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Abstract

We define risky arbitrages as self-financing trading strategies that have a strictly positive market
price but a zero expected cumulative payoff. A continuous time cointegrated system is used to
model risky arbitrages as arising from a mean-reverting mispricing component. We derive the
optimal trading strategy in closed-form and show that the standard textbook arbitrage strategy
is not optimal. In a calibration exercise, we show that the optimal strategy makes a sizeable
difference in economic terms.



1 Introduction

Textbook arbitrages are self-financing trading strategies that have a strictly positive payoff
(price) today with a zero cumulative payoff at a known future point in time. An example is
simultaneously buying one asset and shorting an equal amount of another asset with the same
future payoff but at a higher market price. Provided that the two asset prices converge at a
known future date, investors make money up front without incurring any risk. As a conse-
quence, there is no optimal amount to be invested in a riskless arbitrage since investors would
want infinitely large positions in this strategy.

In contrast to textbook riskless arbitrage, risky arbitrages are self-financing trading strategies
that have a strictly positive payoff today but a zero expected future cumulative payoff. One
example of risky arbitrage is the well-known case where the shares of Shell and Royal-Dutch
traded at different prices despite being claims on the same underlying assets. While the two
stock prices could be expected to converge over time, the date where this would occur was
not known ex-ante. Another example involves simultaneously trading A-shares in the Chinese
stock market and H-shares on the Hong Kong stock exchange. Provided that the shares are held
in the same firms and thus represent claims on the same assets, their prices can be expected
to eventually converge. More generally, investment strategies that fall in the risky arbitrage
category and are popular among institutional traders and hedge funds include relative value
arbitrage, pairs trading and statistical arbitrage, see, e.g., Bondarenko (2003) and Hogan et al.
(2004). Due to transaction costs, limits on capital, and capacity constraints on trading, risky
arbitrage opportunities are far more common in practice than their riskless counterparts.

Following earlier studies in the literature, e.g., Gatev, Goetzmann and Rouwenhorst (2006)
and Jurek and Yang (2007), in this paper we model risky arbitrages under the assumption that
individual asset prices contain a random walk component, but that pairs of asset prices can be
cointegrated. Our model captures the presence of a mean-reverting mispricing component that
reverts to zero in the long run.1 Importantly, the evolution of pricing errors is random and the
future point in time when they revert to zero is unknown. Compared to the riskless arbitrage
case, this corresponds to having a stochastic process for the elimination of pricing errors. As
a consequence, and in contrast to riskless arbitrage, risk-averse investors will not hold infinite

1 Cointegration among asset prices captures cases of statistical arbitrage involving pairs of assets that are very
close substitutes (e.g. stock indexes traded through futures contracts or exchange traded mutual funds, see Has-
brouk (2003)) in which mean reversion is likely to be very fast. It also comprises cases where it is more difficult
for investors to exploit mispricing and mean reversion is likely to be slow (e.g., Summers (1986)).

1



positions in a risky arbitrage strategy.
The question naturally arises, therefore, what the optimal trading strategy is under risky

arbitrage. It is useful to first consider the standard arbitrage case where a balanced long-short
position is held. This reflects that, under textbook riskless arbitrage, the objective is to offset
the liability from the asset held in a short position against the payoff on the asset held in the
long position. However, this is clearly very different from the objective of utility maximization
which in general seeks to maximize the expected return while maintaining an optimal level of
risk.

Nevertheless, the academic literature has taken the standard strategy assumed under riskless
arbitrage for granted and typically only computes the optimal amount invested in this strategy,
see, e.g., Liu and Longstaff (2004) and Jurek and Yang (2007). Industry practice has mirrored
this (Khandani and Lo (2007)). However, under risky arbitrage this strategy is not, in general,
optimal. To see why the two types of arbitrage may give rise to very different trading strategies
note that, in the absence of market frictions, the standard arbitrage strategy always makes money
for riskless arbitrages. In contrast, the risky arbitrage strategy may in fact lose money.

To gain intuition, consider the case where one asset is fairly priced while the other is un-
derpriced. The riskless arbitrage strategy is long in the underpriced asset and short the same
amount in the fairly priced asset. The underpriced asset has a positive alpha because its price
is expected to rise more than is justified by its market exposure, while the fairly priced asset
has zero alpha. The underpriced asset will be held long while the fairly priced asset will not
be held if its return is independent of that of the underpriced asset after the market exposure is
excluded. In this situation the fairly priced asset simply provides an additional source of pure
risk without contributing alpha. Thus the optimal risky arbitrage strategy is long in the under-
priced asset while holding none of the fairly priced asset. This is very different from the riskless
arbitrage strategy which ceases to be optimal here because the fairly priced asset increases the
risk without adding a compensating risk premium.

