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1 Introduction and Motivation

State-of-the-art option pricing models include stochastic volatility, stochastic jumps in

stock returns, and in some cases also stochastic jumps in volatility. Broadie, Chernov, and

Johannes (2008) study put option returns in these models. They show that the generated

returns can well explain empirical option returns observed at the market if one includes

a realistic risk premium for jumps in the stock price. Branger, Hansis, and Schlag (2008)

additionally analyze call returns and returns over different holding periods. They show

that the exact structure of the risk premia and in particular the structure of the jump

risk premium has a significant impact on the returns of OTM options.

In this paper, we analyze the impact of the fine structure of the risk premia on the

optimal asset allocation decision in state-of-the art option pricing models and compare

it to the impact of the model choice, i.e. the decision on which risk factors to include.

We consider a CRRA-investor who follows a buy-and-hold strategy and has access to the

stock, the money-market account, and one additional option on the stock.

We show that the model choice has a significant impact on the optimal portfolio and on

the utility gain of the buy-and-hold investor. It additionally has an impact on the optimal

moneyness level for which the investor profits most from trading options. Secondly, we

show that assumptions on the fine structure of the risk premia can have an impact that is

as large as the impact of adding or omitting jumps in the stock price and in the volatility.

We focus on the risk premium for variance diffusion risk and on the fine structure of the

risk premia for jump risk, i.e. the market prices of risk for jump intensity risk, jump size

risk, jump variance risk, and jumps in volatility, which are hard to identify empirically.1

Finally, we analyze the utility losses of an investor due to model mis-specification. While

they can be devastating if an incorrect model is used, they are smaller, but still highly

economically significant, if incorrect risk premia are used.

The portfolio planning problem we consider is the most simple one in which this

1For a detailed discussion and an overview over the (contradictory) empirical findings, see Broadie,

Chernov, and Johannes (2007).
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analysis can be done. A buy-and-hold investor who has access to one derivative besides

the stock and the money market account is just able to take some position in volatility

risk and to deviate somehow from the fixed relation between the risk factors offered by

the stock. However, he is still far away from the (ideal) situation of continuous trading in

infinitely many derivatives, where he could fine-tune his portfolios to take all subtleties of

the model and the risk premia into account. His limited ability to adjust his portfolio to

all aspects of the model will most probably lead to a lower impact of the actual structure

of the model. We thus expect our results to provide a conservative estimate for the impact

of the model choice and the fine structure of the risk premia on the portfolio planning

problem.

Our paper is related to the literature on portfolio planning with derivatives. Liu and

Pan (2003) solve the portfolio planning problem of a CRRA-investor in a model with

stochastic volatility and jumps in stock returns. They assume that the investor can trade

continuously in infinitely many derivatives. Branger, Schlag, and Schneider (2008) extend

this analysis to the case where volatility can also jump. Branger and Hansis (2009) study

the impact of the structure of the risk premia on optimal portfolio decisions and on the

utility in a complete market. In contrast to these papers, we consider a buy-and-hold

investor who has access to one derivative only and compare the impact of assumptions on

the risk premia and assumptions on the model structure. Driessen and Maenhout (2007)

study optimal portfolios of stocks, bonds and one derivative contract, where they also

consider portfolios of OTM puts and ATM straddles. Their analysis is done for empirical

time series of returns observed in the market, and they compare various utility functions.

They show that the investor wants to take a short position in put options in nearly all

cases, which raises the question who actually buys these options. In contrast to their

paper, we assume that stock and option returns are generated by some option pricing

model and look at the implications the choice of the model as well as the fine structure

of the risk premia have.

We consider the model of Black-Scholes, the stochastic-volatility model of Heston

(1993), an SVJ-model with jumps in the stock price, and an SVCJ-model which also
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includes simultaneous jumps in volatility. The parameters for the different models are

taken from Broadie, Chernov, and Johannes (2007). All models have been calibrated to

exactly the same option prices and are thus as similar as possible. The portfolio planning

problem is solved via a Monte-Carlo simulation, since there is no closed form solution for

a of buy-and-hold investor. For each option pricing model and each moneyness level, we

simulate 25,000 returns of the stock and the derivative and then solve for the optimal

portfolio weights using a numerical optimization routine.

The choice of the model has a significant impact on the optimal portfolio decision.

While the buy-and-hold investor takes a long position in put options in the Heston model,

he wants to go short in models including jumps. The fine structure of the risk premia turns

out to be of similar importance. Restricting the premium for variance risk in stock price

jumps to zero, e.g., can change the optimal position in puts by a factor of two.

The utility gain from having access to one additional option is economically highly

significant across all models besides the Black-Scholes model. Like the optimal portfolio, it

depends significantly on the model and on the assumptions on the risk premia. In models

with jumps, the utility improvement from trading derivatives is significantly larger than

in a model with stochastic volatility only. Furthermore, the utility improvement increases

in general when the risk premium for volatility diffusion risk and/or for the variance in

stock price jumps is restricted to zero. The utility losses from earning zero risk premia on

the restricted risk factors are thus more than offset by the larger risk premia for the risk

factors that are still priced.

Our results furthermore show that the choice of the moneyness level has a big im-

pact on the utility improvement for the buy-and-hold investor. By choosing the optimal

moneyness, he can increase his certainty equivalent return by up to 5% a year. While the

investor prefers ATM options in the Heston model, he profits most from OTM and ITM

options in models with jumps. If we restrict the risk premium on volatility diffusion risk

as well as the risk premium on the variance in stock price jumps to be equal to zero, the

optimal strike moves towards ATM again. Again, the fine structure of the risk premia

turns out to have an impact that is similar to the impact of the model choice.
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Given the dependence of the optimal portfolio on the choice of the model and the fine

structure of the risk premia, a natural question is how much an investor is going to lose

when he relies on an incorrect model. We study the impact of model mis-specification for

the buy-and-hold investor when he incorrectly omits all jumps or jumps in volatility from

the model. Furthermore we look at the impact of incorrectly restricting some risk premia

to be equal to zero. When the investor omits all jumps from his model, he loses up to 8%

of the yearly certainty equivalent return. If he only omits jumps in volatility and follows

the seemingly optimal strategy of selling OTM puts, he can even end up with a negative

wealth, which is prohibitively bad for a CRRA-investor. Incorrect assumptions about the

risk premia can also induce significant losses in the certainty equivalent return. With up

to 4%, they are, however, not as devastating as losses due to incorrect assumptions about

the structure of the model.

