19 0:37 0:14 0:03 0:03 1:00 0:00
96) Monetary base 0:02 0:02 0:01 0:00 0:01 0:01 0:02 0:00 0:01 0:10 0:90
93) Money stock: M2 0:02 0:01 0:01 0:01 0:13 0:06 0:05 0:02 0:05 0:35 0:65
74) FX:Japan 0:01 0:00 0:01 0:00 0:02 0:00 0:01 0:01 0:01 0:07 0:93
102) NAPM comm prices 0:03 0:01 0:01 0:02 0:06 0:12 0:26 0:05 0:04 0:61 0:39
17) Capacity util rate 0:05 0:05 0:04 0:02 0:15 0:19 0:02 0:11 0:08 0:71 0:29
49) Pers cons : total 0:02 0:02 0:02 0:56 0:02 0:02 0:01 0:02 0:01 0:69 0:31
50) Pers cons : tot. dur 0:02 0:02 0:02 0:72 0:02 0:03 0:02 0:03 0:01 0:87 0:13
51) Pers cons : nondur. 0:01 0:01 0:01 0:35 0:01 0:01 0:01 0:01 0:00 0:42 0:58
26) Unempl.Rate: all 0:05 0:09 0:03 0:02 0:17 0:19 0:01 0:10 0:06 0:72 0:28
48) NAPM Empl. Index 0:03 0:05 0:08 0:01 0:11 0:10 0:01 0:05 0:05 0:50 0:50
118) Avg hr earn. constr. 0:01 0:01 0:01 0:01 0:01 0:02 0:00 0:01 0:00 0:07 0:93
54) Housing starts: n�farm 0:02 0:05 0:07 0:01 0:37 0:25 0:02 0:08 0:04 0:93 0:07
62) NAPM new orders 0:03 0:06 0:08 0:01 0:16 0:11 0:04 0:10 0:05 0:63 0:37
71) SP500: div. yield 0:16 0:01 0:02 0:06 0:08 0:22 0:19 0:03 0:01 0:78 0:22
120) Consumer expec. 0:22 0:02 0:03 0:03 0:11 0:17 0:02 0:03 0:02 0:66 0:34

The upper panel illustrates the total fractions that the eight factors can explain of the
forecast error variance on average for the panel at varying horizon. "Idio." means idio-
syncratic variance. The factors are denoted by the symbols f�; u; y; c; hrs; h; pcom; i; sg
and describes general in�ation, unemployment, economic activity (growth), consumption
growth, hours in production, residential investments, commodity price in�ation, federal
funds rate and stock markets returns respectively. The middle and lower panel shows
the 12 month ahead and 60 month ahead forecast error variance decomposition for key
macroeconomic variables.
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Figure 2.2: Impulse responses to a 25 basis point monetary policy shock.
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The �gure illustrates the impulse responses in standard deviations of key macroeconomic
variables following a 25 basis point monetary policy shock. The horizontal axis denotes
the forecast horizon in months. Con�dence intervals are represented by dark bands (68
percent) and light bands (95 percent).
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Figure 2.3: Forecast error variance due to monetary policy shocks.
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The �gure plots the contribution of the monetary policy shock to the forecast error variance
decomposition of key macroeconomic variables along the foreast horizon (the horizontal
axis). Dashed gridlines indicate a larger scale compared to the dotted grid lines. Numbers
in parenthesis refer to the variable number in the panel, see the data appendix.
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Abstract*

The bond market is �ltering an abundant amount of information in the process

of assessing the current state of the economy and its implications for bond pricing

and bond risk premia. I propose to solve the �ltering problem by a dynamic factor

analysis of a large panel of US macroeconomic and �nancial time series to derive a

small set of macroeconomic state variables. A discrete-time dynamic term structure

model is then augmented with these �ltered macroeconomic state variables. A

forecast error variance decomposition shows that shocks to in�ation and in particular

unemployment are important for the risk premia on long-term bonds.

JEL classi�cations: C13, C32, C33, E43, E44, E52
Keywords: Monetary policy, Discrete-time A¢ ne Term Structure Models, Finan-

cial markets and the macroeconomy, macroeconomic factors, Kalman �lter.

*I thank Tom Engsted, Hans Dewachter and Claus Bajlum for helpful comments. Any remaining

errors are my own.
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3.1 Introduction

The a¢ ne class of dynamic term structure models proposed by Du¢ e & Kan (1996)

and generalized by Dai & Singleton (2000) has been successful in modeling the

evolution of bond yields linearly in typically two or three latent state variables that

evolve over time according to some speci�ed law of motion. However, given the

purely latent nature of the state variables, these models o¤er little economic insight

into the underlying driving forces of the yield curve.

However, from an economic point of view a macroeconomic underpinning of the

state variables is preferred. In particular, dynamic term structure models should

re�ect how central banks implement their monetary policy through the adjustment

of the short term interest rate controlled by the central bank. Being an important

regulator of the economy, the economic determinants of the monetary policy rate are

of central interest in macroeconomics and in particular within the �eld of monetary

economics. Questions of what should be and appears to be the economic determi-

nants of the monetary policy rate have been discussed in a large volume of papers

and in book lengths1. In a widely cited paper Taylor (1993) estimates a remarkably

simple empirical monetary policy rule as a linear function of the deviation of cur-

rent in�ation from an in�ation target and the deviation from current GDP from the

potential GDP (output gap). Intuitively, the central bank "leans against the wind"

in the sense that the monetary policy rate is raised if economic activity expands

beyond its natural or potential level or if in�ation exceeds a desired rate of in�ation

or both.

However, macroeconomic in�uence is not limited to the short end of the yield

curve. Some macroeconomic underpinning of the risk premia demanded for holding

bonds of di¤erent time to maturity is also preferred as we would expect risk premia

to be high at the trough of the business cycle and low at the peak of the business

cycle.

To bridge no-arbitrage �nancial theory and macroeconomic theory, the recent

and rapidly growing "macro-�nance" literature integrates more or less structural

macroeconomic models into no-arbitrage dynamic term structure models which in

turn allow for a macroeconomic explanation of the dynamics of the yield curve

including the monetary policy rate and the time-varying bond risk premia.
1A general treatment is found in Woodford (2003) and Walsh (2003) to mention only a few.

Bernanke et al. (1999) discuss in�ation targeting as the monetary policy strategy.
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This paper contributes to the macro-�nance literature by signi�cantly expanding

the macroeconomic information set used in the a¢ ne class of dynamic term structure

model.

The main motivation for the use of an expanded information set is the fact

that the �nancial markets monitor and respond to a large set of macroeconomic

variables in the assessment of the current state of the economy. Therefore, including

e.g. a single speci�c consumer price index and a single speci�c series for production

(or unemployment) in a macro-�nance term structure model may not carry enough

information compared with the potential macroeconomic information embedded in

bond prices. Furthermore, most macroeconomic series are prone to measurement

errors implying that the �nancial markets �lter key underlying economic concepts

(like in�ation) from many di¤erent sources (e.g. from a number of di¤erent price

indices).2

To imitate the potential information set and solve the bond markets �ltering

problem, I propose a large panel dynamic factor analysis of a panel of 120 US

macroeconomic and �nancial time series, from which key macroeconomic factors like

in�ation, production, and unemployment are �ltered. E¤ectively controlling for the

short-term interest rate in the dynamic factor analysis, I use these macroeconomic

factors as observed state variables in an a¢ ne multi-factor Gaussian term structure

model. This setup allows for an empirical analysis of the dynamic responses of the

bond yields and bond risk premia (excess returns) to macroeconomic shocks.

The focus in this paper is on potential macroeconomic sources of variation in

expected excess returns on bonds. An impulse response analysis of the model-

implied expected excess return reveals that an in�ation factor and an unemployment

factor are the most important among �ve candidate macroeconomic factors. A one

standard deviation shock to unemployment initially raises the expected excess return

by 17 basis points on an annually basis for a �ve-year bond held for one year. The

intuition is clear: risk premia are time-varying and counter-cyclical. Hence, in

business cycle troughs we see rising unemployment and investors are demanding a

higher risk premium to buy risky assets. Continuing with the same example, I �nd

that a one standard deviation shock to in�ation lowers the expected excess return

by 9 basis points. Higher in�ation increases the possibility that the Federal Reserve
2Notice that the same applies to central banks in the sense that central banks "monitor literally

hundreds of economic variables in the process of policy formulation" as expressed in Bernanke
et al. (2005).
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Board leans against the wind and raises the interest rate. Open positions in long

bonds would then probably lose money.

The �ndings are related to some of the existing literature as follows. Joslin et al.

(2009) also consider an impulse response analysis of the excess bond returns in an

a¢ ne term structure model. Their macroeconomic state variables are an individual

industrial production series and an individual in�ation series. The impulse responses

in Joslin et al. (2009) and this paper are strikingly similar in terms of magnitude

and form3. However, I �nd that excess return responds more to unemployment

than industrial production. In contrast to Joslin et al. (2009) I examine longer

holding-periods and �nd that the longer the holding-period the larger the response

of expected excess return. Moreover, the longer the bond the larger the response.

This insight conforms to the �ndings in Cochrane & Piazzesi (2005) where one-year

horizon excess return regressions are the key to uncovering a single return-forecasting

factor.

The unique feature of this paper is its focus on the response of excess returns,

as implied by an a¢ ne term structure model, to shocks to large-panel dynamic

macroeconomic factors.

Several other papers also analyze bond excess return but these papers do not

entertain all three ingredients (excess returns, a¢ ne term structure model, large-

panel dynamic macroeconomic factors). For the well informed in this literature, I

use the �ve-factor Gaussian a¢ ne term structure model from Ang & Piazzesi (2003),

replace their macroeconomic factor by large-panel dynamic macroeconomic factors

as in Mönch (2008) and focus on model-implied bond excess returns as in Joslin

et al. (2009). The following o¤ers a brief introduction to closely related papers in

the literature on bond excess returns.

Du¤ee (2007), Joslin et al. (2009) and Ludvigson & Ng (2008) also focus on bond

risk premia. However, Du¤ee (2007) and Joslin et al. (2009) do not use large panel

macroeconomic state variables in their a¢ ne multi-factor Gaussian term structure

model whereas the large panel dynamic factors in Ludvigson & Ng (2008) are used

in excess return regressions only and not in a dynamic term structure model.

Dynamic term structure models are used in Mönch (2008) and Ang & Piazzesi

(2003) but they do not focus on bond risk premia. Mönch (2008) includes large
3That is, if I perform the impulse response analysis with similar state variables compared to

Joslin et al. (2009) I get strikingly similar results.
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panel dynamic factors but does not use latent term structure factors in his a¢ ne

term structure model. Furthermore, Mönch (2008) relies on a two-step principal

component method to extract the dynamic factors whereas a fully parametric one-

step iterative maximum likelihood method is used in this paper to estimate the

factors.

Finally, a distinguishing econometric feature of this paper is the recurring use of

the Kalman �lter to estimate the large panel dynamic factors and the a¢ ne term

structure model.4 Having stated how this paper di¤ers from the most closely related

papers the following now contains a brief summary of these papers as well as other

papers in the macro-�nance literature.

In the seminal paper by Ang & Piazzesi (2003) a standard three-factor a¢ ne

term structure model is augmented with two macroeconomic state variables and

they �nd that bond yields respond signi�cantly to shocks to these state variables.

However, the three latent factors continue to play an important role in the variation

of the long bond yields. Mönch (2008) examines the forecasting power of multifac-

tor dynamic term structure models where the state variables include the monetary

policy rate as well as factors derived from large panel principal component meth-

ods. These factors are shown to have good forecasting properties but the factors

lack a well-de�ned economic interpretation as opposed to this paper where the eco-

nomic interpretation of the factors is obtained by means of a set of overidentifying

restrictions. Ludvigson & Ng (2008) use large panel dynamic factor analysis to ob-

tain dynamic factors which are subsequently used as explanatory variables in excess

return regressions. They �nd that dynamic factors which are correlated with mea-

sures of in�ation and with measures of real output and employment are the key to

explain cyclical variation in bond risk premia. However, the previous critique with

respect to economic interpretability also applies here. Still in the context of bond

excess returns, Cochrane & Piazzesi (2005) �nd impressive forecasting properties of

a tent-shaped combination of forward rates. Cochrane & Piazzesi (2009) analyze in

an a¢ ne term structure model how much of a given yield curve that corresponds to

expectations of future interest rates, and how much that corresponds to bond risk

premia.

On a more general level, this paper resides in the above-mentioned macro-�nance

research area that was pioneered by the work of Ang & Piazzesi (2003), Dewachter

4Du¤ee (2007) also use the Kalman �lter to estimate his dynamic term structure model.
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et al. (2006) and Dewachter & Lyrio (2006b). These papers are characterized by

the inclusion of macroeconomic variables among the state variables in dynamic no-

arbitrage a¢ ne term structure models5. However, real structural macroeconomic

theory in these models commenced with the papers by Hördahl et al. (2006), Bekaert

et al. (2005) and Wu (2006) in which New Keynesian macroeconomic models are

integrated with a¢ ne term structure models. Recently, also learning theory has been

introduced into macro-�nance term structure models by Dewachter & Lyrio (2006a),

Laubach et al. (2006) and Dewachter (2008) where agents learn about the state of

the economy for instance in terms of the in�ation target, the long-run in�ation or

the real interest rate. This approach seems promising in generating persistent state

variables, which is a decisive for empirical term structure models; in particular for

the long end of the yield curve.

This paper is organized as follows. Section 3.2 presents the discrete-time Gaussian

a¢ ne term structure model and a variant of a dynamic factor model that allows me

to derive a set of macroeconomic state variables while controlling for the interest

rates. Section 3.3 addresses identi�cation and estimation issues in both models

which in turn allows for an empirical application with respect to yield curve mod-

eling using macroeconomic state variables �ltered from a large panel of US data.

Section 3.5 concludes by summarizing the main �ndings of this paper.

3.2 The modeling framework

Two dynamic models for panel data are used in this paper and now presented in turn.

As a �rst step, I extract a few dynamic macroeconomic factors from a large panel

of macroeconomic and �nancial time series, which represent the large information

set of the bond traders. To do this, the factor-augmented VAR model of Bernanke

et al. (2005) is used, which is a variant of a dynamic factor model that e¤ectively

controls for the short-term interest rate.

The identi�cation and dynamic interaction of the short-term interest rate with

the macroeconomic factors imply some advantages compared to the existing ap-

proaches in the dynamic factor analysis literature. Firstly, I do not want an interest

5Yet another interesting branch in the macro-�nance literature has evolved around dynamic
extensions of the parametric Nelson-Siegel yield curve model. See Diebold et al. (2005), Diebold
et al. (2006), Coroneo et al. (2008) and Christensen et al. (2009).
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rate factor in disguise to explain the yield curve, so the macroeconomic dynamic fac-

tors are carefully estimated under an identi�cation procedure similar to Bernanke

et al. (2005) that ensures that each factor is not an interest rate factor. Accordingly,

the short-term interest rate is explicitly modeled and identi�ed as an observed fac-

tor that interacts dynamically with the macroeconomic factors. Secondly, yield to

redemption on coupon bonds are not excluded from the panel as in Mönch (2008);

on the contrary all redemption yields are included as a subset of �nancial market

variables based on the idea that �nancial variables serve as timely information vari-

ables for macroeconomic variables. To accommodate potential concern that one of

the factors may be a "redemption yield factor" in disguise it should be noted that

the redemption yields are highly correlated with the identi�ed short-term interest

rate such that there is little need for a separate yield factor. Furthermore, the esti-

mated macroeconomic factors are shown empirically to be well in line with leading

macroeconomic measures of US economy. Details about the factor-augmented VAR

(FAVAR) are presented in section 3.2.2.