The remainder of the paper is organized as follows. In Section 2 we present the model

setup and the portfolio planning problem of the investor. Section 3 gives the results for

the impact of the model choice, while Section 4 gives the results for the fine structure of

the risk premia. Model mis-specification is analysed in Section 5. Section 6 concludes.

2 Model Setup

2.1 Model

We consider an SVCJ model with stochastic volatility and jumps both in the stock price

and in its volatility, which is e.g. discussed in Duffie, Pan, and Singleton (2000) or Broadie,

Chernov, and Johannes (2007). The dynamics of the stock price (or index level) S and its

variance V under the physical measure P are

dSt = (b+ 0.5Vt + µ̄PλP)Stdt+
√
VtStdW

S,P
t +

(
eξ − 1

)
St−dNt − µ̄PλPStdt (1)

dVt = κP(θP − Vt)dt+
√
VtσV

(
ρdW S,P

t +
√

1− ρ2dW V,P
t

)
+ ΨdNt, (2)

where W S,P
t and W V,P

t are independent Wiener processes. Nt is a Poisson process with

constant intensity λP, and we assume that the stock price and the variance jump simul-
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taneously. The jump size Ψ in the variance is exponentially distributed with expectation

µP
V , i.e. Ψ ∼ exp

{
µP
V

}
. Conditional on the realized variance jump, the jump size ξ in the

stock return follows a normal distribution: ξ ∼ N
(
µP
S + ρP

JΨ, (σP
S)2
)
. The mean jump size

in the stock price is thus

µ̄P =
exp

{
µP
S +

(σP
S)2

2

}
1− ρP

Jµ
P
V

− 1.

where we assume ρP
Jµ

P
V < 1.2 We assume that there are no dividend payments. The

expected return on the stock is b+ 0.5Vt + µ̄PλP for some constant b, where we follow the

specification of Eraker, Johannes, and Polson (2003).

The SVCJ model nests several option pricing models. Setting λP = σV = 0 and Vt = θP

gives the Black-Scholes model. For the Heston (1993) (SV) model, we set λP = 0, and for

the SVJ model of Bakshi, Cao, and Chen (1997) and Bates (1996), we set Ψ = 0.

The dynamics under the risk-neutral measure Q are

dSt = rStdt+
√
VtStdW

S,Q
t +

(
eξ − 1

)
St−dNt − µ̄QλQ

SStdt

dVt = κQ(θQ − Vt)dt+
√
VtσV

(
ρdW S,Q

t +
√

1− ρ2dW V,Q
t

)
+ ΨdNt.

The mean-reversion speed and the mean-reversion level of the variance are given by

κQ = κP + ηV

κQθQ = κPθP,

where ηV Vt is the premium for (total) volatility diffusion risk, i.e. for the diffusion term
√
VtσV

(
ρdW S,P

t +
√

1− ρ2dW V,P
t

)
.

The intensity of the jump process under Q is λQ. For the jump sizes, we assume that

they still follow an exponential and a conditional normal distribution, respectively, but

that all parameters of these distributions may change. It then holds that Ψ ∼ exp
{
µQ
V

}
and ξ ∼ N

(
µQ
S + ρQ

JΨ, (σQ
S )2
)
. In the following, we set ρQ

J ≡ 0, again following Broadie,

Chernov, and Johannes (2007).

2An average jump in volatility can thus not lead to an upward jump in the stock price of more than

100%, which is not a binding restriction in reality.
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The expected excess return on the stock is b+ 0.5Vt + µ̄PλP− r. The compensation for

jump risk is µ̄PλP− µ̄QλQ. The premium per unit of stock diffusion risk, i.e. for
√
VtdW

S,P
t ,

is given by b + 0.5Vt + µ̄QλQ − r. Note that – different from the setup of Liu and Pan

(2003) e.g. – the premium is affine, but not linear in V . For the analysis, it turns out to

be useful to denote this premium by ηS(Vt) · Vt, and it holds that

b+ 0.5Vt + λQµ̄Q − r = ηS(Vt)Vt. (3)

Analogously, we can define the premium ηpureV (Vt) · Vt for pure volatility diffusion risk
√
VtdW

V,P
t , which follows from

ηV = σV

(
ηS(Vt)ρ+ ηpureV (Vt)

√
1− ρ2

)
.

For our analysis, we rely on the estimates from Eraker, Johannes, and Polson (2003)

and Broadie, Chernov, and Johannes (2007). Table 1 gives the parameters under the P-

measure as estimated by Eraker, Johannes, and Polson (2003) from the time series of index

returns. Broadie, Chernov, and Johannes (2007) calibrate the corresponding risk-neutral

Q-parameters from the cross-section of option prices. The resulting estimates are given

in Table 2. Similar to Broadie, Chernov, and Johannes (2007), we also consider several

restricted models, where some risk premia are set equal to zero.

2.2 Portfolio Planning Problem: Buy-and-Hold Investor

We consider a CRRA-investor with planning horizon T who derives utility from terminal

wealth only. He can invest into a stock (or index), the risk-free asset, and into one deriva-

tive. Furthermore, we assume that he can only trade at the initial point in time, i.e. that

he follows a buy-and-hold strategy.

The portfolio planning problem of this investor is

max
αE ,αD

E [U(WT )] , (4)

where αE and αD are the fractions of wealth invested in the stock and the derivative

respectively. The terminal wealth WT is given by

WT = [Rf + αE(RE −Rf ) + αD(RD −Rf )]W0, (5)
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where Ri is the gross return of the equity index (i = E) and the derivative (i = D) from

0 to T . The first order conditions for the optimal weights are (i = D,E)

E [U ′ ([Rf + αE(RE −Rf ) + αD(RD −Rf )]W0) (Ri −Rf )] = 0. (6)

The expectation (6) cannot be calculated in closed form, and we need to solve for

the optimal portfolio weights numerically. We use a Monte-Carlo simulation with 25,000

runs. The dynamics of the stock price and its variance are discretized using an Euler-

discretization with 10 time steps per day. The prices of the options today and at the

end of the planning horizon are calculated by Fourier inversion, see e.g. Duffie, Pan, and

Singleton (2000). For each model and each set of assumptions on the risk premia, we thus

get 25,000 sets of returns on the stock and each of the options. For each moneyness, we

can then calculate the left-hand side of Equation (6) for different values of αD and αE.

The optimal portfolio weights are found by a numerical optimization.3

2.3 Analysis of Optimal Buy-and-Hold Portfolio

The solution of the portfolio planning problem is given by the optimal portfolio weights

αE and αD. For the interpretation, however, portfolio weights turn out to be misleading,

so that we focus on the absolute number of assets in the portfolio instead. First, note that

the investor uses options to achieve a non-linear payoff. The amount of ’non-linearity’ in

the payoff profile depends on the absolute number of options held as compared to the

absolute number of stocks, not on the relation of the portfolio weights. Second, there are

huge price differences between options with different moneyness levels, so that differences

in portfolio weights across moneyness levels are barely meaningful. Finally, due to put-call

parity exactly the same payoff can be achieved by adding calls, puts or straddles, each

with the same moneyness, to the portfolio. Replacing OTM puts (or calls) by ITM calls

(or puts) would not change the terminal payoff, whereas the optimal weight in options

would increase significantly.

3To control for the accuracy of the optimization, we run the optimization routine several times with

different starting values. We only report those results where all solutions coincide up to rounding errors.
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The investor follows a buy-and-hold strategy with one additional option, so that the

terminal payoff of the optimal portfolio at the maturity date of the option will have exactly

one kink. The main question is then whether the investor chooses a convex or a concave

payoff profile, i.e. whether he takes a long or a short position in options. In addition to the

payoff profile at maturity of the options (two months in our example), we also consider

the density of the portfolio return at the end of the planning horizon (one month in our

example). As a benchmark, we calculate the density for the case that the investor can

only trade the stock and the money market account.

In addition to the hitherto global characteristics of the portfolio, we also look at the

local exposures to the risk factors. The dynamics of the optimal wealth are given by

dWt

Wt

= r dt+ θSt

(
dW S,P

t + ηS(Vt)
√
Vtdt

)
+ θVt

(
dW V,P

t + ηpure
V (Vt)

√
Vtdt

)
+ θNt (Xt,Ψt)dNt + EP [θNt (Xt,Ψt)

]
λPdt− EQ [θNt (Xt,Ψt)

]
λQdt, (7)

where θSt , θVt , and θNt (Xt,Ψt) denote the exposure with respect to stock diffusion risk,

pure volatility diffusion risk, and jump risk, respectively. These exposures follow from the

dynamics of the asset prices and the number of assets held in the portfolio, as shown in

Liu and Pan (2003).

To measure the investor’s benefit from trading the stock and a derivative, we calculate

the certainty equivalent return

CERT =
ln CET

W0

T
,

where the certainty equivalent CET is defined by

U(CET ) = E [U(W ∗
T )] .

The certainty equivalent return CERT is the deterministic return for which the investor

is indifferent between investing at this deterministic return and investing into the optimal

risky portfolio. When the investor can not only trade the stock and the money market

account, but also has access to one derivative, the CERT increases. The size of this

increase is an economic measure for the utility improvement. A comparison across different

moneyness levels allows us to find the optimal moneyness for the traded option.
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3 Results: Comparison Across Models

We consider a CRRA-investor with a planning horizon of one month and a relative risk

aversion of γ = 5.4 The buy-and-hold investor has access to the stock, the money market

account, and one put option on the stock with a time to maturity of two months and a

given moneyness, defined as the strike price divided by the stock price. We consider mon-

eyness levels between 86% and 110%.5 Due to put-call parity, the set of payoffs available

to the investor would not change if we replaced the put by a call option or a straddle, etc.

The physical and risk-neutral parameters of the models are given in Tables 1 and 2,

respectively. Note that all models are calibrated to the same time-series of index returns

and the same cross-section of option prices. The models are thus as similar as possible.

Differences between portfolios can therefore be attributed completely to the different

structures of the models.

3.1 Benchmark: No Derivatives

As a benchmark, we first look at the optimal portfolio when the investor can only invest

in the money market account and the stock. Figure 1 shows the optimal weights of the

stock index as a function of risk aversion. In line with intuition, the weight of the stock

is decreasing in risk aversion for all models. Depending on the model, it is equal to one

(so that the investor holds the stock only) for a risk aversion of γ = 2.0 (SVJ model),

γ = 3.1 (SVCJ model), γ = 3.3 (SV model) or γ = 4.9 (Black-Scholes model). For γ = 5,

as assumed in the subsequent analysis, the investor is thus in all models more risk averse

than the market.

4We have redone the analysis also for a relative risk aversion of γ = 10. With the higher risk aversion,

the results are basically kind of ’compressed’. The general patterns, however, do not change significantly,

and the relations between the optimal portfolios across different moneyness levels and different models

do not differ much from the case γ = 5.
5OTM-puts are more liquid than OTM-calls, which is why our moneyness interval not symmetric

around 100%. See also Broadie, Chernov, and Johannes (2008).
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The optimal weight of the stock differs between the four models we consider. This is

due to differences in the expected excess returns and in the return variances. It is also

due to the different risk factors the stock is exposed to, and due to the different relative

compensations for diffusion risk and the various elements of jump risk. Put differently, the

results show that the investor does not only care about the absolute risk and the absolute

risk premium, but also about their decomposition.

3.2 Buy-and-Hold Strategies With Derivatives

3.2.1 Black-Scholes model

In case of continuous trading, the investor puts a constant fraction of his wealth into the

risky asset. For γ = 5, this fraction is smaller than one, resulting in an optimal terminal

payoff which is a concave function of the stock price. The investor is thus willing to forego

some payoffs for very high and very low stock prices in order to get a higher payoff in the

case of only moderate (and more probable) stock price changes.

In our setup, the investor is restricted to a buy-and-hold strategy and has access to

one additional option. He can then still achieve a concave terminal payoff by taking a

short position in puts. Figure 2 shows that he is indeed short in puts for very low and in

particular for very high moneyness levels. For intermediate moneyness levels, the position

in puts is approximately equal to zero. For a high moneyness level, the position in the

stock decreases to offset the implicit positive exposure from the put position. As can be

seen from Figure 3, the (local) exposure to stock diffusion risk is rather constant across

different moneyness levels.

The upper left graph in Figure 4 characterizes the optimal portfolios by their payoff

profiles, and the upper left graph in Figure 5 gives the density of the payoff at the end

of the planning horizon. They both confirm that the optimal portfolio is rather similar

to the one which consists of the stock and the money market account only. The only

exception is given by the put with the largest moneyness, where the investor gives up

some upside potential and accepts slightly more downside risk to increase the probability
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of moderately positive returns.