In the second step, the dynamic macroeconomic factors are used as state variables

in a dynamic no-arbitrage Gaussian multifactor term structure model to explain

a panel of US bond yields. The standard Gaussian a¢ ne term structure model is

presented �rst in section 3.2.1 in terms of a general state vector, which is responsible

for the dynamic evolution of the yield curve. The details of the partitioning of

the state vector into latent state variables and macroeconomic state variables is

postponed until the econometric formulation of the model in section 3.3, as I �nd

it more natural to begin to partition things there. Until then, it is su¢ cient to

think about the no-arbitrage term structure model as driven by both latent and

macroeconomic state variables. Finally, this section ends with a brief introduction to

the factor-augmented VARmodel, which delivers the macroeconomic state variables.

3.2.1 Gaussian multifactor a¢ ne term structure model

In this section I present a discrete time multifactor a¢ ne term structure model

(ATSM)6 where the dynamics of the yield curve are explained in terms of a small

set of latent variables.
6Backus et al. (1996), Backus et al. (1998) and Piazzesi (2009) present multifactor ATSMs

in discrete time whereas Dai & Singleton (2000) and Singleton (2006) among many other papers
present ATSMs in continuous time. Lund (1997) presents the algebra in getting from the continuous
time form to the discrete time representation.
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In the end the no-arbitrage ATSM is written in state-space form so the following

presentation will take an unrestricted state space form as a simple starting point and

later impose the no-arbitrage restrictions. Denote by ynt the yield of a default-free

zero-coupon bond, which always has n periods to maturity at any time t. Stack N
of these yields varying in terms of n in the N � 1 vector Yt: The dynamics of the N
yields are described linearly in terms of a small set of K < N dynamic latent state

variables X in accordance with the empirical �ndings of Litterman & Scheinkman

(1991), where N = 3 latent variables (factors) can explain the vast majority of the

variation in the yields. The law of motion of the unobserved X is assumed to be

described in terms of a �rst-order autoregressive system and represents the state

transition equation of the state-space system whereas the observed yields represent

the observation equation in (3:1) below:

Yt = A+BXt + vt (3.1)

Xt = �+ �Xt�1 + �"t (3.2)

where A is an N � 1 vector of constants, B is an N �K matrix that allows the N
di¤erent yields in the observation equation to load with di¤erent weights on the K

state variables in X, � is a K � 1 vector of constants, � is a K � K matrix that

contains the autoregressive parameters where stationarity of the system implies that

the eigenvalues of � are less than one in modulus, "t is a K � 1 vector with zero
mean and unit variance, � is a lower triangular K �K matrix that is the result of

a Cholesky decomposition of �"t � N (0;
) ; where 
 = ��>: Although more will

be said about this state-space system, the two equations in (3:1)-(3:2) illustrate in

a simple way how the time evolution of the yield curve is analyzed in terms of a few

driving forces, X; and how the dynamic response of a particular yield to shocks (")

to the driving forces can be analyzed within the same framework. The measurement

errors vt are assumed to be cross-sectionally independent Gaussian white noises,

i.e. vt � N (0; R) ; with R being an N � N diagonal matrix. Variations about

the distributional assumptions in the literature for R are discussed in the empirical

section.

The state space system in (3:1)-(3:2) is too general to be econometrically iden-

ti�ed, and it does not rule out arbitrage opportunities among the yields included in

Y: No-arbitrage is the fundamental building block in every standard asset pricing

model within �nance and dates back to path-breaking contributions by Black &
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Scholes (1973), Merton (1973) and Harrison & Kreps (1979), to mention just a few

important papers. The idea is that, under the assumption of no-arbitrage, there

exists a risk-neutral measure Q under which we can calculate the price P of an

asset as the discounted expected value of the payo¤ of the particular asset using

the risk-free rate i as the discount rate. Du¢ e & Kan (1996) apply the notion of

no-arbitrage to multifactor ATSMs driven by latent yield curve factors and charac-

terize the class of ATSMs formally. Speci�cally, they demonstrate that if the bond

price is exponential a¢ ne in the state variables X; then the drift and volatility of

the state variables are also a¢ ne7 and A and B in (3:1) must obey a set of recursive

restrictions. Before the exact no-arbitrage cross-section restrictions on A and B can

be stated, the following de�nition presents brie�y the necessary assumptions needed

to derive these restrictions and set up the ATSM:

De�nition 1 (Gaussian ATSM) The Gaussian ATSM in discrete time is con-

structed by the following three ingredients:

1. The one-period interest rate, it; is a¢ ne in the K-dimensional vector of state

variables Xt

it = �0 + �>1Xt (3.3)

where �0 is a scalar and �1 is a K � 1 vector.

2. The dynamics of the state variables is given by a VAR(1):8

Xt = �+ �Xt�1 + ut; ut � N (0;
) (3.4)

where the conditional mean is Mt�1 = � + �Xt�1. The covariance matrix 


is Cholesky decomposed into 
 = ��> such that ut = �"t where "t � N (0; I)

follows from the ATSM.9

3. The assumption of no-arbitrage guarantees the existence of a pricing kernel.

Speci�cally, the (nominal) bond pricing kernel Mt+1

Mt
is given by

Mt+1

Mt

= exp f�itg
�
dQ
dP

�D
t;t+1

7In fact, the converse also holds, i.e. if the drift, the volatility and the short rate are a¢ ne in
X then the price is exponential a¢ ne in X; cf. the proposition in Du¢ e & Kan (1996).

8A VAR with p lags can be encompassed in a VAR(1) by a square companion matrix.
9Speci�cally, the discrete time representation of the continuous time di¤usion process for X

involves an integration of Brownian motions which are normally distributed; cf. Lund (1997).
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where
�
dQ
dP

�D
t;t+1

denotes the Radon-Nikodym derivative which links the con-

ditional distributions of Xt+1 under the risk-neutral measure Q and the data

generating measure P10 and is characterized by�
dQ
dP

�D
t;t+1

= exp

�
�1
2
�>t �t � �>t �

�1 [Xt+1 �Mt]

�
= exp

�
�1
2
�>t �t � �>t "t+1

�
where �t is a K-dimensional vector of possible time-varying market prices of

risk associated with shocks to the state variables; cf. Du¤ee (2002):

�t = �0 + �1Xt (3.5)

Thus, the entire yield curve and its dynamics are characterized by (1) the func-

tional relation between the short rate and the state variables, (2) the dynamics of

the state variables, and (3) the risk premia speci�cation. Essentially, these three

ingredients specify a time-series process for the pricing kernel.

�

The discrete-time model setup in De�nition 1 is quite standard and has been

used in various forms in e.g. Ang & Piazzesi (2003), Du¤ee (2007, 2008), Ang

et al. (2005) and Pericoli & Taboga (2008). Le et al. (2009) and Singleton (2006)

characterize discrete-time ATSMs in terms of conditional characteristic (or moment

generating) functions which are utilized below in characterizing the formal relation

between moments under the risk-neutral measure and the data generating measure.

In the literature, the market price of risk as speci�ed in (3:5) is sometimes scaled

with the inverse of �; which in turn a¤ects the relation between � and � under the

two measures. However, if �t is expressed in terms of the ��s, ��s and �; the same

equation emerges irrespective of whether (3:5) is scaled by ��1 or whether � and �

is scaled:

�t = �
�1 ��� �Q

�
+ ��1

�
�� �Q

�
Xt:

which follows from the formal relation between the conditional means Mt and MQ
t

that can be calculated using the conditional moment-generating function and de-

10Whenever a superscript Q is used, this refers to a moment or parameter (like �Q ) belonging to
the risk-netural measure. To simplify the notation I do not use superscript P to denote moments
or parameters under the data generating measure, for instance I do not use �P:
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tailed in the Appendix A.1. In particular, the de�nition in (3:5) implies that

� = �Q + ��0

� = �Q + ��1

After these formal de�nitions, a natural starting point towards the no-arbitrage

restrictions onA andB is the fundamental asset pricing equation 1 = Et

h
Mt+1

Mt
Rt+1

i
;

where Rt+1 is the one period gross return for the particular asset. In the case of

zero-coupon bonds this can be rewritten as:

Pn+1;t = Et

�
Mt+1

Mt

Pn;t+1

�
(3.6)

where Pn+1;t is the price at time t of a zero-coupon bond maturing in n + 1

periods. However, this equation is still too general to be of any practical interest

in pricing zero-coupon bonds, but a closed form equation can be derived as follows.

With the insight from Du¢ e & Kan (1996) the bond price equation is proposed to

be exponential a¢ ne in the state variables

Pn;t = exp
�
An + B>nXt

	
(3.7)

where An and Bn each depends on the maturity of the zero-coupon bond and each
needs to satisfy recursive restrictions. Appendix A.2 contains a proof that the

proposed bond price equation is compatible with the fundamental asset pricing

equation in (3:6) and De�nition 1. Moreover, the cross-sectional restrictions on An
and Bn consistent with no-arbitrage are also speci�ed. However, the measurement
equation in (3:1) maps the yields to the state variables and not the prices as in

(3:7) but the yield mapping in terms of An and Bn is easily found from the relation

between the n-period zero-coupon bond yield y(n)t and the price

y
(n)
t = � logPn;t

n
= �pn;t

n
= An +B>

nXt (3.8)

where the scalar An = �An
n
and the K � 1 vector Bn = �Bn

n
is a straightforward
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application of the de�nition of An and Bn in Appendix A.2:

Bn =
1

n
�>1
�
I � �Q

��1 �
I �

�
�Q
�n�

(3.9)

An = �0 +
�>1
n

h
n � I �

�
I � �Q

��1 �
I �

�
�Q
�n�i �

I � �Q
��1

�Q

� 1

2n

n�1X
i=0

i2B>
i ��

>Bi (3.10)

Referring to the initial state space system in (3:1) and (3:2) it is now possible to

characterize this system as a no-arbitrage state space system if the cross-sectional

restrictions in (3:9) and (3:10) are imposed. Speci�cally, A in (3:1) is replaced by a

new N � 1 vector A = [An1 ; :::; AnN ]
> in (3:10) and B is replaced by a new N �K

matrix B =
�
B>
n1
; :::; B>

nN

�>
in (3:9). Notice that the components of the replaced A

and B are highly nonlinear in the parameters of interest � = f�0; �1; �;�;�; �0; �1g
and depend on the maturity n which is emphasized by writing A = A (n; �) and

B (n; �) :

The linear mapping between the yields and the dynamics of the state variables

allows for an analysis of the dynamic response of the yield of any maturity to a

shock " to the state variables. For instance, given that one of the state variables is

a time series of in�ation, the model allows us to trace through time how e.g. the

�ve-year yield responds to an in�ation shock. The same type of analysis can be

extended to bond returns. Speci�cally, I analyze in Section 3.4.3 how (expected)

bond returns are a¤ected by shocks to the state variables. For this reason, I derive

the a¢ ne relation between the expected excess holding period bond returns and the

state variables below.

Consider at time t; a buy-and-hold of an n-period zero-coupon bond for m pe-

riods. Sell this bond at t + m which is now an (n�m) period bond. Denote by

rx
(n)
t;t+m the resulting log return in excess of holding a bond for m periods11 which is

detailed in the Appendix A.3 to be

rx
(n)
t;t+m = p

(n�m)
t+m � p

(n)
t + p

(m)
t

where p(n�m)t+m is the log price of an n�m period bond at time t+m; etc. Inserting

11Ideally, for excess return calculations it may be preferred to roll over a one-period T-bill for
m periods as the alternative to invest-and-hold for m periods a longer bond. However, this is
approximated here by the m-period bond.
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the appropriate An and Bn from (3:25) and (3:24) in Appendix A.2 yields:

rx
(n)
t;t+m = An�m �An +Am + B>n�mXt+m � B>nXt + B>mXt

= an;m + b>n;mXt + �
(n)
t+1;t+m (3.11)

where an;m, bn;m and �
(n)
t+1;t+m are speci�ed in the appendix to be:

an;m = B>n�m
m�1X
i=0

�i�+An�m �An +Am (3.12)

b>n;m = ��>1
�
I � �Q

��1 n�
I �

�
�Q
�n�m�

�m +
�
�Q
�n � ��Q �mo (3.13)

�
(n)
t+1;t+m = B>n�m

m�1X
i=0

�iut+m�i

Hence, the expected excess return is also a¢ ne in the state variable Xt:

Et

h
rx

(n)
t;t+m

i
= an;m + b>n;mXt (3.14)

Notice that risk premia need to depend on the state variables if the excess return in

ATSMs should be forecastable. That �1 6= 0 is needed becomes particularly clear if
a holding period of m = 1 is considered

b>n;1 = ��>1
�
I � �Q

��1 n�
I �

�
�Q
�n�1�

� +
�
�Q
�n � �Qo

= ��>1
�
I � �Q

��1 n�
I �

�
�Q
�n�1� �

�Q + ��1
�
+
�
�Q
�n � �Qo

= B>n�1��1

So far the state variables in X have been treated rather generically. A signi�cant

part of the empirical literature on ATSMs treats X as unobserved latent variables12,

i.e. X is an implicit function of the parameter vector that we choose such that

the joint likelihood of the observed yields and state variables is maximized. Alter-

natively, some of the Xs may be observed as proposed by Ang & Piazzesi (2003)

but this does not require a change of the theoretical model outlined above; only

the econometric model outlined in section 3.3 is a¤ected. The observed variables

used in this paper are derived from a large panel of macroeconomic and �nancial

12Examples in the literature are Chen & Scott (1993), Du¢ e & Singleton (1997), Dai & Singleton
(2000, 2002) and Du¤ee (2002)
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time series and the following section presents the theoretical model for extracting

dynamic macroeconomic factors from large panels.

3.2.2 Large panel factor analysis: A factor-augmented VAR

Recent advances in the econometric theory put forward by notably Forni et al. (2000)

and Stock &Watson (2002a) allow us to analyze large panels of potentially hundreds

of time series in terms of a few (< 10) dynamic factors13. As mentioned previously,

the idea pursued here is to imitate the large information set of the bond traders

by the large panel and then extract a few common dynamic macroeconomic factors

that can explain the majority of the variation in the data panel. Subsequently these

factors serve as the state variables X in the ATSM.

The model approach in this paper is similar to the factor-augmented VAR

(FAVAR) of Bernanke et al. (2005). The FAVAR is particularly interesting in the

way the monetary policy rate enters both as an observed variable (in the measure-

ment equation) and through the augmentation of the state variable with the policy

rate such that the policy rate interacts dynamically with the factors in the VAR

dynamics - hence the term factor-augmented VAR. This means that it is possible to

control for the short-term interest rate when macroeconomic factors are estimated.

Identi�cation in general is addressed in section 3.3.

As in the previous section the starting point is once again a state space model.