In line with these findings, the excess certainty equivalent returns due to having access

to one option shown in Figure 6 are barely larger than zero. To get the intuition, note

that one reason to add derivatives to the portfolio is to circumvent the problems caused

by discrete instead of continuous trading. In a Black-Scholes setup and for moderate

risk premia, however, even a buy-and-hold portfolio in the stock and the money market

account is rather close to the overall optimal portfolio, as shown in Rogers (2001) and

Branger, Breuer, and Schlag (2008). This also holds true in the other models we consider.

The need for derivatives induced by discrete trading is thus rather small. In the other

models (but not in the model of BS), there is a second reason to include derivatives. They

allow the investor to earn the risk premia on further risk factors like stochastic volatility

and to deviate from the relation of diffusion and jump risk offered by the stock. Our

results in the following sections show that this second arguments indeed provides a strong

motive for trading derivatives.

3.2.2 Heston model

In the Heston model, the investor takes a long position in puts. The number of puts is on

average decreasing in moneyness (as shown in Figure 2) and is thus largest for OTM puts.

To offset the implicit negative exposure to stock price risk, the long position in the stock

is larger than under the Black-Scholes model. Figure 3 shows that the resulting exposure

to stock diffusion risk is again rather constant across different moneyness levels. However,

it is lower than in the Black-Scholes model, since there is a second priced risk factor. This

induces the investor to substitute some stock diffusion risk by volatility diffusion risk,

using kind of a diversification effect.

The exposure to volatility risk is – with a long position in puts – positive, and the

investor earns the positive volatility risk premium. The exposure is largest for ATM puts,

which have the largest vega. ITM and OTM options have a smaller vega, and the investor

would need to hold a larger number of these options to get the same exposure to volatility
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risk. The resulting high leverage, however, raises some issues about the stability of the

exposure over time, when the stock price and the variance change while the investor can

not adjust his portfolio. He thus accepts a lower volatility risk exposure in exchange for

a lower leverage of the portfolio (even if he still buys ten puts for the lowest moneyness).

Figure 4 shows the payoff as a function of the stock price. The kink in the payoff profiles

is rather extreme for all moneyness levels. This is also reflected in the return densities

shown in Figure 5. The densities of the portfolios which include puts differ significantly

from the density in the benchmark case, where only the stock and the money market

account are available. Basically, the investor uses the options to buy a portfolio which is

more right-skewed.

The increase in the certainty equivalent returns in Figure 6 confirms that the investor

profits significantly from having access to derivatives. He gains up to 1.2% per year.

Since the utility gains differ across the moneyness levels, the choice of moneyness actually

matters. The highest utility gains are achieved by ATM options, that is by those options

which are best suited for trading volatility risk.

3.2.3 SVJ model

In the SVJ model, the investor takes a short position in puts for all moneyness levels

and thus chooses a concave payoff profile. As in the model of Black-Scholes, the resulting

positive exposure to stock price risk is offset by an additional short position in the stock.

This effect is now so strong that the optimal position in the stock becomes negative for

all but the lowest moneyness level. The resulting overall exposure to stock diffusion risk,

however, is still positive.

A further analysis of the exposures in Figure 3 shows that the investor has a negative

exposure to volatility risk – although the volatility risk premium is positive – and a neg-

ative exposure to jump risk.6 He thus earns a positive risk premium on downward jumps,

but foregoes the positive risk premium on volatility diffusion risk. The reason is that there

6The exposures of the investor to jump risk are a function of the jump size in the stock and in the

variance. Figure 3 shows these exposures for the mean of the jump in the stock and in the volatility. As
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is only one option available in which he can trade both to achieve a certain volatility risk

exposure as well as to change the relation between the exposures to stock diffusion risk

and jump risk offered by the stock. Given our parameterization, the premium for jump

risk turns out to be more attractive than the premium for volatility risk. Consequently,

the investor takes a short position in the put and thus increases his jump risk exposure

beyond the one offered by the stock.

The payoff profile of the optimal portfolio, shown in Figure 4, is concave. The payoff

is largest if the terminal stock price is equal to the strike price and is thus bounded from

above. Figure 5 shows the corresponding densities of the terminal payoffs. Compared to

the benchmark, the distribution is more left-skewed when options are included.

When the investor has the opportunity to invest in a derivative, his certainty equivalent

return increases as compared to the case where he can only trade the money market

account and the stock. Figure 6 shows that the utility gain depends on the moneyness

of the option the investor uses. The difference between the lowest and highest gain in

certainty equivalent returns is around 4-5%. A large fraction of the utility gain from

trading derivatives thus comes from the choice of the optimal strike price. In this model,

options with an extreme moneyness are best, i.e. the investor profits most from trading

deep OTM puts and deep OTM calls. In line with intuition, deep OTM puts are those

contracts which allow the investor to trade the risk of large downward jumps in the stock

price.

3.2.4 SVCJ model

The SVCJ investor is short in puts for nearly all moneyness levels, as can be seen from

the optimal positions shown in Figure 2. The overall pattern of the position is rather

similar to the case of an SVJ investor, whereas the absolute size of the position in puts is

a robustness check, we have also calculated the expected exposures, where the expectation is taken over

the joint distribution of the jumps in the stock price and in the variance. The pattern of the jump risk

exposure across models and over the moneyness levels stays the same. To save space, we do not show the

resulting graphs here.
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slightly lower. Nevertheless, the exposure to jump risk is much larger in the SVCJ model

than in the SVJ model, as can be seen from Figure 3. To get the intuition, note that the

exposure of a put to jump risk is larger in the SVCJ model than in the SVJ model. If

there is a downward jump in the stock price, the put price increases due to the change in

the underlying and also due to the simultaneous upward jump in volatility. Consequently,

a smaller position in puts can indeed lead to a larger jump risk exposure. On the other

hand, the exposure of the puts to volatility jump risk implies a lower exposure to volatility

diffusion risk. The different exposure dispartment together with the smaller position in

puts leads to a lower volatility risk exposure for the SVCJ investor in absolute terms. Since

the investor is willing to take a certain amount of risk and now faces a lower volatility risk

exposure, he can take on more stock diffusion risk (and also more jump risk). Therefore,

his exposure to stock diffusion risk also increases as compared to the SVJ investor.

The terminal payoff profiles and the return densities of the SVCJ model in Figures

4 and 5 are rather similar to the SVJ case. This can be attributed to the fact that the

optimal portfolio positions and exposures of the SVCJ investor follow the same pattern

as those of the SVJ investor. For the same reason, the increase in certainty equivalent

returns due to trading derivatives is rather comparable for the SVJ and the SVCJ model.