Consider a panel of observable economic and �nancial variables �xi;t; where i denotes

the cross-section unit, i = 1; :::; N; while t refers to the time index, t = 1; :::; T: The

panel of observed economic variables is transformed into stationary variables with

zero mean and unit variance. These transformed variables are labeled xi;t. Dynamic

factor models assume that a variable xit can be decomposed into two components,

the common component, �it; and the idiosyncratic component �it:

xit = �it + �it:

Furthermore, in exact dynamic factor models it is assumed that the idiosyncratic

and common components are uncorrelated at all leads and lags and across all vari-

ables, E(�i;t�j;s) = 0; 8 s; t; i; j: The common component is assumed to be driven
by a small number r; r << N; of common factors ft = (f1t, f2t; � � � ; frt)>:
13Reichlin (2003) presents an empirical review of dynamic factor models.
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xit = �>i ft + �it (3.15)

where �i is an r � 1 vector of factor loadings measuring the exposure of xit to the
factors ft: On the other hand, the idiosyncratic component is driven by variable-

speci�c noises. Stacking equation (3.15) over all cross-section units, xit; i = 1; :::; N;

gives

xt = �ft + �t; (3.16)

where xt = (x1t; : : : ; xNt)>, �t = (�1t; : : : ; �Nt)
>; and � is an N � r matrix of factor

loadings, � = (�1; :::; �N)>: Equation (3.16) is called a static factor model.14

To close the model, factor dynamics have to be speci�ed. We assume that the

r-dimensional vector of common factors ft has a VAR(p) representation

'(L)ft = �t; (3.17)

where '(L) = I � '1L � '2L
2 � : : : � 'pL

p; with 'j denoting an r � r matrix

of autoregressive coe¢ cients (j = 1; : : : ; p): Moreover, given the stationarity of the

transformed panel; we impose that the roots of det (�(L)) are outside the complex

unit circle. The r-dimensional vector of dynamic factor innovations is denoted �t. As

in Doz et al. (2006), I make the distributional assumptions that �t � i:i:d N (0; Q)

and �t � i:i:d N (0; R) ; with Q and R denoting (semi)positive de�nite matrices15.

Using equations (3.16) and (3.17), the model can be summarized in �rst order

form, with state vector Ft; Ft = (f>t ; :::; f
>
t�p+1)

> by the measurement equation:

xt = �Ft + �t; (3.18)

and the transition equation

Ft = �Ft�1 + Ut; (3.19)

14"Static" stands for the fact that the observed variables only load contemporaneously on the
factors.
15Note that, by assuming i.i.d idiosyncratic components, (3:16)-(3:17) de�ne an exact dynamic

factor model. This is certainly a strong assumption, particularly in the case of large panel data
sets where some local cross-sectional and serial correlations are expected to be found. As such,
(3:16)-(3:17) represent a misspeci�ed model. However, Doz et al. (2006) show that, for large N
and T; the exact factor model estimators are consistent quasi-maximum likelihood estimators for
the approximate factor model.
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where � is the rp�rp companion matrix corresponding to '(L) and U =
�
Ir; 0

>
r(p�1)�r

�>
Two state space models for panel data have been presented in this section and

they are summarized brie�y below as:

1. A no-arbitrage Gaussian ATSM in state space form

Yt = A (n; �) +B (n; �)Xt + vt

Xt = �+ �Xt�1 + �"t

where � = f�0; �1; �;�;�; �0; �1g contains all the underlying parameters and
where some of the observed state variables in Xt are macroeconomic factors

(Ft) from:

2. A factor-augmented VAR model for large panel dynamic factor analysis

xt = �Ft + �t

Ft = �Ft�1 + Ut

However, in their current form neither of the two state space models are econo-

metrically identi�ed, as it is possible to form observationally equivalent models with

di¤erent parameters and state variables16. The following section will thus address

identi�cation and also estimation methods.

3.3 Estimation and identi�cation

3.3.1 Identi�cation issues in Gaussian ATSMs with observed

and unobserved state variables

The presence of latent state variables in standard multifactor ATSMs implies that

not all model parameters are econometrically identi�ed. The identi�cation approach

taken in this paper is quite standard but is nevertheless brie�y discussed.

16Consider a rotation of the FAVAR with the invertible matrix H such that xt = ~� ~Ft + �t and
~Ft = ~� ~Ft�1 + ~Ut with ~� = �H�1; ~Ft = HFt; ~� = H�H�1 and ~U = MUt: This model is clearly
observationally equivalent to the model above and the parameters are therefore not identi�ed. The
same applies to ATSM.
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Identi�cation of ATSMs with latent state variables is thoroughly discussed in

Dai & Singleton (2000) where the notion of a canonical model de�nes a model that

is admissible, econometrically identi�ed and still maximally �exible within a family

of models. Implicit in the canonical model speci�cation is a set of normalizations

required for identi�cation, which makes it impossible to rotate the state vector

without changing the short rate and thus the bond price. However, because the state

vector is latent, it is still possible to make "invariant" transformations (rotations and

translations of the state vector) that preserve admissibility and identi�cation without

changing the short rate; cf. Dai & Singleton (2000). When observed variables are

included in the state vector, the usual rotations or translations would also change the

observed part of the state vector. Consequently Pericoli & Taboga (2008) rede�ne

the canonical ATSMwhen observed variables are included among the state variables.

Ang & Piazzesi (2003) assume that the macro variables are exogenous to the

yield curve. Implicitly, this implies a set of overidentifying overidentifying parame-

ter restrictions compared with the canonical model in Pericoli & Taboga (2008).

However, these overidentifying restrictions are by all appearances mainly imposed

to keep the estimation of these highly parameterized models manageable.

In order to clarify how and where the identifying restrictions are imposed a no-

arbitrage state space model is presented below which distinguishes between o
¯
bserved

state variables and u
¯
nobserved (latent) state variables. Consider �rst the measure-

ment equation that consists of the N observed yields in Yt and now also p lags of K1

observed macroeconomic variables stacked in a K1 � p dimensional vector Xo
t . These

observed (N +K1 � p) variables are a¢ ne in the state vector Xt which is partitioned

into K1 � p observed macro variables and K2 latent variables in Xu
t :"

Xo
t

Yt

#
=

"
0

A

#
+

"
I 0

Bo Bu

#"
Xo
t

Xu
t

#
+

"
0 0

0 Bm

#"
wt

vt

#
(3.20)

Accordingly, Xt is a K = K1 �p+K2 dimensional vector. Furthermore, the N �1
vector A and the N �K loadings matrix

h
Bo Bu

i
follow from the no-arbitrage

cross-section restrictions in (3:9)-(3:10). Thus, it can be seen that the yields now load

on both macroeconomic variables through Bo which is an N � (K �K2) matrix and

on the latent variables through Bu which is N �K2: The macroeconomic variables

are observed and therefore assumed to be measured without error, i.e. wt = 017:

17To be precise, the dynamic factor analysis already allows for series speci�c idiosyncratic dis-
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Furthermore vt � iid N (0; I) implying that the measurement errors are Bmvt �
N
�
0; BmBm>� ; where Bm is an N �K2 matrix.

The transition equation for the state variablesXt is the same as (3:4) but written

out slightly to emphasize the macroeconomic state variables:"
Xo
t

Xu
t

#
=

"
�o

�u

#
+

"
�oo �ou

�uo �uu

#"
Xo
t�1

Xu
t�1

#
+

"
�oo �ou

�uo �uu

#"
"ot

"ut

#
(3.21)

where an exact listing of the dimensions of the vectors and matrices are deferred to

Appendix A.4.

The exactly identifying restrictions are probably most easily stated if the start-

ing point is the model in (3:20)-(3:21) with no macroeconomic state variables, i.e.

K1 = 0: In this case and following Dai & Singleton (2000) �uu is normalized to an

identity matrix which allows us to estimate �u1 freely and which allows the latent

state variables to be correlated through a lower triangular �uu. Furthermore, a zero

restriction on �u allows for a free estimate of �0 in the short rate equation. The

upper left K2 � K2 block of �
u
1 is estimated freely, but this in turn requires one

element in �u0 to be restricted to zero; cf. de Jong (2000). For a three-factor model,

this implies twenty-one parameters to be estimated plus the covariance matrix of

the measurement errors.

Ang & Piazzesi (2003) apply this identi�cation scheme and additionally impose

that �ou = �uo = �ou = �uo = 0; that �o is zero18 and that �oo is lower triangular

as a result of a Cholesky decomposition. These restrictions are a consequence of

the exogenous treatment of the macroeconomic state variables in the term structure

where �oo; �o1 and �
oo are estimated consistently in a �rst step prior to the term

structure estimation and subsequently kept �xed in the second step estimation of the

ATSM. However, the upper left K1�K1 block of �
o
1 is estimated freely such that the

market prices of risk also depend on the state of the macro economy. The restrictions

�ou = �uo = �ou = �uo = 0 are overidentifying restrictions according to Pericoli

& Taboga (2008), i.e. it is in fact possible to achieve a more �exible yet identi�ed

model without imposing these restrictions. However, treating f�ou;�uo;�ou;�uog
as free greatly increases the computational burden for the model in Ang & Piazzesi

turbances in the extraction of the common dynamic factors Ft: Hence, yet another source of
disturbances through wt is not preferred here.
18The macro state variables are de-meaned prior to estimation.
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(2003) as additionally ninety parameters need to be estimated when K1 = 2 and

p = 12. I experienced the same type of computational challenges and therefore

opt for the same identi�cation scheme as in Ang & Piazzesi (2003) including the

above-mentioned overidentifying restrictions.

3.3.2 Estimation of Gaussian ATSMs

Two methods for the estimation of dynamic term structure models with latent state

variables are often used in the literature.

The �rst method is the maximum likelihood approach by Chen & Scott (1993),

where time series of K2 latent state variables are inverted from a more or less ar-

bitrarily chosen set of K2 perfectly measured zero-coupon bond yields.19 The con-

ditional density of the observed yields then follows from the then known density of

the state vector and the Jacobian. Appendix A.4 presents the inversion of the latent

state variables and the likelihood function. This method has been used in a number

of papers including Du¤ee (2002), Dai & Singleton (2002) and the Gaussian macro-

�nance term structure models by Ang & Piazzesi (2003), Hördahl et al. (2006) and

Pericoli & Taboga (2008).

The second method is the Kalman �lter which recursively �lters the latent state

variables conditional on a parameter vector and conditional on observing a history

of yields of di¤erent maturities and where all yields may be measured with errors.

The �lter is recursive in the sense that each time a new observation arrives, a

forecast error can be calculated which in turn enables an update of the conditional

moments for the state vector X. Based on the updated conditional moment of X

a new one-period ahead forecast of the observed variable can be computed. For

Gaussian models, the linear Kalman �lter is the optimal linear estimator within the

class of linear estimators, and the exact likelihood follows from the prediction error

decomposition; cf. equation (3:26) in Appendix A.4, which contains more details20.

It can be noted that the estimation of Gaussian term structure by the method

of Chen & Scott (1993) can be seen as a special case of the Kalman �lter if the

same measurement errors are restricted to zero as in former method. The Kalman
19I �nd that estimation results are sensitive to which yields that are measured perfectly.
20For non-Gaussian models like the Cox et al. (1985) model, the exact likelihood is unknown

but quasi maximum likelihood methods based on the conditional �rst and second moments of the
state variables have been used in the literature; cf. Lund (1997) for a discussion.
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�lter method has been applied to Gaussian macro-�nance term structure models by

Dewachter et al. (2006), Dewachter & Lyrio (2006b) and Du¤ee (2007).

In this paper, I opt for the Kalman �lter, primarily to avoid measuring some

of the yields without error, but also because of the generality and �exibility of this

method. For instance, the Kalman �lter method allows measuring some of the ob-

served variables perfectly if needed or even handling missing data. However, the

computational cost of using the Kalman �lter is larger than using the inversion

method of Chen & Scott (1993). For each candidate parameter vector in the op-

timization routine, the Kalman �lter loops recursively through the T observations,

each involving a matrix inversion and a set of matrix multiplications in order to

�lter the latent state vector Xt: The inversion method is much faster in this respect,

as only a single matrix inversion is needed for each candidate parameter vector.

3.3.3 Identi�cation in the factor-augmented VAR and esti-

mation by the EM algorithm

The FAVAR is not econometrically identi�ed as it stands in the state space model of

(3:18) and (3:19). The identi�cation scheme and the estimation method are di¤erent

from Bernanke et al. (2005) as I allow for correlated factors estimated by the EM

algorithm as opposed to orthogonal factors estimated by Bayesian methods in the

latter.

As discussed in details in Bork (2008), identi�cation in factor models is about

separating the contributions of the di¤erent latent factors to the variation in the

panel x: The predominant starting point is uncorrelated factors which, implies that

the identi�cation of the sources of variation in x is then a matter of imposing an

identifying structure on the loading matrix; in particular a lower triangular block

structure of the loading matrix. Alternatively, the assumption about uncorrelated

factors can be relaxed by allowing for correlated factors. However, less restricted

factor dynamics would have to be paid by a more restrictive structure on the loading

matrix; in particular the lower triangular block mentioned above is replaced by an

identity matrix of the same size. In other words: Either the variables in x covary

because they load di¤erently on a set of uncorrelated factors or because they load

on di¤erent factors which are themselves correlated.
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Thus, a su¢ cient condition for an exactly identi�ed FAVAR model is to impose

an identity matrix restriction on r of the N observed variables.l21. Therefore, for an

exactly identi�ed model I specify the restricted loading matrix �� by imposing:

��j;l = 1; �
�
j;k 6=l = 0 for j = 1; ::; r (3.22)

but as shown in Bork et al. (2008) additional restrictions may be imposed by the

general form of loading restrictions

H� vec(�
�) = ��

where �� is a vector and H� is the restriction matrix H�. In fact, to identify the

monetary policy rate that enters both the measurement and state transition equation

I make use of this general restriction. Speci�cally, the policy rate in xt loads with

unity on the last factor in Ft and zeros on the remaining latent factors, such that

the corresponding row in �� for the policy rate is [0; :::; 0; 1]. In line with Bernanke

et al. (2005), I argue that the federal funds rate is measured without error whereas

the other variables may be measured with error

These restrictions are easily imposed when the EM algorithm is used as the es-

timation method. The EM algorithm is an iterative maximum likelihood procedure

which is useful for models with "missing data", which in this context are the un-

observed dynamic factors; cf. Dempster et al. (1977), Shumway & Sto¤er (1982)

and Watson & Engle (1983) for important contributions22. In fact, for the linear

state space model in (3:18)-(3:19) it is possible to obtain closed form solutions for

the parameters of interest f��; �;Q;Rg as speci�ed in Appendix A.4 which o¤ers
a self-contained introduction to the EM algorithm including the application of the

Kalman �lter and the Kalman smoother.

21Furthermore, in this identi�cation scheme, the restrictions are imposed on the so-called slow-
moving variables like production, employment as opposed to fast-moving variables like exchange
rates, stock prices, interest rates and consumer survey measures. This division into slow and fast-
moving variables follows Bernanke et al. (2005). See Appendix A.1 page 162 for more details on
this division.
22It seems that it is not possible to apply the EM algorithm in a standard way to ATSMs as the

objective function is highly non-linear in the parameters.
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3.4 Empirical application

In this section, a multifactor ATSM with �ltered macroeconomic state variables

conditioned on a large information set is taken to the data. I will show that �ltered

macroeconomic state variables from a large panel data set matter for model per-

formance in several respects and that shocks to fundamental macroeconomic state

variables play an important role in the response of bond yields and bond risk pre-

mia. In this respect, in�ation and unemployment are particularly important, but

the relations between bond risk premia and shocks to these fundamental macroeco-

nomic state variables are only uncovered if the dynamics of the state variables are

su¢ ciently rich.

In the following, the data is presented �rst, then some comments on the econo-

metric model speci�cation and estimation issues are given, and �nally the empirical

results are presented.

3.4.1 Data

To illustrate how the bond market might �lter the state of the macroeconomy from

many di¤erent data sources I revisit the large data panel of macroeconomic and

�nancial time series analyzed in Bernanke et al. (2005)23. This dataset consists of 120

monthly time series and therefore captures the dynamics of a wide range of economic

as well as �nancial developments in the US economy over the period 1959:1 to

2001:824. Speci�cally, the dataset contains several measures of industrial production,

income, (un)employment, consumption, housing starts, inventories, price indices and

other economic measures. Furthermore, �nancial market variables such as stock

prices, foreign exchange rates and coupon bond yields are also included.

I follow Ang & Piazzesi (2003) and use the continuously compounded zero-

coupon bond yields of maturities 1, 3, 12, 24 and 60 months from the CRSP covering

23I thank Jean Boivin for kindly making the data set available on his website, HEC-Montréal,
Canada.
24The data are already transformed by Bernanke et al. (2005) to reach stationarity; see Appendix

A.1 page 162 in this paper and Bernanke et al. (2005) for details on the data set and on the
transformation which results in a sample size of T = 511: The data transformation decisions are
similar to Stock & Watson (2002b) and based on judgemental and preliminary data analysis of
each series, including unit root tests.
Prior to the estimation, we de-mean the series and divide them by their standard deviation such

that the resulting series have zero mean and unit variance.
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the same period as the data above (the macro data).

To get a sense of the data, an example of a common in�ation factor estimated

from the FAVAR model is plotted against the log di¤erence of two relevant speci�c

price indices in Figure 3.1. It can be noted that although monthly growth rates in

price indices are quite volatile, the common in�ation factor does not match every

movement in the price indices; some of movements are thus series speci�c idiosyn-

cratic movements.

[Insert Figure 3.1 here]

3.4.2 Model speci�cation

With hundreds of time series in the macro panel and potentially highly parameter-

ized macro-�nance ATSMs there is indisputably a large set of candidate models to

choose between. Furthermore, both the FAVAR model and the Kalman �ltration of

the ATSM can be time consuming, which means that there is a timewise limit as to

the depth of model exploration.

I choose to focus on three dimensions in the model speci�cation. Firstly, �ve

macroeconomic dynamic factors are considered as candidate state variables moti-

vated by standard macroeconomic theory and derived from the FAVAR. The interest

centers around what role these fundamental macroeconomic key variables play in

the response of the yield curve and the bond risk premia to macroeconomic shocks.

Typically, two of these enter the ATSM as well as typically three latent variables

similarly to Ang & Piazzesi (2003).

Secondly, I examine whether yield and risk premia responses to fundamental

shocks depend on the assumed dynamic complexity of the state variables in the

VAR. Typically, VARs with monthly macroeconomic data require a signi�cant lag

length; Ang & Piazzesi (2003) �nd that p = 12: The survival of such highly para-

meterized macro-�nance ATSMs in AIC or BIC criteria is low. Pericoli & Taboga

(2008) apply the AIC and BIC criteria to a macro-�nance model with quarterly data

and �nd that p should be in the range 0-2 depending on the speci�cation. Thirdly, I

choose to focus on the estimation of the most parsimonious version of a given ATSM

124



by carefully eliminating statistically insigni�cant parameters in order to reduce over-

parameterization. This approach is combined with the use of a global optimization

routine (simulated annealing) in an attempt to avoid inferior local maximums.

The �ve macroeconomic dynamic factors are a subset of the nine factors ana-

lyzed in Bork et al. (2008) and each factor is given a clear economic interpretation

by imposing overidentifying loading restrictions on �� in (3:22) as proposed and

described in detail by Bork et al. (2008).25 Speci�cally, they de�ne the following

nine factors. Four of these factors are related to aggregate supply: an in�ation fac-

tor ; an economic activity factor; an unemployment factor and a hours in production

factor (functioning as a bu¤er to changes in demand). Furthermore, they de�ne

three factors related to aggregate demand: a consumption factor; a housing factor

approximating (residential) investment; and a monetary policy factor. The �nal two

factors have the interpretation of an information factor (commodity price factor) and

as a �nancial factor (stock market factor). The �ve macroeconomic factors retained

in this paper is the aggregate supply factors and aggregate demand factors except

for the housing factor and the monetary policy factor. The housing factor is a priori

excluded as I expect this factor to lag interest rates whereas the monetary policy

factor is excluded as the short-term interest rate is modelled within the ATSM as a

Taylor-style policy rule.26

Obviously a general in�ation factor should be a candidate state variable because

in�ation is an important target variable in monetary policy (the Taylor rule) and

because in�ation a¤ects the purchasing power of the payo¤s to bond investments.

Other highly relevant fundamental macroeconomic state variables are economic ac-

tivity and unemployment, which a¤ect both the interest setting by the Federal

Reserve Board and income and consumption possibilities of the consumers. The

consumption growth factor is related to investor�s marginal utility of consumption

and therefore to the pricing kernel as in Breeden (1979) or more recently as in Camp-

bell & Cochrane (1999). Finally, a relative responsive state variable is de�ned in

terms of overtime hours in production.

25Accordingly, exactly the same data and exactly the same overidentifying restrictions are used
in this paper as in Bork et al. (2008). Furthermore, they report that their results are robust to
including more lags and to reducing the number of lags in the FAVAR to p = 4 and I expect these
results to carry over to the FAVARs estimated in this paper using exactly the same estimation
routine.
26The stock market factor is not included because I opt for a fundamental macroeconomic ex-

planation of the term structure dynamics. The commodity price factor was included as a state
variable in the ATSM but it did not show up as an important state variable.
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A comment on the estimation of the ATSM will now be given. Feeding the

optimization routine with good initial values for the parameters is the key to �nd

the (hopefully) global maximum, and the simulated annealing method27 is one mean

towards this. I proceed towards the most parsimonious model as follows. In a

�rst sequence of estimations I estimate (using simulated annealing) the expectation

hypothesis version of the ATSM with �0 = �1 = 0 while f�; �1g is estimated freely28.
Then � and �0 are kept �xed while �1 is estimated. After this �0 is estimated while

keeping f�; �1g �xed, and �nally all parameters are free in a joint estimation. Given
the resulting new set of initial parameter values, this sequence of estimations with

some parameters kept �xed and other parameters free is repeated again (with the

faster Nelder-Mead simplex method). However, this time insigni�cant parameters

at a 10% signi�cance level are set to zero. Notice that the purpose of this is only to

build up good starting values. In the �nal sequence, insigni�cant parameters at a

10% signi�cance level are removed one at a time from the parameter vector, which is

reestimated after each removed parameter. Admittedly, this method involves many

estimations, but it delivers a parsimonious model and is capable of �nding the true

parameters of a simulated three-factor ATSM29. Moreover, this approach also proves

successful in an earlier replication of the results in Ang & Piazzesi (2003).

One of the attractive properties of the Kalman �lter is the recursive calculation

of the �ltered state vector Xtjt which is the time t expectation of the state vector

conditional on observations up to time t: Assuming that the parameter vector of the

FAVAR is known by the bond market Xtjt may be interpreted as the time t beliefs

of the bond market about the state of the economy30. Therefore, in terms of model

speci�cation the �ltered state vector is preferred in the estimations. Finally, the

Kalman �lter allows for heteroskedastic measurement errors which are theoretically

attractive but nevertheless increase the computation time signi�cantly31. Therefore,

27Simulated annealing is a global stochastic optimization technique which is often explained with
reference to the cooling process of molten metal (thermodynamics) where a slow cooling (annealing)
leads to a low energy state (the minimum) whereas a quick cooling might lead to a local minimum
only. See Go¤e et al. (1994) for more details.
28�0 is always �xed at the unconditional mean of the short rate.
29This approach grew out of unfortunate experience with local maximums using initially the

simplex method and out of a brief comment from Ang & Piazzesi (2003) page 763 on estimation
issues.
30This argument ignores the actual vintage of the real-time data that the bond market actually

had at that time.
31If there are good reasons to expect that the variance of the measurement errors in the bond

market should be heteroskedastic, for instance if there are thinly traded bonds or "on-the run"
versus "o¤-the-run" e¤ects, then it may be a good idea to allow for heteroskedasticity. On the
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I assume homoskedastic measurement errors as in Du¤ee (2007, 2008).

3.4.3 Empirical results

The results of the exploration into potential macroeconomic sources of the variation

in bond excess return are now presented. The exploration is limited to an assess-

ment of which role the �ve macroeconomic dynamic factors plays in the variation

of excess returns. This assessment is performed in terms of impulse response analy-

sis and forecast error variance decomposition (FEVD) of excess bond returns. In

Appendix A.5 I derive the FEVD for the excess bond returns with a general hold-

ing period. The preferred ATSM model includes the �ltered in�ation factor and

the �ltered unemployment factor among the K1 = 2 macroeconomic state variables

and the K2 = 3 latent variables. The background for this preference, is mainly

that unemployment is the most important source of variation in bond excess return,

among the analyzed macroeconomic factors. This speci�cation is then evaluated

against other candidate models; for instance by comparing model �t and varying

the number of lags in both the FAVAR and the ATSM32.

Some of the initial estimations are not included in this paper. Speci�cally, I

quickly realized that the use of K1 = 3 macroeconomic factors and K2 = 2 latent

term structure factors resulted in a signi�cant inferior �t compared to models with

K1 = 2 and K2 = 3: Therefore, only models with the latter model speci�cation

are reported. Furthermore, the in�ation factor turns out to be an important state

variable as in practically all other macro-�nance models in the literature. Conse-

quently, in�ation is always one of the macroeconomic state variables in the ATSM

while the other are either unemployment, economic activity, consumption or hours-

in-production. Finally, I also allow the number of lags in both the FAVAR and the

ATSM to be either p = f4; 8; 12g : It turns out that four lags is not su¢ cient in the
sense that counterintuitive impulse responses emerge, which may be the result of a

omitted variable problem, and muted endogeneous responses in the VAR residuals.

Finally, the results with twelve lags are not very di¤erent from the results with eight

lags and therefore dismissed on the basis of the AIC or BIC criteria.

other hand, adding more parameters may worsen the overparameterization problem.
32In a previous version of this paper a comparison with a model that do not use �ltered dynamic

factors was performed. For the last mentioned model, the �t was somewhat inferior and the impulse
responses were di¤erent.
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The empirical results for the models with eight or twelve lags are now summa-

rized and then subsequently discussed in details. Firstly, the model-implied expected

excess return (EER) responds as expected following a shock to the �ve macroeco-

nomic state variables. EER responds negatively to shocks to in�ation, economic

activity, consumption and hours-in-production. Intuitively, shocks to the last three

mentioned variables would correspond to an improved state of the economy and

therefore the demanded risk-premium decreases. Secondly, the FEVD of the EER

is broadly similar for all �ve macroeconomic factors and the factors account for no

more than 30% of the total forecast error variation at any forecast horizon. Thirdly,

all four models are able to �t the yield curve well. The mean of the absolute values

of the deviation between observed yields and model implied yields, is in the range

of about 5-10 basis points. Finally, the impulse response analyses of the yield curve

following macroeconomic shocks also display the expected responses of the yields of

di¤erent maturites. For instance, shocks to industrial production and/or in�ation

raise the short-term interest rate but also the longer yields.

I therefore conclude that the estimated models with either eight or twelve lags

seem to be well-speci�ed. These models deliver empirical impulse responses of the

bond yields or expected excess returns that are consistent with theory and common

sense33.

The retained �ve common dynamic factors - in�ation, unemployment, economic

activity, and consumption - are depicted in Figure 3.2 as well as the other four factors

in Bork et al. (2008). Focusing on the �ve factor it can be seen that these candidate

state variables in the macro-�nance ATSM are well in line with the leading measures

and trends in the US economy over the sample period. Speci�cally, the general

in�ation factor captures very well the overall CPI series while the unemployment

factor, the economic activity factor and the hours in production factor also capture

the development quite good. Moreover, these factors also capture the peaks and

troughs of the business cycle well.

[Insert Figure 3.2 here]

Figures 3.3, 3.4, 3.5 and 3.6 display the impulse response functions of expected

excess return of bonds following a shock to 1) the in�ation factor plus one of the

factors from {unemployment, hours-in-production, economic activity or consump-

tion growth}, respectively. It can be seen that the shapes of the impulse response

33As already noted, the models with four lags result in counterintuitive responses.
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functions for in�ation shocks are broadly similar. Moreover, the unemployment fac-

tor in Figure 3.3 is seen to be an important source of variation in expected excess

return.

Generally, it can be seen that the longer the holding-period the larger the re-

sponse of expected excess return. Moreover, the longer the bond the larger the

response. A one standard deviation shock to unemployment initially raises the ex-

pected excess return by 17 basis points on an annually basis for a �ve-year bond

held for one year. This empirical evidence conforms with the conventional view that

risk premia are countercyclical. Notice also that a one standard deviation shock to

in�ation lowers the expected excess return by almost 20 basis points. The responses

are weaker for the remaining shocks.

[Insert Figures 3.3, 3.4, 3.5 and 3.6 here]

Another related technique to analyze how the variation in bond yields and bond

risk premia is a¤ected by macroeconomic state variables is the forecast error variance

decomposition. Speci�cally, in a forecast error variance decomposition (FEVD),

I calculate for a given forecast horizon what fraction of the model-implied total

forecast error variance for a particular variable that is due to a speci�c shock. I use

the FEVD to analyze how macroeconomic variables a¤ect the expected excess return

on bonds. In Appendix A.5 I derive the FEVD for excess return on bonds with a

general holding period. A step towards the FEVD is the mean squared forecast

error, MSFEt; given by:

MSFEt

�
rx

(n)
t+s;t+m+s

�
=

s�1X
j=0

b>n;m�
j

�
�j
�>
bn;m +

m�1X
i=0

B>n�m�i

�
�i
�
Bn�m

where bn;m is given in (3:13) and represents the loading for the involved bonds until

the forecast starts. The matrices �;
 are seen in De�nition 1. The price loading

B>n�m is seen in (3:7) and relates to the uncertainty of the selling price of the n�m
period bond at the end of the forecast period s: The holding period is represented

by m: The second term dominates in this expression and therefore the FEVD is

generally stable and almost constant throughout the forecast period. Consequently,

the FEVD for the �ve macroeconomic state variables is quite similar and therefore

only the FEVD for the preferred model is shown in Figure 3.8. It can be seen

that the in�ation factor (denoted obs. state variable 1) is the far most important
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macroeconomic variable in forecasting excess returns of bonds in this model.

[Insert Figure 3.8 here]

The preferred model is now related to other candidate models to evaluate the

empirical �t. Consider Table 3.1 where the statistical �t of ATSMs with four sets of

macroeconomic is evaluated. Speci�cally, the preferred model is evaluated against

the following sets: fin�ation, hours-in-productiong ; fin�ation, economic activityg,
fin�ation, hours-in-productiong and fin�ation, consumptiong : Generally, all four
models are able to �t the yield curve well with a mean of the absolute values of

the deviation between observed yields and model implied yields of about 7-8 basis

points. However, it is di¢ cult to discriminate in sample between di¤erent models,

although the second model in Panel B seems to �t the yield curve less well. On

this background I conclude that an interesting account of some of the variability of

excess returns is obtained via the preferred model, without sacri�cing the statistical

�t.