Again, the investor profits most from trading OTM options.

Put together, both the optimal portfolio and the utility gain from trading derivatives

depend on the model choice. While the investor profits most from a long position in ATM

options in an SV model, he is best off by selling OTM puts in models with jumps in the

stock price and also in models with jumps both in the stock price and in volatility. The

choice of the optimal strike price can change the increase in the certainty equivalent by

less than 1.0% in the SV model and by more than 5% in the SVCJ model and is thus

more important in the more sophisticated models.
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4 Restrictions on Risk Premia

We now look at restricted versions of the models where different risk premia are assumed

to be equal to zero. Since the physical measure does not change, these restrictions have no

impact on our results when the investment opportunity set consists of the stock index and

the money market account only. They significantly change, however, the expected returns

on options as well as the exposures offered by the options. This in turn has a significant

impact on the optimal portfolios in an incomplete market.

4.1 SVJ model, jump variance risk premium is set equal to zero

In the unrestricted case, it holds that σQ
S > σP

S. Restricting the jump variance risk premium

to be equal to zero thus implies a lower jump variance under the Q-measure, which

reduces both the left and – in particular – the right tail of the risk-neutral distribution.

Furthermore, the estimated mean jump size under the risk-neutral measure increases in

absolute terms, which increases the left tail of the distribution and again reduces the right

tail. Altogether, OTM calls become cheaper, while the price of OTM puts is approximately

the same as in the unrestricted version, as also shown in more detail in Branger, Hansis,

and Schlag (2008). Selling OTM calls (or selling ITM puts, respectively) is thus less

attractive for the SVJ investor, and Figure 7 shows that he indeed takes a less extreme

position in options for high moneyness levels. For low and intermediate moneyness levels,

on the other hand, the optimal position in options does not change much.

The exposure to jump risk decreases in absolute terms for all moneyness levels (see

Figure 8). To get the intuition, note that a CRRA investor wants to earn a premium for

jump size risk and jump intensity risk, but not for jump variance risk (see also Naik and

Lee (1990)). In the restricted version of the model, jump variance risk is no longer priced,

while the premium for jump size risk increases. Thus, the investor earns a risk premium

exactly on a risk factor which he actually cares about. He no longer has to ’waste’ some

risk premium on jump variance risk, which he does not want to be priced in the first

place. Overall, the investor thus has to take less total jump exposure to get the ’right’
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amount of exposure to jump size risk. The smaller position in the put also leads to an

exposure to volatility diffusion risk which is less negative than in the unrestricted case.

Since the investor would actually prefer a positive volatility risk exposure (due to the

positive volatility risk premium), he profits from this decrease.

Figure 11 shows that the utility gain of the investor from trading derivatives is larger

than in the unrestricted version of the model for moneyness categories around 100%.

For the extreme moneyness categories, on the other hand, the increase in the certainty

equivalent return is significantly lower.

4.2 SVJ model, volatility risk premium is set equal to zero

Setting the volatility risk premium equal to zero has rarely any effects on the risk premia

for jump risk, as can be seen from Table 2. Nevertheless, it can be shown that OTM calls

are more expensive than under the unrestricted version, whereas the prices of OTM puts

stay approximately the same. Selling OTM calls is thus more attractive for the investor,

and his position in the corresponding ITM puts becomes more aggressive. This can be

seen by the optimal positions shown in Figure 7 as well as by the terminal payoff profiles

in Figure 9.

The more extreme short position in puts results in an exposure to diffusive volatility

risk that is significantly more negative than in the unrestricted version of the model (see

Figure 8). However, this does not imply a worse situation for the investor, who will actually

care about the deviation from the optimal exposure in a complete market. This optimal

exposure is positive with no restrictions and close to zero in the restricted case, since an

ηV equal to zero implies a premium for pure volatility diffusion risk which is very close

to zero. The restriction thus implies that the investor is willing to accept a more negative

exposure to volatility diffusion risk than before.

Figure 10 shows the density of the payoff from the optimal portfolio at the end of the

planing horizon. Due to the more aggressive position in puts, in particular for moderate

moneyness levels, the overall variability of the terminal payoff from the optimal portfolio
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is larger. In exchange, there is a slightly higher probability of earning high returns, even

if the upside potential is still limited.

The increase in the certainty equivalent return is larger than in the unrestricted ver-

sion of the model, as be seen in Figure 11. Since the certainty equivalent return of the

benchmark case (only the money market account and the stock are traded) does not

change due to the restriction, this implies that the investor has a higher utility in the

restricted model than in its unrestricted version. The difference between the two models

is largest for calls which are slightly out of the money. Irrespective of these improvements

for intermediate moneyness levels, however, the investor is still best of if he uses deep

OTM or ITM puts.

4.3 SVJ model, both jump variance premium and volatility risk

premium set equal to zero

In a next step, we restrict both the jump variance premium and the volatility risk premium

to be equal to zero. Figure 7 shows that the effect on the optimal positions is basically

some mixture of the effects we observe in case of one restriction only. However, it also

suggests that restricting the premium for volatility diffusion risk has a larger influence

than restricting the premium on jump variance risk. In Figure 8, we see that the exposure

to diffusive volatility risk is more negative than in the unrestricted case. Again, it is much

closer to the exposure in the case when only volatility diffusion risk is restricted to zero.

The certainty equivalent return is now larger than in the unrestricted case for nearly all

moneyness levels, and it is larger than in the case with only one restriction for intermediate

moneyness levels. In our setup, the investor is thus better off if neither volatility diffusion

risk nor jump variance risk are priced. Furthermore, he profits much more if the premium

for diffusive volatility is set to zero than if the jump variance risk premium is set to zero.

The optimal options to trade are now ATM options.
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4.4 SVCJ model

For the SVCJ model, we consider the same set of restrictions as for the SVJ model. The

effect of restricting the jump variance premium to zero is smaller than in the SVJ model.

To get the intuition, note that the uncertainty if a jump has happened is due to the

stochastic jump size in the stock and – in case of the SVCJ model – also the stochastic

jump size in the volatility. Restricting the jump variance risk premium to its lower value

under the physical measure, however, reduces the uncertainty about the jump size in the

stock price only. As a result, that restriction is less important in the SVCJ than in the SVJ

model. This is also confirmed by the results for expected excess call returns in Branger,

Hansis, and Schlag (2008).