A prominent benchmark model is the Ang & Piazzesi (2003) a¢ ne term structure

model with K1 = 2 macroeconomic variables and K2 = 3 latent term structure fac-

tors. Interestingly, Ang & Piazzesi (2003) perform a "mini" dynamic factor analysis

where in�ation and real activity measures are constructed separately by principal

components analysis of a few observed indices. Their original data is extended to

match the sample period in this paper. Table 3.2 reports parameter estimates and

statistical �t of a Ang & Piazzesi like model. The model is estimated by the Chen

& Scott (1993) method to comply with the approach of Ang & Piazzesi. Figure 3.7

displays the impulse responses of expected excess returns of bonds. A comparison

with the fin�ation, economic activityg model of this paper reveals that excess re-
turns in the latter models responds a little more; especially for the longer holding

periods. The same holds for the preferred model .

The �nal robustness analysis concerns impulse response analysis of the bond

yields. From the analysis of how a shock to a state variable propagates through the

state space system and a¤ects bond yields, we can learn how di¤erent segments of

the maturity spectrum of the yield curve responds over time to such shocks. For

instance, it might be interesting in scenario analysis to know the e¤ect on di¤erent

yields following a shock to in�ation. Appendix A.5 shows that the n-period yield can

be written in a moving-average form which essentially shows how an uncorrelated
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shock realized generically in the past a¤ects today�s yield. Illustrative examples are

given below.

Figure 3.9 displays how the 1-month, 12-month and 60-month yield responds

to a one standard deviation in�ation shock and unemployment shock. It can be

seen that 100 bp. deviation from baseline (standardized) in�ation in this particular

model would make the short yields respond immediately by 30 bp, and about 12

bp. for the long bond yield but then the e¤ect dies out slowly. This is as expected

in the sense that the short yields are a¤ected most if the Federal Reserve Board

accommodates a rise in in�ation by an increase in the Federal funds rate. Similarly,

for an unemployment shock, short yields show little response as expected with a

more pronounced e¤ect for the long term yield.

3.5 Conclusion

This paper can be seen as a new empirical approach to no-arbitrage bond pricing

that takes into account the abundant amount of macroeconomic and �nancial in-

formation in the bond market. Part of this information needs to be processed in

order to asses the current state of the economy, which is relevant for an assess-

ment of the state of the monetary policy rate, i.e. for the short end of the yield

curve. To obtain a broad based assessment, it is preferable to look at several rel-

evant economic as well as �nancial variables in order to distinguish series speci�c

idiosyncratic measurement errors from the underlying common component of rel-

evant key macroeconomic variables. I propose to use a factor-augmented VAR to

�lter relevant key macroeconomic variables and explain empirically the short rate by

a few of these macroeconomic variables; speci�cally I argue for a general in�ation

factor and a general unemployment factor. Furthermore, the exactly identifying

restrictions imposed on the loadings of the factor-augmented VAR ensure that the

factors and the monetary policy rate are identi�ed and thus allow me to use �nan-

cial variables as timely information variables for the macroeconomic development.

The overidentifying restrictions ensure a clear macroeconomic interpretation of the

factors.

However, the intersection between the macroeconomy and the bond market is

not limited to the short end of the yield curve. Risk premiums depend on the state of

the economy as well. In bad times investors would require a higher premium to hold

131



a long-term bond. A multi-factor Gaussian a¢ ne term structure model is therefore

augmented with (Kalman) �ltered state variables derived from the dynamic factor

analysis. I �nd that among �ve di¤erent macroeconomic state variables in�ation

and unemployment perform particularly well. Firstly, in terms of yield curve �t they

perform at least as well as the updated factors from Ang & Piazzesi. Secondly, in

a forecast error variance decomposition the �ltered state macroeconomic variables

show a signi�cant ability to account for the variation in excess returns of bonds.

However, the key to an important role for macroeconomic variables in excess returns

of bonds is a su¢ ciently rich dynamic complexity in the term structure model.
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A Appendix

A.1 Conditional expectation of state variables under Q and
P.

The conditional expectation of Xt+1 under the P measure is denoted Mt and the

conditional expectation ofXt under theQmeasure is denotedMQ
t : The two moments

are related by the Radon-Nikodym derivative. Dai et al. (2007) show how the

conditional distribution ofXt+1 under P is fully characterized by conditional moment
generating function  Pt :

 Pt (�) = Et
�
exp

�
�>Xt+1

	�
= EQt

"
exp

�
�>Xt+1

	� dP
dQ

�D
t;t+1

#

=
 Qt (�

�1�t + �)

 Qt (�
�1�t)

= exp

�
�>
�
MQ
t + ��t

�
+
�>��>�

2

�
(3.23)

From this expression it is simple to calculate the �rst moment by di¤erentiating

(3:23) with respect to � and evaluating at � = 0 which implies

Mt =MQ
t + ��t

and inserting the de�nitions of Mt and MQ
t from De�nition 1 yields

�+ �Xt = �Q + �QXt + ��t

= �Q + �QXt + �(�0 + �1Xt)

and matching coe¢ cients implies

� = �Q + ��0

� = �Q + ��1

Alternatively, we could express �t as in the main text as

�t = �
�1 ��� �Q

�
+ ��1

�
�� �Q

�
Xt
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A.2 A and B in the bond price equation

The following proposition and proof are broadly similar to Campbell et al. (1997)

chapter 11 and Ang & Piazzesi (2003). To prove that the proposed bond price equa-

tion is compatible with the fundamental asset pricing equation in (3:6) and De�nition

1 the proposed bond price equation is substituted into exp
�
An + B>nXt+1

	
in (3:6)

and then I show that An and Bn each must satisfy a cross-sectional restriction.

Proposition 2 The bond price equation in a discrete-time a¢ ne term structure

models is exponentially a¢ ne in the state variables X

Pn;t = exp
�
An + B>nXt

	
where An and Bn must satisfy the following to be compatible with no-arbitrage

as speci�ed in De�nition 1 :

Bn = ��>1
�
I � �Q

��1 �
I �

�
�Q
�n�

(3.24)

An = �n�0 � �>1

h
n � I �

�
I � �Q

��1 �
I �

�
�Q
�n�i �

I � �Q
��1

�Q

+
1

2

n�1X
i=0

B>i ��>Bi (3.25)

Proof. Substitute the zero-coupon bond price at time t + 1 which now has n �
1 periods to maturity into the fundamental asset pricing equation in (3:6) ; i.e.
substitute Pn�1;t+1 = exp

�
An�1 + B>n�1Xt+1

	
into Pn;t = Et

h
Mt+1

Mt
Pn�1;t+1

i
:

Pn;t = Et

�
Mt+1

Mt
exp

�
�it �

1

2
�>t �t � �>t "t+1

�
exp

n
An�1 + B>n�1Xt+1

o�
= Et

�
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�
��0 � �>1 Xt �

1

2
�>t �t � �>t "t+1

�
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n
An�1 + B>n�1 (�+�Xt +�"t+1)

o�
= exp

�
��0 � �>1 Xt �

1

2
�>t �t +An�1 + B>n�1 (�+�Xt)

�
�
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h
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134



and from the de�nition of the mean of a lognormal variable this is equal to

Pn;t = exp

�
��0 � �>1Xt �

1

2
�>t �t +An�1 + B>n�1 (�+ �Xt)

�
�

exp

�
1

2
�>t �t +

1

2
B>n�1��>Bn�1 � B>n�1��t

�
= exp

�
��0 � �>1Xt +An�1 +

1

2
B>n�1��>Bn�1 + B>n�1 (�+ �Xt)

�
�
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�
�B>n�1

��
�� �Q

�
+
�
�� �Q

�
Xt

�	
= exp

�
��0 +An�1 +

1

2
B>n�1��>Bn�1 + B>n�1�Q

�
�
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��
��>1 + B>n�1�Q

�
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Matching coe¢ cients on the right hand side Pn;t = exp

�
An + B>nXt

	
with the

left hand side yields

Bn = ��>1 + B>n�1�Q

An = ��0 +An�1 +
1

2
B>n�1��>Bn�1 + B>n�1�Q

These recursions can in turn be written more compactly as in (3:24) and (3:25).

The compact version of Bn is derived by substituting recursively from Bn�1 to B0
which result in Bn = ��>1

Pn�1
i=0

�
�Q
�i
which in turn is (3:24) : Similarly for An:

A.3 Excess holding period bond returns

This section derives the conditional expected excess holding period bond return for

a general holding period of length m periods.

The return from investing in a n-period bond for m periods is:

R
(n)
t;t+m =

P
(n�m)
t+m � P

(n)
t

P
(n)
t

and the log return is then

log
�
1 +R

(n)
t;t+m

�
� r

(n)
t;t+m = p

(n�m)
t+m � p

(n)
t

where the log price at time t +m of a n �m period zero-coupon bond is denoted

p
(n�m)
t+m , etc. This return in excess of holding a m-period zero-coupon bond to matu-
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rity is

rx
(n)
t;t+m = p

(n�m)
t+m � p

(n)
t + p

(m)
t :

Inserting from (3:24) and (3:25) yields

rx
(n)
t;t+m = An�m �An +Am + B>n�mXt+m � B>nXt + B>mXt

where Xt+m =
Pm�1

i=0 �
i� + �mXt +

Pm�1
i=0 �

iut+m�i from (3:4) : Thus, rx(n)t;t+m can

be rewritten as

rx
(n)
t;t+m = B>n�m

m�1X
i=0

�i�+An�m �An +Am

+
�
B>n�m�m � B>n + B>m

�
Xt

+B>n�m
m�1X
i=0

�iut+m�i

= an;m + b>n;mXt + �t+1;t+m

where

an;m = B>n�m
m�1X
i=0

�i�+An�m �An +Am

b>n;m = B>n�m�m � B>n + B>m
= ��>1

�
I � �Q

��1 n�
I �

�
�Q
�n�m�

�m +
�
�Q
�n � ��Q �mo

�
(n)
t+1;t+m = B>n�m

m�1X
i=0

�iut+m�i

A.4 Estimation methods

The EM algorithm and Kalman smoothing recursions

The Expectation Maximization (EM) algorithm is an iterative maximum likelihood

procedure applicable to models with "missing data", which in this context is the

unobserved factors. The complete data likelihood of the Gaussian state space model

in equations (3:18)-(3:19) is given in equation (3:32) below. Although the complete

data likelihood cannot be calculated due to the unobserved factors, it is neverthe-

less possible to calculate the expectation of the complete data likelihood conditional
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on the observed data and inputs of parameters, denoted �(j) at the jth iteration.

Essentially, this expectation depends on smoothed moments of the unobserved vari-

ables from the Kalman smoother and hence on the data as well as parameters in

�(j): Finally, "updated" values of the parameters at iteration j + 1 denoted �(j+1)

are available in closed form and follows from the �rst-order conditions of the condi-

tional expectation of the complete data likelihood. The updated parameters �(j+1)

can then be used to �lter and smooth a new set of moments to be used in the calcu-

lation of the conditional expectation of the complete data likelihood. This algorithm

continues until convergence of the likelihood value.

The following o¤ers a brief description of the Kalman �lter and the Kalman

smoother. Then the complete data likelihood and the incomplete data likelihood

for a state space model are stated. Finally the moments used in the closed form

parameters estimators in (3:34)-(3:37) are stated.

The Kalman �lter Denote by X t = fX1; :::; Xtg the information set available
at time t. The conditional expectation and variance of the factor are: F̂t+1jt =

E [Ft+1j X t] and P̂t+1jt = var (Ft+1j X t) ; respectively:

The Kalman �lter recursions for t = 1; ::; T can then be written as

F̂t+1jt = �F̂tjt�1 +Kt

�
Xt � �F̂tjt�1

�
;

P̂t+1jt = �P̂tjt�1L
>
t +Q;

where

�t = Xt � �F̂tjt�1;
P ��t = �P̂tjt�1�

> +R;

such that the Kalman gain matrix K used in F̂t+1jt and P̂t+1jt is calculated as

Kt = �P̂tjt�1�
>
�
�P̂tjt�1�

> +R
��1

:

If the initial state vector and the error terms have proper normal distributions a

useful output of the Kalman �lter is the prediction error decomposition form of the
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likelihood:

logL = �NT
2
log 2� � 1

2

TX
t=1

log
���P̂ ��tjt�1���� 12

TX
t=1

�>t �
�1�t (3.26)

cf. Harvey (1989) chapter 3.

Kalman smoothing Kalman smoothing is the name for the reconstruction of

the full state sequence fF1; ::; FTg given the observations fX1; ::; XTg. Smoothing
provides us with more accurate inference on the state variables since it uses more

information than the basic �lter.

The Kalman smoother recursions for t = T; :::; 1; based on the e¢ cient smoother

by de Jong & Mackinnon (1988), de Jong (1989) and used in Koopman & Shephard

(1992) are given by

F̂tjT = F̂tjt�1 + P̂tjt�1�
>
h
P̂ ��tjt�1

i�1
�t + P̂tjt�1L

>
t rt (3.27)

= F̂tjt�1 + P̂tjt�1rt�1 (alternatively) (3.28)

P̂tjT = P̂tjt�1 � P̂tjt�1Nt�1P̂tjt�1 (3.29)

P̂fT;T�1gjT = [I �KT�]�P̂T�1jT�1 (3.30)

P̂ft;t�1gjT =
�
I � P̂tjt�1Nt�1

�
Lt�1P̂t�1jt�2, t = T � 1; :::; 1 (3.31)

where

rt�1 = �>
h
P̂ ��tjt�1

i�1
�t + L>t rt; for 1 � t < T and rT = 0

Nt�1 = �>
h
P̂ ��tjt�1

i�1
� + L>t NtL for 1 � t < T and NT = 0

Lt = ��Kt� = �� �P̂tjt�1�
>
h
P̂ ��tjt�1

i�1
�:

The complete data likelihood and the incomplete data likelihood Under

the Gaussian assumption including F0 � N (�0; P0) and ignoring the constant, the
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complete data likelihood of equations (3:18)-(3:19) page 3.19 can be written as

�2 lnLF ;X (�) = ln jP0j+ (F0 � �0)
> P�10 (F0 � �0)

+T ln jQj+
TX
t=1

(Ft � �Ft�1)
>Q�1 (Ft � �Ft�1)

+T ln jRj+
TX
t=1

(Xt � �Ft)>R�1 (Xt � �Ft) : (3.32)

given that we can observe the states FT = fF0; ::; FTg as well as the observations
XT = fX1; ::; XTg. However, given XT and some input of parameter estimates
(denoted �(j�1)) the conditional expectation of the complete data likelihood can be

written as

Q
�
�j�(j�1)

�
= E

�
�2 lnLF ;X (�)

��XT ;�(j�1) �
= ln jP0j+ tr

�
P�10

��
F̂0jT � �0

��
F̂0jT � �0

�>
+ P0jT

��
+T � ln jQj+ tr

�
Q�1

�
C �B�> � �B> + �A�>

	�
+T � ln jRj

+tr

"
R�1

TX
t=1

��
Xt � �F̂tjT

��
Xt � �F̂tjT

�>
+ �P̂tjT�

>
�#
(3.33)

where the following moments can be calculated from the Kalman smoother above:

A =
PT

t=1

�
F̂t�1jT F̂

>
t�1jT + P̂t�1jT

�
B =

PT
t=1

�
F̂tjT F̂

>
t�1jT + P̂ft;t�1gjT

�
C =

PT
t=1

�
F̂tjT F̂

>
tjT + P̂tjT

�
D =

PT
t=1XtF̂

>
tjT

E =
PT

t=1XtX
>
t

Given these smoothed moments the Maximization step results in the following

closed form estimators at iteration j
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vec
�
�(j)

�
= vec

�
DC�1

�
(3.34)

R(j) =
1

T

�
E �DC�1D>� (3.35)

vec
�
�(j)
�
= vec

�
BA�1

�
(3.36)

Q(j) =
1

T

�
C �BA�1B>� (3.37)

where Ft is approximated by F̂tjT = E [Ftj XT ] : XT = fX1; ::; XTg denotes the full in-
formation set, P̂tjT = var (Ftj XT ) is the variance and P̂ft;t�1gjT = cov (Ft; Ft�1j XT )
is the lag-one covariance.

These estimates can then be used in the Expectation step to compute a new set

of moments from the Kalman smoother. Subsequently, these estimates are supplied

to the maximization step above and the procedure continues until convergence of

the likelihood.

Likelihood function

The maximum likelihood method of Chen & Scott (1993) for a Gaussian ATSM

with both macroeconomic variables and latent state variables is now presented and

follows closely Ang & Piazzesi (2003) although with somewhat more details here.

The measurement and state transition equation in (3:20)-(3:21) page 118 is repeated

below for convenience"
Xo
t

Yt

#
=

"
0

A

#
+

"
I 0

Bo Bu

#"
Xo
t

Xu
t

#
+

"
0 0

0 Bm

#"
wt

vt

#
(3:20)

and"
Xo
t

Xu
t

#
=

"
�o

�u

#
+

"
�oo �ou

�uo �uu

#"
Xo
t�1

Xu
t�1

#
+

"
�oo �ou

�uo �uu

#"
"ot

"ut

#
(3:21)

where f�o; "otg are K1 � p vectors with zeros except for the upper K1 elements,

�oo is a K1 � p�K1 � p companion matrix representing the pth order lag polynomial,
�oo is a K1 � p�K1 � p matrix padded with zeros except for the upper left K1 �K1

block and f�ou;�oug are K1 � p�K2 matrices. For the latent variables f�u; "ut g are
K2 vectors and �uu is a K2 �K2 matrix. Finally, also partition the K � 1 vector
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�1 in De�nition 1 into �
o
1 of dimension K1 � p and �u1 of dimension K2: The market

prices of risk load only on contemporaneous values of Xt such that �0 has the same

structure as � and �1 has the same structure as �:

The parameters of interest implicit in the state space system above are � =

f�0; �1; �;�;�; �0; �1g and need to be estimated using a maximum likelihood method
that involves the joint conditional density of (Yt; Xo

t ) : However, this density is not

known but given the distributional assumptions about the measurement errors and

the multivariate normal distribution of the one-period ahead latent state variables

XtjX�1 it is possible to apply a change-of-variable technique to relate the density

of (Yt; Xo
t ) to the density of (X

o
t ; X

u
t ; vt) if X

u
t is known. Following the approach

by Chen & Scott (1993) the unobserved Xu
t are inverted from a subset of Yt by

assuming that K2 yields are measured without error leaving N � K2 of the yields

to be measured with errors such that the measurement matrix Bm is padded with

zeros except for N �K2 non-zero elements: The part of the measurement equation

in (3:1) that represents the yields in Yt is now partitioned into a part with K2 rows

that is measured without error (denoted by a bar) and a part with (N �K2) rows

that is measured with errors (denoted by a tilde)34 such that (3:20) can be written

in a reordered form as:264 Xo
t

�Yt
~Yt

375 =
264 0
�A
~A

375+
264 I 0 0
�Bo �Bu �Bm

~Bo ~Bu ~Bm

375
264 Xo

t

Xu
t

vt

375 (3.38)

where the zero measurement errors of �Yt implies that �Bm contains only zeros and
~Bmvt � �t � N (0; H) where vt is K2 � 1 and H is K2 � K2. The latent state

variables can now be recovered as a function of the perfectly observed yields

Xu
t =

�
�Bu
��1 � �Yt � �A� �Bo �Xo

t

�
: (3.39)

Given the Jacobian J of the transformation from Yt to Xu
t :

J =

264 I 0 0
�Bo �Bu 0
~Bo ~Bu ~Bm

375

34 �Yt is K2 � 1; �A is K2 � 1; ~Bo is K � (K �K2) ; �B
u is K2 �K2; �B

m is K2 � (N �K2) ; ~Yt is
(N �K2)� 1; ~A is (N �K2)� 1; ~Bo is (N �K2)� (K �K2) ; and ~Bm is (N �K2)�K2
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the joint conditional density of (Yt; Xo
t ) can be written as

f
�
Yt; X

o
t jXo

t�1; X
o
t�1; It; 	

�
=

1

jdet (J)jf
�
Xo
t ; X

u
t ; vtjXo

t�1; X
u
t�1; It; 	

�
=

1

jdet (J)jf
�
Xo
t ; X

u
t ; �tjXo

t�1; X
u
t�1; 	

�
f
�
�tj �t�1; 	

�
where It contains lagged values of the conditioning variables. The second line

follows from the Markovian structure of the state variables, the de�nition of �t and

the assumption that the measurement errors �t are uninformative about the states

The joint likelihood L (	) is then given by

L (	) =
TY
t=2

1

jdet (J)jf
�
Xo
t ; X

u
t ; �tjXo

t�1; X
u
t�1; 	

�
f
�
�tj �t�1; 	

�
and the log likelihood is then

logL (	) = � (T � 1) log (jdet (J)j) +
TX
t=2

log f
�
Xo
t ; X

u
t ; �tjXo

t�1; X
u
t�1; 	

�
+

TX
t=2

log f
�
�tj �t�1; 	

�
= � (T � 1) log (jdet (J)j)� (T � 1)K

2
log (2�)� (T � 1)

2
log (det (
))

�1
2

TX
t=2

(Xt � �� �Xt�1)
>
�1 (Xt � �� �Xt�1)

�(T � 1) (N �K)

2
log (2�)� (T � 1)

2
log (det (H))� 1

2

TX
t=2

�>t H
�1�t

A.5 Impulse responses and forecast error variance decom-

positions

Impulse response functions for the yields

The following self-contained presentation is closely related to Ang & Piazzesi (2003)

as they o¤er a quite pedagogical presentation of how the loadings on lagged state

variables load similarly on the moving-average coe¢ cients of the state variables in

142



the moving-average representation of the VAR in (3:1)35:

The VAR(1) companion form36 of the VAR with p lags is rearranged into a

VAR(p) is rearranged as follows. The (K1 � p+K2)�1 state vectorXt of current and

lagged state variables Xt =
h
Xo>
t Xu>

t

i>
with Xo

t =
h
f o>t f o>t�1 � � � f o>t�p�1

i>
and Xu

t =
h
fu>t

i
is now split up in the yield equation in order detail how the IRF

are multiplied by the loading matrix. Consider the n-period yield

y
(n)
t = An +B>

nXt

= An +Bo>
n;0f

o
t + :::+Bo>

n;p�1f
o
t�p�1 +Bu>

n0 f
u
t

= An +Bou>
n;o F

ou
t + :::+Bou>

n;p�1F
ou
t�p�1

where

F out =

"
f ot

fut

#
; Bou

n;0 =

"
Bo
n;0

Bu
n;0

#
;
�
F out�i

	p�1
i=1

=

"
f ot�i

0

#
;
�
Bou
n;i

	p�1
i=1

=

"
Bo
n;i

0

#

The VAR is now with p lags:

F out = �0 + �
ou
1 F

ou
t�1 + :::+ �oup F

ou
t�p + Ut

where

�ou1 =

"
�o1 0

0 �u1

#
; f�oui g

p
i=2 =

"
�oi 0

0 0

#
; Ut =

"
uot

uut

#
and where �0 = 0; �oui is a K1 � K1 matrix corresponding to the observed state

variables and �u1 is aK2�K2 matrix corresponding to the unobserved state variables.

Finally, var (U) = 
 which in turn is Cholesky decomposed into 
 = PP> such

that Ut = Pet; with et being iid.

The moving average representation MA(1) of F out is then

Ft =
1X
i=0

	iUt�i =

1X
i=0

�iet�i

35However, the IRFs can be calculated equivalently as Yt = B>n
P1

i=1 �
iut�i where the practical

implementation involves a choice of the response period to analyze, i.e. letting i run from 1 to say s
and then recursively calculate the expression above; cf. Canova (2007) chapter 4. Both approaches
were applied in this paper and it can be con�rmed that both approaches give similar results.
36Recall that � denotes the (K1 � p+K2) � (K1 � p+K2) companion matrix whereas ��s with

the subscripts f�igpi=1 refer to the VAR with p lags.
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where et = P�1Ut and �i = 	iP is found by the following recursion; cf. Lütkepohl

(2007):

�s =
sX
j=1

�s�j�j; s = 1; 2; ::::; �0 = P

The MA(1) form of the n-period yield is then given by:

y
(n)
t = An +

1X
i=0

 
(n)
i et�i (3.40)

where

 
(n)
0 = Bou>

n;0 �0

 
(n)
1 = Bou>

n;0 �1 +Bou>
n;1 �0

 
(n)
2 = Bou>

n;0 �2 +Bou>
n;1 �1 +Bou>

n;2 �0
...

 
(n)
p�1 = Bou>

n;0 �p�1 +Bou>
n;1 �p�2 + :::+Bou>

n;p�1�0
...

 
(n)
i = Bou>

n;0 �i +Bou>
n;1 �i�2 + :::+Bou>

n;p�1�i�(p�1) for i � (p� 1)

Forecast error variance decompositions for the yields

Consider the jth component of the vector of yields Yt when there are K state

variables (K shocks). Furthermore, calculate the forecast error for a forecast horizon

of s periods using (3:40)

y
(n)
t+s � Et

h
y
(n)
t+s

i
=  

(n)
0 et+s +  

(n)
1 et+s�1 + :::+  

(n)
s�1et+1

KX
k=1

 
(n)
k;0ek;t+s +  

(n)
k;1ek;t+s�1 + :::+  

(n)
k;s�1ek;t+1

The corresponding mean squared error is then
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MSE
�
y
(n)
t+sjt

�
= E

��
y
(n)
t+s � Et

h
y
(n)
t+s

i��
y
(n)
t+s � Et

h
y
(n)
t+s

i�>�
=

KX
k=1

��
 
(n)
k;0

�2
+
�
 
(n)
k;1

�2
+ :::+

�
 
(n)
k;s�1

�2�

The contribution !(n)k;s of the kth factor to the MSE of the s-step ahead forecast

of the n-period yield is

!
(n)
k;s =

Ps�1
i=0

h
 
(n)
k;i

i2
MSE

�
y
(n)
t+sjt

�
Notice, it would also be possible to treat the idiosyncratic noise (measurement

error) in the measurement equation37. However, the fraction of the measurement

error in (FEVD) is negligible because of the very small measurement errors.

Forecast error variance decomposition for the excess bond returns

In the previous section I showed how to compute a forecast as of time t of a future

n-period yield at time t + s and then evaluate the time t mean squared error of

this forecast. In this section the future yield yt+s is replaced by a future excess m-

period holding period return rx(n)t+s;t+m+s. Then the time t mean squared error of this

forecast is constructed. The whole purpose of this exercise is to show how forecasts

of excess returns are in�uenced by shocks to the state variables at di¤erence forecast

horizons.

The starting point is the m-period holding period return as of time t in equation

(3:11) and (3:14) repeated below for convenience

rx
(n)
t;t+m = An�m �An +Am + B>n�mXt+m � B>nXt + B>mXt

= an;m + b>n;mXt + B>n�m
m�1X
i=0

�iut+m�i

37See Bork (2008) for this calculation.
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where

an;m = B>n�m
m�1X
i=0

�i�+An�m �An +Am

b>n;m = B>n�m�m � B>n + B>m

Now, consider the same return but one period later, i.e. the excess holding period

return from t+ 1 to t+m+ 1 :

rx
(n)
t+1;t+m+1 = An�m �An +Am + B>n�mXt+m+1 � B>nXt+1 + B>mXt+1

= an;m + b>n;m (�+ �Xt + ut+1) + B>n�m
m�1X
i=0

�iut+m+1�i

implying that the forecast error can be calculated as

rx
(n)
t+1;t+m+1 � Et

h
rx

(n)
t+1;t+m+1

i
= b>n;mut+1 + B>n�m

m�1X
i=0

�iut+m+1�i

whereas the forecast error for the period t+ 2 to t+m+ 2 is:

rx
(n)
t+2;t+m+2 � Et

h
rx

(n)
t+2;t+m+2

i
= b>n;m (�ut+1 + ut+2) + B>n�m

m�1X
i=0

�iut+m+2�i

and generally for time t+ s to t+m+ s

rx
(n)
t+s;t+m+s � Et

h
rx

(n)
t+s;t+m+s

i
= b>n;m

s�1X
j=0

�jut+s�j + B>n�m
m�1X
i=0

�iut+m+s�i

Notice, that the �rst term relates to the uncertainty of all prices until the forecast

calculations starts whereas the second term relates to the uncertainty of the selling

price of the n�m period bond. The mean squared forecast error (MSFE) as of time

t of these forecasts up to horizon s is then simply

MSFEt

�
rx

(n)
t+s;t+m+s

�
=

s�1X
j=0

b>n;m�
j

�
�j
�>
bn;m +

m�1X
i=0

B>n�m�i

�
�i
�
Bn�m

Apply a Cholesky decomposition to 
 such that 
 = ��> and denote by the 1�K
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vectors

&(j)n;m = b>n;m�
j�

#
(i)
n�m = B>n�m�i�

which then allows us to rewrite the MSFE as

MSFEt

�
rx

(n)
t+s;t+m+s

�
=

s�1X
j=0

&(j)n;m
�
&(j)n;m

�>
+

m�1X
i=0

#
(i)
n�m

h
#
(i)
n�m

i>
In particular the contribution from the kth shock

MSFEt

�
rx

(n)
t+s;t+m+s (k)

�
=

s�1X
j=0

h
&
(j)
n;m;k

i2
+

m�1X
i=0

h
#
(i)
n�m;k

i2
The contribution w(n�m)k;s of the kth factor to the MSFE of the s-step ahead forecast

of the m-period holding period excess return for a n-period bond is then:

w
(n�m)
k;s =

Ps�1
j=0

h
&
(j)
n;m;k

i2
+
Pm�1

i=0

h
#
(i)
n�m;k

i2
MSFEt

�
rx

(n)
t+s;t+m+s

�
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Table 3.1: Di¤erent sets of macroeconomic state variables and yield �t

Panel A: Filtered state variables
�
Xtjt
�
from large panel

dynamic factor analysis: In�ation and unemployment

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0129 0.0743 0.7067
3m 0.0139 0.1256 1.0529
12m -0.0090 0.0825 0.5541
36m 0.0054 0.0615 0.3602
60m 0.0008 0.0558 0.3481