5 Model Mis-Specification

The optimal portfolio depends on the model structure and on the parameters of the model,

including the risk premia for the various risk factors. Our analysis in the last section has

shown that the assumptions on the risk premia and on the risk factors to include are of

equal importance.

In reality, the investor knows neither of these components with certainty, but has to

estimate both the model and its parameters. He is thus exposed to model risk, i.e. to

the risk that the model he uses deviates from the true data-generating process. Following

our analysis above, we look at two kinds of scenarios. First, we consider the case where

the investor omits risk factors and ignores either all jumps or just jumps in the volatility.

Second, we consider the case where the investor relies on the correct model, but restricts

some risk premia to be equal to zero.

The investor relies on his model to determine the optimal portfolio which he anticipates

to give him certain exposures to the risk factors. We compare these ’seemingly optimal’

exposures to two benchmarks, calculated under the true data-generating process. The first

one is given by the ’truly optimal’ exposures. The second one is given by the ’realized
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exposures’, i.e. by the exposures of the portfolio bought by the investor in the true model.

A comparison of the exposures shows how much the investor deviates from the position

he wants to have, as well as from the portfolio he actually should hold.

For the certainty equivalent return (CER), we also determine the ’seemingly optimal’

CER, the ’truly optimal’ one, and the ’realized’ one. A comparison of the realized CER

with the truly optimal CER shows how much the investor looses due to model mis-

specification. Note that we show here the certainty equivalent return of the investment

and no longer the increase in CER due to the inclusion of derivatives.

5.1 Omission of Risk Factors

We look first at the case where the investor relies on a model with stochastic volatility

only (Heston model), whereas the true data-generating process incorporates jumps in

the stock price process (SVJ model). Figure 12 shows that the realized exposures of the

investor deviate enormously from the seemingly optimal as well as from the truly optimal

ones. The realized exposure to stock diffusion risk is higher than the seemingly optimal

one and exceeds the truly optimal one for slightly OTM puts by a factor of more than

eight. The realized exposure to volatility diffusion risk is significantly smaller than the

seemingly optimal one across all moneyness levels. While it is positive, the truly optimal

exposure is negative. The differences are also large for jumps. The investor thinks that his

exposure to jump risk is equal to zero, since he did not include jumps in his model setup.

The realized exposure to jumps, however, is significantly negative and up to five times

larger in absolute terms than the optimal one. Overall, the investor faces a way higher

overall exposure than he would choose under the true data-generating process.

These large deviations from the optimal portfolio are reflected in the certainty equiv-

alent returns, which are shown in Figure 13. The investor anticipates a CER around 8%.

His realized CER, however, is dramatically lower - between 0.3 and 4%. Compared to

the truly optimal portfolio he looses between 4 and 8% of CER per year. Furthermore,

utility losses are largest for ATM options, which the investor incorrectly thinks to be the
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optimal choice. The omission of jumps in the stock price is therefore very expensive for

the investor. If the true data-generating process incorporates jumps in the stock price as

well as jumps in volatility (SVCJ model), while the investor still relies on a model with

stochastic volatility only, the results are quite similar to the previous case.

Overall, the results show that the investor suffers huge utility losses if he incorrectly

omits jumps from the model. Whether the true model includes jumps in volatility or not,

however, is of second order importance and does not have a big impact on the utility

losses.

We now turn to the case where the investor uses an SVJ model, while the true data-

generating process is an SVCJ model. Figure 14 shows that the deviations of the realized

exposures from the truly optimal exposures are smaller than in the cases just considered.

For stock diffusion risk, the differences are rather small. The realized exposure to volatility

diffusion as well as to jump risk is larger in absolute terms than the truly optimal one,

especially for puts that are slightly in the money. The investor thus holds a portfolio that

is too risky. The respective CER is shown in Figure 15. Ignoring jumps in volatility has

dramatic consequences especially for an investment in OTM puts. There are scenarios

where he looses nearly 90% of his wealth within one month, or where his wealth even

becomes negative. The CER is then very small (and negative) or even equal to minus

infinity7. The seemingly optimal strategy of investing in OTM puts is therefore a very

risky strategy for the investor and has devastating consequences if the true data-generating

process allows for jumps in volatility. If the investor chooses ITM puts, he foregoes some

utility gains if he is right about the model, but also faces only small losses due to model

risk.

5.2 Mis-Estimation of Risk Premia

Even if the investor makes the correct assumptions on the risk factors in the true data-

generating process, he might still have difficulties to determine the correct structure of

7Since the negative values are too large, they are not shown in the figure.
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the risk premia. In the literature there is general disagreement regarding the size and

the sign of the volatility risk premium as well as the jump risk premium.8 The structure

of the jump risk premia is even more an open question. Often the premium for jump

variance risk is restricted to be equal to zero (σQ
S = σP

S).9 The investor might thus rely

on a model where volatility risk as well as jump variance risk are not priced, while the

true data-generating process follows the SVCJ model where both of these risk factors are

priced.

Figure 16 compares the exposures to the risk factors. For medium to high moneyness

levels, the deviation between the realized and the truly optimal exposure to volatility

diffusion risk is larger than in the case where the investor ignores jumps in volatility

completely (see Figure 14). The same holds true for the exposure to jump risk, with a

realized exposure to jump risk that is up to twice as large as the truly optimal one. The

resulting certainty equivalent returns therefore show a decline of up to 4% solely due to

a mis-estimation of the risk premia, and the largest losses occur for ATM options. The

decline as compared to the anticipated (seemingly optimal) investment strategy is even

larger. As compared to his anticipation, the investor has to put up with a CER that

is up to 9% lower. For the seemingly optimal choice of slightly OTM-puts, the realized

CER is still between 5 and 8% lower than anticipated. The investor is thus clearly too

optimistic on the profits he gets from having access to derivatives and by far overestimates

his certainty equivalent return.

6 Conclusion

We analyze the impact of the model choice as well as of the fine structure of the risk premia

on the optimal asset allocation decision of a CRRA-investor. The investor follows a buy-

and-hold strategy. Besides the stock and the money market account, he can additionally

8See i.e. Eraker (2004), Pan (2002), Broadie, Chernov, and Johannes (2007)
9To the best of our knowledge, Broadie, Chernov, and Johannes (2007) are the first and only paper

to drop this assumption.
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trade one option. We look at the utility gains due to derivatives as well as at the losses

due to the omission of risk factors as well as due to a mis-estimation of the risk premia.

First, we find that the choice of the model has a significant impact on the optimal

portfolio decision. Even if all models are calibrated to exactly the same option prices,

they imply very different optimal positions in the stock and the option. Furthermore,

the utility improvements from trading derivatives are largest in a model which includes

jumps.

Second, we find that the fine structure of the risk premia can be as important as the

choice of the model. Restricting some elements of the jump risk premia to be equal to

zero can change the optimal number of options and stocks by more than 100% in the

buy-and-hold strategy and leads to large changes in the certainty equivalent returns.

Third, we find that the choice of the moneyness makes a big difference for the buy-

and-hold investor. In particular in models including jumps, the investor can gain up to

5% by choosing the optimal strike price. In a model with stochastic volatility, he is best

off if he trades ATM options, while he usually profits much more from trading deep OTM

puts and, to a slightly smaller degree, deep OTM calls in case of jumps. Again, a change

in the fine structure of the risk premia changes the optimal strike price.

Finally, we analyze the utility losses the investors suffers from if he uses an incorrect

model or incorrect assumptions on the fine structure of the risk premia. If he incorrectly

omits jumps from the model, the CER decreases by up to 10% for some moneyness levels.

If he incorrectly omits only jumps in volatility, the seemingly optimal strategy of selling

OTM puts can even lead to a CER of minus infinity. Finally, a mis-estimation of the fine

structure of the jump risk premia has less devastating effects, but can still lead to a loss

in CER of around 5%.
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Param. BS SV SVJ SVCJ

b 0.1119 0.1119 0.1250 0.1396

κP 5.8212 3.2256 6.5520

θP 0.0228 0.0228 0.0205 0.0135

σV 0.3614 0.2404 0.1991

ρ -0.3974 -0.4668 -0.4838

µP
V 0.0374

µP
S -0.0259 -0.0175

ρP
J -0.2384

σP
S 0.0407 0.0289

λP 1.5120 1.6632

equity risk premium 0.0783 0.0783 0.0528 0.0732

average local variance 0.0228 0.0228 0.0240 0.0154

ERP/variance 3.4342 3.4342 2.2000 4.7532

Table 1: Parameters under the P-measure

The table gives the parameters under the objective measure as estimated by Eraker,
Johannes, and Polson (2003) (EJP) for the Black-Scholes model (BS), the Heston-model
(SV), the model with stochastic volatility and jumps in the stock price (SVJ), and the
model with stochastic volatility and jumps both in the stock price and in volatility (SVCJ).
All parameters are given as annual decimals.
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Parameters restriction ηV ηpureV (θP) µQ
S σQ

S µQ
V λQ

SV 1.26 5.2866

SVJ 1.512 7.7539 -0.0491 0.0994 λP

SVJ ηV = 0 0(∗) 0.6707 -0.0482 0.0981 λP

SVJ σQS = σPS 2.52 10.5119 -0.0997 σ
P (∗)
S λP

SVJ ηV = 0, σQS = σPS 0(∗) -1.2424 -0.0969 σ
P (∗)
S λP

SVCJ 7.812 45.5169 -0.0539 0.0578 0.2213 λP

SVCJ ηV = 0 0(∗) 1.0050 -0.0501 0.0751 0.0935 λP

SVCJ σQS = σPS 7.56 43.2261 -0.0658 σ
P (∗)
S 0.2724 λP

SVCJ ηV = 0, σQS = σPS 0(∗) -0.5863 -0.0725 σ
P (∗)
S 0.1333 λP

Table 2: Parameters under the Q-measure

The table gives the parameters under the risk-neutral measure Q as estimated by Broadie,
Chernov, and Johannes (2007). All parameters are given as annual decimals. The market
of risk ηpureV for pure variance diffusion risk is defined in Section 2.1 and is given for the
variance equal to its mean-reversion level θP under the physical measure P.
The symbol ’(*)’ indicates that this parameter has been restricted either to its value under
the true measure P or to zero.
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Figure 1: Optimal Asset Allocation without Derivatives

The graphs show the optimal weights for an asset allocation without derivatives as a
function of relative risk aversion. The relative risk aversion is γ=5, the planning horizon
is one month. The parameters are taken from Eraker, Johannes, and Polson (2003) (for
the P-measure) and Broadie, Chernov, and Johannes (2007) (for the Q-measure). The
empirical values are taken from Driessen and Maenhout (2007).
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Figure 2: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal positions for an asset allocation with puts as a function
of moneyness. The relative risk aversion is γ=5, the planning horizon is one month. The
parameters are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and
Broadie, Chernov, and Johannes (2007) (for the Q-measure).
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Figure 3: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal exposures for an asset allocation with puts as a function
of moneyness. The upper graph shows the optimal exposure to diffusion risk θS, and the
second graph shows the optimal exposure to diffusive volatility risk θV . The last graph
shows the optimal exposure to jump risk θN(µ̄P, µP

V ) for the mean jump size in the stock
price and in volatility. The relative risk aversion is γ=5, the planning horizon is one month.
The parameters are taken from Eraker, Johannes, and Polson (2003) (for the P-measure)
and Broadie, Chernov, and Johannes (2007) (for the Q-measure).
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Figure 4: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal payoff profils for an asset allocation with puts as a function
of moneyess. The relative risk aversion is γ=5, the planning horizon is one month. The
parameters are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and
Broadie, Chernov, and Johannes (2007) (for the Q-measure).
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Figure 5: Density of Optimal Asset Allocation with Puts, γ=5

The graphs show the densities of the optimal terminal wealth when the investor can
invest also in puts (considering puts with different moneyness). As a benchmark, we
also give the density of the optimal terminal wealth when the investor has only access
to the stock and the money market account. The relative risk aversion is γ=5, the
planning horizon is one month. The parameters are taken from Eraker, Johannes, and
Polson (2003) (for the P-measure) and Broadie, Chernov, and Johannes (2007) (for the
Q-measure).
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Figure 6: Increase of certainty equivalent return due to puts, γ=5

The graph shows the increase of the certainty equivalent return due to puts as a function
of moneyness. The relative risk aversion is γ=5, the planning horizon is one month. The
parameters are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and
Broadie, Chernov, and Johannes (2007) (for the Q-measure).
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Figure 7: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal positions for an asset allocation with puts as a function
of moneyness for different versions of the SVJ model. The relative risk aversion is γ=5,
the planning horizon is one month. The parameters are taken from Eraker, Johannes, and
Polson (2003) (for the P-measure) and Broadie, Chernov, and Johannes (2007) (for the
Q-measure).
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Figure 8: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal exposures for an asset allocation with puts as a function
of moneyness for different versions of the SVJ model. The first graph shows the optimal
exposure to diffusion risk θS, the second graph shows the optimal exposure to diffusive
volatility risk θV . The last graph shows the optimal exposure to jump risk θN(µ̄P, µP