Panel B: Filtered state variables
�
Xtjt
�
from large panel

dynamic factor analysis: In�ation and hours-in-production

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0167 0.0734 0.6560
3m 0.0153 0.1309 1.1571
12m -0.0077 0.0907 0.5817
36m 0.0053 0.0624 0.3922
60m 0.0019 0.0618 0.3877

Panel C: Filtered state variables
�
Xtjt
�
from large panel

dynamic factor analysis: In�ation and economic activity

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0168 0.0727 0.6603
3m 0.0159 0.1281 1.2331
12m -0.0103 0.0828 0.6158
36m 0.0069 0.0631 0.4278
60m 0.0032 0.0579 0.4063

Panel D: Filtered state variables
�
Xtjt
�
from large panel

dynamic factor analysis: In�ation and consumption

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0138 0.0680 0.6790
3m 0.0114 0.1220 1.2992
12m -0.0069 0.0864 0.7109
36m 0.0058 0.0627 0.4267
60m 0.0027 0.0578 0.3865

The model speci�cation follows the discussion of identi�cation in 3.3.1 page 3.3.1 with K1 = 2; p = 8 and K2 = 3:The
models are estimated by the Kalman �lter. The column heading yt � ŷt means the average of �tting errors of the
yields measured in percentage points, jyt � ŷtj means average of the absolute value of the errors and max

�
jyt � ŷtj

�
means the maximum of the absolute value of the �tting errors.
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Table 3.2: Ang and Piazzesi like model

�u1 =

26664
0:000110
(0:000024)

��

�0:000435
(0:000010)

��

0:000312
(0:000023)

��

37775 �u0 =

"
�0:0437
(0:0041)

�� #

�uu =

26664
0:9923
(0:0047)

��

0:9712
(0:0077)

��

�0:0452
(0:0153)

�� 0:8267
(0:0216)

��

37775 �uu1 =

26664
�0:0044
(0:0047)

0:0543
(0:0074)

�� : �0:2505
(0:0234)

��

�0:0507
(0:0121)

�� 0:2421
(0:0296)

��

37775

�H =

26666664
0:000247
(0:000005)

��

0:000096
(0:000002)

��

37777775 �oo1 =

24 1:5244(0:2421)

�� �0:0096
(0:0930)

2:0839
(0:2428)

�� 0:2000
(0:1070)

�

35

Note:The remaining macroeconomic parameters are kept �xed.

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0000 0.0000 0.0000
3m 0.0626 0.2132 1.7863
12m -0.0000 0.0000 0.0000
36m 0.0029 0.0883 0.6883
60m -0.0000 0.0000 0.0000

This model is based on the same speci�cation and scaling as the model in Table 7 in Ang & Piazzesi (2003) and the
same data adjusted to the sample period in this paper. The model speci�cation follows the discussion of identi�cation
in Section 3.3.1 with K1 = 2; p = 12;K2 = 3 and is estimated by the Chen & Scott (1993) method described in
Appendix A.4. The column heading yt � ŷt means the average of the �tting errors of the yields measured in basis
points., jyt � ŷtj means the average of the absolute value of the errors and max

�
jyt � ŷtj

�
means the maximum of the

absolute value of the �tting errors. Standard errors in parenthesis are calculated by the outer product of the gradient,
where the gradient is calculated numerically using two-sided �nite di¤erence calculations.
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Table 3.3: The preferred ATSM.

�u1 =

26664
0:1429
(0:0319)

��

�0:2841
(0:0268)

��

0:5211
(0:0173)

��

37775 �u0 =

"
�0:0477
(0:0103)

�� #

�uu =

26664
0:9949
(0:0017)

��

0:9256
(0:0085)

��

�0:0631
(0:0199)

�� 0:8432
(0:0246)

��

37775 �uu1 =

2664 0:0456
(0:0114)

��

�0:1167
(0:0157)

�� 0:2082
(0:0290)

�� 0:3138
(0:0240)

��

3775

�H =

266664
0:1578
(0:0018)

��

. . .

0:1578

377775 �oo1 =

24 0:2406
(0:0582)

�� �0:0695
(0:0139)

��

�0:3346
(0:0916)

�� �0:2332
(0:0446)

��

35

Note:The remaining macroeconomic parameters are kept �xed.

Maturity yt � ŷt jyt � ŷtj max
�
jyt � ŷtj

�
1m -0.0129 0.0743 0.7067
3m 0.0139 0.1256 1.0529
12m -0.0090 0.0825 0.5541
36m 0.0054 0.0615 0.3602
60m 0.0008 0.0558 0.3481

The model speci�cation follows the discussion of identi�cation in 3.3.1 page 3.3.1 with K1 = 2; p = 8;K2 = 3 and is
estimated by the Kalman �lter method. The column heading yt � ŷt means the average of �tting errors of the yields
measured in percentage points, jyt � ŷtj means the average of the absolute value of the errors and max

�
jyt � ŷtj

�
means the maximum of the absolute value of the �tting errors. Standard errors in parenthesis are calculated by the
outer product of the gradient, where the gradient is calculated numerically using two-sided �nite di¤erence calculations.
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Figure 3.3: IRF for expected excess returns on bonds: The case of X̂tjt =
fin�ation, unemploymentg with p = 8
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Figure 3.4: IRF for expected excess returns on bonds: The case of X̂tjt =
fin�ation, hours-in-productiong with p = 8
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Figure 3.5: IRF for expected excess returns on bonds: The case of X̂tjt =
fin�ation, economic activityg with p = 8
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Figure 3.6: IRF for expected excess returns on bonds: The case of X̂tjt =
fin�ation, consumptiong with p = 8
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Figure 3.7: IRF for expected excess returns on bonds: The Ang and
Piazzesi like model with p = 8
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Figure 3.8: FEVD for the bond excess return: The case of X̂tjt =
fin�ation, unemploymentg with p = 8
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Forecast error variance decomposition (FEVD) of expected excess holding period return

Forecast horizon in months (h) is measured on the horizontal axis and the proportion of the h−step ahead forecast error 
variance due to the innovations in the particular state variable is measured in percentage points on the vertial axis 

Forecast horizon in months (h) is measured on the horizontal axis and the proportion of the h−step ahead
forecast error variance due to the innovations in the particular state variable is measured in percentage points
on the vertial axis

Notes:
"latent state variable 3" is the third state variable (the so−called curvature factor).
"latent state variable 2" is the second state variable (the so−called slope factor.
"latent state variable 1" is the first state variable (the so−called level factor).
"obs. state variable 1" is the inflation state vector derived from dynamic factor analyis, while
"obs. state variable 2" is the unemployment state vector .
"HP" is the holding period.
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Figure 3.9: "Impulse response functions for 12, 36 and 60-month yields
following a one standard deviation shock to in�ation and unemployment".
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APPENDIXA

Appendices
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A.1 Data description

Data are from Bernanke et al. (2005).

The second column is a mnemonic and a * indicates a "slow-moving" variable. Fourth

column contains transformation codes. "level" indicates an untransformed variable, say

xt: "ln" means lnxt and "� ln" means lnxt � lnxt�1:

Real output and income

1 IPP* 1959:01�2001:08 � ln Industrial production: products, total (1992=100,SA)

2 IPF* 1959:01�2001:08 � ln Industrial production: �nal products (1992=100,SA)

3 IPC* 1959:01�2001:08 � ln Industrial production: consumer goods (1992=100,SA)

4 IPCD* 1959:01�2001:08 � ln Industrial production: durable cons. goods (1992=100,SA)

5 IPCN* 1959:01�2001:08 � ln Industrial production: nondurable cons. goods (1992=100,SA)

6 IPE* 1959:01�2001:08 � ln Industrial production: business equipment (1992=100,SA)

7 IPI* 1959:01�2001:08 � ln Industrial production: intermediate products (1992=100,SA)

8 IPM* 1959:01�2001:08 � ln Industrial production: materials (1992=100,SA)

9 IPMD* 1959:01�2001:08 � ln Industrial production: durable goods materials (1992=100,SA)

10 IPMND* 1959:01�2001:08 � ln Industrial production: nondur. goods materials (1992=100,SA)

11 IPMFG* 1959:01�2001:08 � ln Industrial production: manufacturing (1992=100,SA)

12 IPD* 1959:01�2001:08 � ln Industrial production: durable manufacturing (1992=100,SA)

13 IPN* 1959:01�2001:08 � ln Industrial production: nondur. manufacturing (1992=100,SA)

14 IPMIN* 1959:01�2001:08 � ln Industrial production: mining (1992=100,SA)

15 IPUT* 1959:01�2001:08 � ln Industrial production: utilities (1992=100,SA)

16 IP* 1959:01�2001:08 � ln Industrial production: total index (1992=100,SA)

17 IPXMCA* 1959:01�2001:08 level Capacity util rate: manufac., total (% of capacity,SA) (frb)

18 PMI* 1959:01�2001:08 level Purchasing managers�index (SA)

19 PMP* 1959:01�2001:08 level NAPM production index (percent)

20 GMPYQ* 1959:01�2001:08 � ln Personal income (chained) (series #52) (bil 92$,SAAR)

21 GMYXPQ* 1959:01�2001:08 � ln Personal inc. less trans. payments (chained) (#51) (bil 92$,SAAR)
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(Un)employment and hours

22 LHEL* 1959:01�2001:08 � ln Index of help-wanted advertising in newspapers (1967=100;SA)

23 LHELX* 1959:01�2001:08 ln Employment: ratio; help-wanted ads: no. unemployed clf

24 LHEM* 1959:01�2001:08 � ln Civilian labor force: employed, total (thous.,SA)

25 LHNAG* 1959:01�2001:08 � ln Civilian labor force: employed, nonag. industries (thous.,SA)

26 LHUR* 1959:01�2001:08 level Unemployment rate: all workers, 16 years and over (%,SA)

27 LHU680* 1959:01�2001:08 level Unemploy. by duration: average (mean) duration in weeks (SA)

28 LHU5* 1959:01�2001:08 level Unemploy. by duration: pers unempl. less than 5 wks (thous.,SA)

29 LHU14* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 5 to 14 wks (thous.,SA)

30 LHU15* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 15 wks=(thous.,SA)

31 LHU26* 1959:01�2001:08 level Unemploy. by duration: pers unempl. 15 to 26 wks (thous.,SA)

32 LPNAG* 1959:01�2001:08 � ln Employees on nonag. payrolls: total (thous.,SA)

33 LP* 1959:01�2001:08 � ln Employees on nonag. payrolls: total, private (thous.,SA)

34 LPGD* 1959:01�2001:08 � ln Employees on nonag. payrolls: goods-producing (thous.,SA)

35 LPMI* 1959:01�2001:08 � ln Employees on nonag. payrolls: mining (thous.,SA)

36 LPCC* 1959:01�2001:08 � ln Employees on nonag. payrolls: contract construc. (thous.,SA)

37 LPEM* 1959:01�2001:08 � ln Employees on nonag. payrolls: manufacturing (thous.,SA)

38 LPED* 1959:01�2001:08 � ln Employees on nonag. payrolls: durable goods (thous.,SA)

39 LPEN* 1959:01�2001:08 � ln Employees on nonag. payrolls: nondurable goods (thous.,SA)

40 LPSP* 1959:01�2001:08 � ln Employees on nonag. payrolls: service-producing (thous.,SA)

41 LPTU* 1959:01�2001:08 � ln Employees on nonag. payrolls: trans. and public util. (thous.,SA)

42 LPT* 1959:01�2001:08 � ln Employees on nonag. payrolls: wholesale and retail (thous.,SA)

43 LPFR* 1959:01�2001:08 � ln Employees on nonag. payrolls: �nance, ins. and real est (thous.,SA)

44 LPS* 1959:01�2001:08 � ln Employees on nonag. payrolls: services (thous.,SA)

45 LPGOV* 1959:01�2001:08 � ln Employees on nonag. payrolls: government (thous.,SA)

46 LPHRM* 1959:01�2001:08 level Avg. weekly hrs. of production wkrs.: manufacturing (sa)

47 LPMOSA* 1959:01�2001:08 level Avg. weekly hrs. of prod. wkrs.: mfg., overtime hrs. (sa)

48 PMEMP* 1959:01�2001:08 level NAPM employment index (percent)

Consumption

49 GMCQ* 1959:01�2001:08 � ln Pers cons exp (chained)� total (bil 92$,SAAR)

50 GMCDQ* 1959:01�2001:08 � ln Pers cons exp (chained)� tot. dur. (bil 96$,SAAR)

51 GMCNQ* 1959:01�2001:08 � ln Pers cons exp (chained)� nondur. (bil 92$,SAAR)

52 GMCSQ* 1959:01�2001:08 � ln Pers cons exp (chained)� services (bil 92$,SAAR)

53 GMCANQ* 1959:01�2001:08 � ln Personal cons expend (chained)� new cars (bil 96$,SAAR)

Housing starts and sales

54 HSFR 1959:01�2001:08 ln Housing starts: nonfarm (1947�1958); tot. (

55 HSNE 1959:01�2001:08 ln Housing starts: northeast (thous.u.)s.a.

56 HSMW 1959:01�2001:08 ln Housing starts: midwest (thous.u.)s.a.

57 HSSOU 1959:01�2001:08 ln Housing starts: south (thous.u.)s.a.

58 HSWST 1959:01�2001:08 ln Housing starts: west (thous.u.)s.a.

59 HSBR 1959:01�2001:08 ln Housing authorized: total new priv housing (thous.,SAAR)

60 HMOB 1959:01�2001:08 ln Mobile homes: manufacturers�shipments (thous. of units,SAAR)
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Real inventories, ordes and un�lled orders

61 MNV 1959:01�2001:08 level NAPM inventories index (percent)

62 PMNO 1959:01�2001:08 level NAPM new orders index (percent)

63 PMDEL 1959:01�2001:08 level NAPM vendor deliveries index (percent)

64 MOCMQ 1959:01�2001:08 � ln New orders (net)� consumer goods and materials, 1992 $ (bci)

65 MSONDQ 1959:01�2001:08 � ln New orders, nondefense capital goods, in 1992 $s (bci)

Stock prices

66 FSNCOM 1959:01�2001:08 � ln NYSE composite (12/31/65=50)

67 FSPCOM 1959:01�2001:08 � ln S&P�s composite (1941�1943=10)

68 FSPIN 1959:01�2001:08 � ln S&P�s industrials (1941�1943=10)

69 FSPCAP 1959:01�2001:08 � ln S&P�s capital goods (1941�1943=10)

70 FSPUT 1959:01�2001:08 � ln S&P�s utilities (1941�1943=10)

71 FSDXP 1959:01�2001:08 level S&P�s composite common stock: dividend yield (% per annum)

72 FSPXE 1959:01�2001:08 level S&P�s composite common stock: price-earnings ratio (%,NSA)

Foreign exchange rates

73 EXRSW 1959:01�2001:08 � ln Foreign exchange rate: Switzerland (swiss franc per US$)

74 EXRJAN 1959:01�2001:08 � ln Foreign exchange rate: Japan (yen per US$)

75 EXRUK 1959:01�2001:08 � ln Foreign exchange rate: United Kingdom (cents per pound)

76 EXRCAN 1959:01�2001:08 � ln Foreign exchange rate: Canada (canadian $ per US$)

Interest rates and spreads

77 FYFF 1959:01�2001:08 level Interest rate: federal funds (e¤ective) (% per annum,nsa)

78 FYGM3 1959:01�2001:08 level Interest rate: US T-bill,sec mkt,3-mo. (% per ann,nsa)

79 FYGM6 1959:01�2001:08 level Interest rate: US T-bill,sec mkt,6-mo. (% per ann,nsa)

80 FYGT1 1959:01�2001:08 level Interest rate: UST const matur., 1-yr. (% per ann,nsa)

81 FYGT5 1959:01�2001:08 level Interest rate: UST const matur., 5-yr. (% per ann,nsa)

82 FYGT10 1959:01�2001:08 level Interest rate: UST const matur., 10-yr. (% per ann,nsa)

83 FYAAAC 1959:01�2001:08 level Bond yield: Moody�s AAA corporate (% per annum)

84 FYBAAC 1959:01�2001:08 level Bond yield: Moody�s Baa corporate (% per annum)

85 SFYGM3 1959:01�2001:08 level Spread fygM3� fy¤

86 SFYGM6 1959:01�2001:08 level Spread fygm6� fy¤

87 SFYGT1 1959:01�2001:08 level Spread fygt1� fy¤

88 SFYGT5 1959:01�2001:08 level Spread fygt5� fy¤

89 SFYGT10 1959:01�2001:08 level Spread fygt10� fy¤

90 SFYAAAC 1959:01�2001:08 level Spread fyaaac� fy¤

91 SFYBAAC 1959:01�2001:08 level Spread fybaac� fy¤
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Money and credit quantity aggregates

92 FM1 1959:01�2001:08 � ln Money stock: M1 (bil$,SA)

93 FM2 1959:01�2001:08 � ln Money stock: M2 (bil$,SA)

94 FM3 1959:01�2001:08 � ln Money stock: M3 (bil$,SA)

95 FM2DQ 1959:01�2001:08 � ln Money supply� M2 in 1992 $s (bci)

96 FMFBA 1959:01�2001:08 � ln Monetary base, adj for reserve requirement changes (mil$,SA)

97 FMRRA 1959:01�2001:08 � ln Depository inst reserves: total, adj for res. req chgs (mil$,SA)

98 FMRNBA 1959:01�2001:08 � ln Depository inst reserves: nonbor., adj res req chgs (mil$,SA)

99 FCLNQ 1959:01�2001:08 � ln Commercial and indust. loans outstanding in 1992 $s (bci)

100 FCLBMC 1959:01�2001:08 level Wkly rp lg com. banks: net change com and ind. loans (bil$,SAAR)

101 CCINRV 1959:01�2001:08 � ln Consumer credit outstanding nonrevolving g19

Price indexes

102 PMCP 1959:01�2001:08 level NAPM commodity prices index (%)

103 PWFSA* 1959:01�2001:08 � ln PPI: �nished goods (82=100,SA)

104 PWFCSA* 1959:01�2001:08 � ln PPI: �nished consumer goods (82=100,SA)

105 PWIMSA* 1959:01�2001:08 � ln PPI: intermed mat. sup and components (82=100,SA)

106 PWCMSA* 1959:01�2001:08 � ln PPI: crude materials (82=100,SA)

107 PSM99Q* 1959:01�2001:08 � ln Index of sensitive materials prices (1990=100) (bci-99a)

108 PUNEW* 1959:01�2001:08 � ln CPI-U: all items (82�84=100,SA)

109 PU83* 1959:01�2001:08 � ln CPI-U: apparel and upkeep (82�84=100,SA)

110 PU84* 1959:01�2001:08 � ln CPI-U: transportation (82�84=100,SA)

111 PU85* 1959:01�2001:08 � ln CPI-U: medical care (82�84=100,SA)

112 PUC* 1959:01�2001:08 � ln CPI-U: commodities (82�84=100,SA)

113 PUCD* 1959:01�2001:08 � ln CPI-U: durables (82�84=100,SA)

114 PUS* 1959:01�2001:08 � ln CPI-U: services (82�84=100,SA)

115 PUXF* 1959:01�2001:08 � ln CPI-U: all items less food (82�84=100,SA)

116 PUXHS* 1959:01�2001:08 � ln CPI-U: all items less shelter (82�84=100,SA)

117 PUXM* 1959:01�2001:08 � ln CPI-U: all items less medical care (82�84=100,SA)

Average hourly earnings

118 LEHCC* 1959:01�2001:08 �ln Avg hr earnings of constr wkrs: construction ($,SA)

119 LEHM* 1959:01�2001:08 �ln Avg hr earnings of prod wkrs: manufacturing ($,SA)

Miscellaneous

120 HHSNTN 1959:01�2001:08 level U. of Mich. index of consumer

165



166



Summary

English summary

The policy makers at the Federal Reserve Bank and the bond market participants

have one thing in common: They have an abundant amount of information at their

disposal, and as such the information set on which they condition the interest rate

setting, and bond pricing respectively, is large. Consequently, a recurrent theme

of this thesis is the approximation of the large information sets by a large panel

of macroeconomic and �nancial time series. In particular, this thesis advances the

use of dynamic factors, to approximate the conditioning information set in both

monetary policy analysis and in bond pricing. By construction, only a few of these

factors are able to summarize the bulk of the information of potentially hundreds of

observed time series.

Chapter 1:

Central banks monitor literally hundreds of economic variables in the process of

policy formulation as expressed by Federal Reserve Board chairman Ben Bernanke

and his co-authors in Bernanke et al. (2005). Classical multivariate regression mod-

els generally perform poorly in �tting such large cross-sections of time series (aka.

large panels). However, in recent years econometric estimation techniques have been

developed which allow these large panels to be analyzed through a small set of un-

derlying extracted dynamic factors. These Dynamic Factor Models (DFM) and the

related Factor-Augmented Vector Autoregressive models (FAVAR) are typically esti-

mated by principal component methods or by Bayesian methods as in Bernanke et al.
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(2005). The methodological contribution of this chapter is a one-step fully paramet-

ric estimation of the FAVAR by means of the EM algorithm as an alternative to the

two-step principal component method and the one-step Bayesian methods. In the

empirical section of this chapter I analyze a cross-section of 120 US macroeconomic

and �nancial time series and �nd that the comovement of these time series over

time is shown to be adequately described in terms of eight dynamic latent driving

forces (dynamic factors) and the US federal funds rate. Subsequently, I study the

dynamic response of a set of key economic variables following a shock to the federal

funds rate. Finally, I demonstrate empirically that the same dynamic responses but

better statistical �t emerge robustly from a low order FAVAR with eight correlated

factors compared to a high order FAVAR with fewer correlated factors, for instance

four factors. In other words, I �nd empirical evidence that the information in com-

plicated factor dynamics (high order FAVAR) as in Bernanke et al. (2005) may be

substituted by panel information and a low order FAVAR.

Chapter 2:

The second chapter is written jointly with Hans Dewachter and Romain Houssa.

The starting point is the Factor-Augmented Vector Autoregressive model (FAVAR)

entertained in chapter one. We focus on the economic interpretation of the latent

(unobserved) factors that typically emerge from both DFMs and FAVARs. A stan-

dard procedure in the literature amounts to inferring the economic meaning of the

factors from the dominant factor loadings, i.e. from the observed variables in the

panel that are mostly related to the particular factor. However, this approach does

not necessarily generate unambiguous and well-de�ned interpretations of the factors.

In this paper we address the ambiguous economic interpretation of the exactly iden-

ti�ed dynamic factors by using a procedure that imposes a speci�c and well-de�ned

interpretation of the factors. The economic interpretation of the extracted factors

is based on a set of overidentifying restrictions on the factor loadings. This model

is still a Factor-Augmented Vector Autoregression, but it is now subject to linear

loading restrictions. We apply this framework to the same panel of US macroeco-

nomic series as in the �rst chapter of this thesis. In particular, we identify nine

macroeconomic factors and discuss the economic impact of monetary policy shocks.

We �nd that the results are theoretically plausible and in line with other �ndings in

the literature.
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Chapter 3:

The bond market is monitoring an abundant amount of information in its as-

sessment of the state of the economy and its implications for bond pricing and bond

risk premia. In this chapter, I propose to imitate the potential large information set

and solve the bond markets �ltering problem by a dynamic factor analysis of the

large panel of macroeconomic and �nancial time series used in the former chapters.

The identi�cation approach proposed in chapter two allow me to estimate a few

dynamic factors with a clear macroeconomic interpretation. Subsequently, these

dynamic factors represent the macroeconomic state variables in a discrete-time dy-

namic term structure model that allows me to calculate model-implied bond prices,

bond yields and even bond risk premia (excess returns). The focus is on potential

macroeconomic sources of variation in expected excess returns on bonds. The dy-

namic responses of the model-implied expected excess return reveal that an in�ation

factor and an unemployment factor are the most important among �ve candidate

macroeconomic factors. A one standard deviation shock to unemployment initially

raises the expected excess return by 17 basis points on an annually basis for a �ve-

year bond held for one year. The intuition is clear: risk premia are time-varying

and counter-cyclical. Hence, in business cycle troughs we see rising unemployment

and investors are demanding a higher risk premium to buy risky assets.
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Dansk resumé

Den amerikanske nationalbank (centralbank) og det amerikanske obligations-

marked har én ting til fælles: De overvåger og har adgang til en meget stor mængde

information. Baseret på denne rigelige information fastsætter begge parter hen-

holdsvis den o¢ cielle rentesats og forskellige obligationspriser. Disse kendsgerninger

har motiveret det gennemgående tema i afhandlingen, hvor denne rigelige mængde

af information approksimeres med et stort panel af makroøkonomiske og �nansielle

data. Speci�kt videreudvikles nogle af de økonometriske teknikker, som i de senere år

er udviklet til at kunne håndtere store panel datasæt, således at rigelig information

kan indarbejdes i empirisk pengepolitisk analyse samt i empirisk obligationsprisfast-

sættelse.

Kapitel 1:

Centralbanker overvåger bogstaveligt talt hundredvis af økonomiske tidsserier

med henblik på at basere den pengepolitiske rentefastsættelse på så megen kval-

i�ceret information som muligt. Sådan har den nuværende amerikanske central-

bankchef Ben Bernanke og hans medforfattere udtalt i en ind�ydelsesrig vidensk-

abelig artikel; jfr. Bernanke et al. (2005). Den klassiske multivariate regressions-

analyse er ikke specielt velegnet til at beskrive store panel datasæt (store i tidsserie-

dimensionen og i krydssektionen). I de senere år, er der dog sket store fremskridt i

udviklingen af økonometriske teknikker, den såkaldte dynamiske faktoranalyse eller

den beslægtede faktor-udvidede vektor autoregressive model (FAVAR). Med den

dynamiske faktoranalyse er det muligt at beskrive disse store panel datasæt med

nogle få underliggende latente dynamiske faktorer. Hidtil er disse modeller typisk

estimeret ved principal komponentmetoden eller ved hjælp af Bayesianske teknikker,

jfr. Bernanke et al. (2005).

Dette kapitel bidrager til litteraturen ved at beskrive og anvende en alternativ

fuldt parametrisk, iterativ maksimum likelihood metode, til at estimere den faktor-

udvidede vektor autoregressive model ved hjælp af EM algoritmen. I den empiriske

analyse i kapitlet, analyserer jeg et stort panel datasæt bestående af 120 amerikanske

tidsserier af makroøkonomisk og �nansiel karakter. Jeg �nder, at samvariationen

over tid for disse mange tidsserier kan beskrives tilfredsstillende, ved hjælp af otte

dynamiske latente faktorer (drivkræfter). Derefter analyserer jeg den dynamiske
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respons af en række økonomiske nøglevariable, som følge af et pengepolitisk stød

dvs. som følge af en pengepolitisk overraskende renteforhøjelse. Slutteligt demon-

strerer jeg, at den samme dynamiske respons, men et markant bedre statistisk �t,

kan opnås ved at bruge �ere dynamiske faktorer med sparsom dynamisk komplek-

sitet sammenlignet med færre faktorer med væsentlig mere kompliceret dynamisk

kompleksitet. FAVAR modellen i Bernanke et al. (2005) er netop karakteriseret ved

en væsentlige mere kompliceret faktordynamik.

Kapitel 2: .

Dette kapitel er skrevet i samarbejde med Hans Dewachter og Romain Houssa.

Udgangspunktet er den faktor-udvidede vektor autoregressive model (FAVAR)

fra kapitel 1. I dette kapitel fokuserer vi på den økonomiske fortolkning af de latente

(uobserverede) dynamiske faktorer, som følger af den dynamiske faktoranalyse eller

FAVARmodellerne. Typisk for litteraturen udleder man den økonomiske fortolkning

af de uobserverede faktorer ved at betragte de mest betydningsfulde faktorvægte

(factor loadings på engelsk). Denne tilgang udelukker dog mindre dominerende

faktorvægte og under alle omstændigheder, er det ikke muligt at opnå utvetydige og

velde�nerede fortolkninger af faktorerne ved denne tilgang.

I dette kapitel adresserer vi dette problem, ved at pålægge overidenti�cerende

restriktioner på faktorvægtene, således en utvetydig og velde�neret fortolkning af

faktorerne bliver mulig. I den empiriske analyse betragter vi igen det amerikanske

datasæt anvendt i kapitel 1. Vi estimerer ni økonomisk fortolkbare faktorer fra

et datarigeligt miljø og anvender disse i en pengepolitisk analyse. Resultaterne er

teoretisk plausible og i overensstemmelse med andre resultater i litteraturen.

Kapitel 3:

Obligationsmarkedet overvåger og reagerer på en stor mængde tilgængelig in-

formation i dets bestræbelser på at vurdere (�ltrere) den økonomiske tilstand i

økonomien, hvilket har ind�ydelse på obligationskurserne og risikopræmierne. I

dette kapitel foreslår jeg, at imitere den store informationsmængde og løse obliga-

tionsmarkedets �ltreringsproblem ved hjælp af dynamisk faktoranalyse af et stort

amerikansk datasæt; jfr. ovenfor. Faktoranalysen bidrager med nogle makroøkonomiske
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tilstandsvariable, udledt fra et datarigeligt miljø, og disse tilstandsvariable (faktorer)

repræsenterer den underliggende udvikling i økonomiske nøglevariable, eksempelvis

den underliggende in�ation. Disse tilstandsvariable anvendes efterfølgende i en

dynamisk rentestrukturmodel i diskret tid, som muliggør beregning af teoretiske

nulkuponobligationskurser, nulkuponrenter, og endog obligationsrisikopræmier.

I den empiriske analyse fokuserer jeg på potentielle makroøkonomiske årsager til

variation i obligationsrisikopræmier. Jeg �nder, at den dynamiske respons af obliga-

tionsrisikopræmier som følger af stød til eksempelvis den underliggende in�ation eller

arbejdsløsheden, udgør de væsentligste kilder bag variationen. Et positivt stød på 1

standardafvigelse til arbejdsløsheden indebærer en modelimpliceret stigning i obliga-

tionsrisikopræmien på 17 basispunkter p.a. for en femårig nulkuponobligation med

en investeringshorisont på 1 år. Intuitionen er, at risikopræmier generelt er tidsvari-

erende og procykliske i konjunkturmæssig forstand. Derfor ser vi, at investorerne

i konjunkturmæssige lavpunkter, repræsenteret ved eksempelvis høj arbejdsløshed,

kræver et store risikopræmier for at købe risikobetonede �nansielle aktiver.
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