V ) for
the mean jump size in the stock price and in volatility. The relative risk aversion is γ=5,
the planning horizon is one month. The parameters are taken from Eraker, Johannes, and
Polson (2003) (for the P-measure) and Broadie, Chernov, and Johannes (2007) (for the
Q-measure).
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Figure 9: Optimal Asset Allocation with Puts, γ=5

The graphs show the optimal payoff profils for an asset allocation with puts as a function
of moneyness for different versions of the SVJ model. The relative risk aversion is γ=5,
the planning horizon is one month. The parameters are taken from Eraker, Johannes, and
Polson (2003) (for the P-measure) and Broadie, Chernov, and Johannes (2007) (for the
Q-measure).
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Figure 10: Density of Optimal Asset Allocation with Puts, γ=5

The graphs show the densities of the optimal asset allocations when the investor can
invest also in puts (considering puts with different moneyness). As a benchmark, we
also give the density of the optimal terminal wealth when the investor has only access
to the stock and the money market account. The relative risk aversion is γ=5, the
planning horizon is one month. The parameters are taken from Eraker, Johannes, and
Polson (2003) (for the P-measure) and Broadie, Chernov, and Johannes (2007) (for the
Q-measure).
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Figure 11: Increase of certainty equivalent return due to puts, γ=5

The graph shows the increase of the certainty equivalent return due to puts as a function
of moneyness. We consider different restricted versions of the SVJ model. The relative
risk aversion is γ=5, the planning horizon is one month. The parameters are taken from
Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie, Chernov, and
Johannes (2007) (for the Q-measure).
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Figure 12: Exposures when investor omits jumps, γ=5

The graphs show the optimal exposures for an asset allocation with puts as a function
of moneyness under model risk. The investor relies on a model with stochastic volatility
only and omits jumps. His anticipation is to get the seemingly optimal exposures. Instead
he faces the realized exposures. The truly optimal are those exposures that are optimal
under the true data-generating process.
The first graph shows the optimal exposure to diffusion risk θS, the second graph shows the
optimal exposure to diffusive volatility risk θV . The last graph shows the optimal exposure
to jump risk θN(µ̄P, µP

V ) for the mean jump size in the stock price and in volatility. The
relative risk aversion is γ=5, the planning horizon is one month. The parameters are taken
from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie, Chernov, and
Johannes (2007) (for the Q-measure).

38



85 90 95 100 105 110
0

2

4

6

8

10

12

14

Moneyness in %

C
E

R
 in

 %

Certainty Equivalent Return

seemingly optimal
realized
truly optimal

Figure 13: Certainty equivalent return when investor omits jumps, γ=5

The graphs show the certainty equivalent return (CER) for an asset allocation with
puts as a function of moneyness under model risk. The investor relies on a model with
stochastic volatility only and omits jumps. His anticipation is to get the seemingly optimal
CER. Instead he faces the realized CER. The truly optimal CER is the CER that is optimal
under the true data-generating process.
The relative risk aversion is γ=5, the planning horizon is one month. The parameters
are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie,
Chernov, and Johannes (2007) (for the Q-measure).
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Figure 14: Exposures when investor omits jumps in volatility, γ=5

The graphs show the optimal exposures for an asset allocation with puts as a function of
moneyness under model risk. The investor relies on a model with stochastic volatility and
jumps in the stock price only. He omits jumps in volatility. His anticipation is to get the
seemingly optimal exposures. Instead he faces the realized exposures. The truly optimal
are the exposures that are optimal under the true data-generating process.
The first graph shows the optimal exposure to diffusion risk θS, the second graph shows the
optimal exposure to diffusive volatility risk θV . The last graph shows the optimal exposure
to jump risk θN(µ̄P, µP

V ) for the mean jump size in the stock price and in volatility. The
relative risk aversion is γ=5, the planning horizon is one month. The parameters are taken
from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie, Chernov, and
Johannes (2007) (for the Q-measure).
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Figure 15: Certainty equivalent return when investor omits jumps in volatility, γ=5

The graphs show the certainty equivalent return (CER) for an asset allocation with
puts as a function of moneyness under model risk. The investor relies on a model with
stochastic volatility and jumps in the stock price only. He omits jumps in volatility. His
anticipation is to get the seemingly optimal CER. Instead he faces the realized CER. The
truly optimal CER is the CER that is optimal under the true data-generating process.
The relative risk aversion is γ=5, the planning horizon is one month. The parameters
are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie,
Chernov, and Johannes (2007) (for the Q-measure).
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Figure 16: Exposures when investor mis-estimates the risk premia, γ=5

The graphs show the optimal exposures for an asset allocation with puts as a function
of moneyness under model risk. The investor relies on a model where volatility risk and
jump variance risk are not priced. In the real model both of these risk factors are priced.
His anticipation is to get the seemingly optimal exposures. Instead he faces the realized
exposures. The truly optimal exposures are the exposures that are optimal under the true
data-generating process.
The first graph shows the optimal exposure to diffusion risk θS, the second graph shows the
optimal exposure to diffusive volatility risk θV . The last graph shows the optimal exposure
to jump risk θN(µ̄P, µP

V ) for the mean jump size in the stock price and in volatility. The
relative risk aversion is γ=5, the planning horizon is one month. The parameters are taken
from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie, Chernov, and
Johannes (2007) (for the Q-measure).
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Figure 17: Certainty equivalent return when investor mis-estimates the risk premia, γ=5

The graphs show the certainty equivalent return (CER) for an asset allocation with
puts as a function of moneyness under model risk. The investor relies on a model where
volatility risk and jump variance risk are not priced. In the real model both of these risk
factors are priced. His anticipation is to get the seemingly optimal CER. Instead he faces
the realized CER. The truly optimal CER is the CER that is optimal under the true
data-generating process.
The relative risk aversion is γ=5, the planning horizon is one month. The parameters
are taken from Eraker, Johannes, and Polson (2003) (for the P-measure) and Broadie,
Chernov, and Johannes (2007) (for the Q-measure).
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