More generally, outside the very special and restrictive ‘symmetric’ case with completely
identical assets held in the long and short positions,2 the optimal long and short positions will
not balance out against each other and the standard balanced riskless arbitrage strategy fails to be
optimal since it exposes the investor to unnecessary risk. It also causes underinvestment relative
to the optimal strategy for generating alpha. Returning to the earlier example with Chinese A-

2 In particular, symmetry is required in the assets’ factor loadings, idiosyncratic risk levels and their sensitivity
to the mispricing component,
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shares and Hong-Kong H-shares, very different trading restrictions and market volatility on the
two exchanges mean that the optimal positions are not simply one-to-one. This is economically
important since the optimal trading strategy can make more efficient use of the risky assets for
purposes of controlling risk and avoiding overly large leverage or short positions.

We also demonstrate that the optimal risky arbitrage strategy is not, in general, market
neutral. Market neutrality puts unnecessary constraints on the trading strategy and leads to a
suboptimal portfolio. The investor should optimize the portfolio of the individual assets without
imposing the market neutrality constraint and the resultant market exposure can be eliminated
by trading the market index. Furthermore, it is not only the relative mispricing that matters for
the optimal portfolio holdings but also whether one or both of the assets are mispriced.

In summary, the contributions of our paper are as follows. First, we derive the optimal
trading strategy in closed-form under the assumption that risky arbitrage opportunities arise
when asset prices are cointegrated. Second, we show that the textbook arbitrage trading strategy
is, in general, suboptimal and only achieves optimality under a set of highly restrictive and
stringent conditions. Third, we use a calibration exercise to demonstrate that the loss incurred
from following the standard arbitrage strategy can be economically significant.

Our analysis significantly generalizes existing results from the literature on arbitrage. The
literature on risky arbitrages assumes that the standard strategy from riskless arbitrage should be
used, see, e.g., Liu and Longstaff (2006) and Jurek and Yang (2006). We show that this need not
hold in the case with two risky assets and a single risk factor and extend the results to cover an
arbitrary number of risky assets and risk factors. Furthermore, our results apply to any form of
arbitrage analysis, riskless or risky, which requires utility maximization. Indeed, in the presence
of market frictions and limits to arbitrage, our insights also apply to riskless arbitrages since, as
frictions become more important, riskless arbitrage effectively becomes risky arbitrage.

The remainder of the paper is organized as follows. Section 2 specifies our model for how
asset prices evolve. Section 3 derives the optimal investment strategy in closed form, presents
some special cases of particular interest and also characterizes the optimal trading strategy
under constraints such as market neutrality. Section 4 considers the utility loss from pursuing
suboptimal strategies that impose fixed relative weights (including market neutrality), while
Section 5 generalizes our setup to incorporate multiple risk factors and many assets. Section 6
concludes.
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2 Asset Prices

There are many reasons for assets to have similar payoffs and for their prices to move closely
together. Examples include pairs of stocks that have the same claim to dividends and identical
voting rights but are traded in different markets and two firms manufacturing products that
are close substitutes. The prices of these assets can be quite different, however, because of
mispricing in the markets due to, e.g., random liquidity shocks that cannot be exploited by
arbitrageurs in the presence of short-selling costs. Nevertheless, over time, these differences
tend to disappear.

In this section we propose a simple model that gives rise to comovements in the prices of
such assets. To establish intuition, we initially focus on pairs of individual stocks and a single
common risk factor, whereas Section 5 generalizes the model to allow for multiple common
risk factors and an arbitrary number of assets. A special case of our model is the type of pairs
trading considered by Gatev et al. (2006) whereby a winner stock is shorted and a loser stock
is bought, but, as we shall see, our analysis is far more general than this example.

We assume that there is a riskless asset which pays a constant rate of return, r. Furthermore,
a risky asset trading at the price Pmt represents the market index. We assume that this follows a
geometric random walk process, i.e.

dPmt

Pmt
= (r + μm) dt+ σmdBt, (1)

where the market risk premium μm and market volatility σm are both constant and Bt is a stan-
dard Brownian motion. Notice that the market index is fairly priced. Papers such as Dumas,
Kurshev and Uppal (2007) and Brennan and Wang (2006) assume that the market index is sub-
ject to pricing errors. We make no such assumptions here and instead concentrate on mispricing
in (pairs of) individual asset prices.

In addition to the risk-free asset and the market index, we assume the presence of two risky
assets whose prices Pit, i = 1, 2, evolve according to the equations

dP1t
P1t

= (r + β1μm) dt+ β1σmdBt + σ1dZt + b1dZ1t − λ1xtdt; (2)

dP2t
P2t

= (r + β2μm) dt+ β2σmdBt + σ2dZt + b2dZ2t + λ2xtdt, (3)

where λi, βi, bi, and σi are constant parameters, Zt and Zit are standard Brownian motions, and
Bt, Zt, and Zit are all mutually independent for i = 1, 2.

In this specification, βiσmdBt represents exposure to the market risk while σidZt + bidZit

represents idiosyncratic risks. The presence of a common nonstationary factor is consistent
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with the equilibrium asset pricing model analyzed by Bossaerts and Green (1989). It is stan-
dard to assume that idiosyncratic risks in single market models are independent across different
stocks with the market risk representing the only source of correlation among different assets.
In our case, both assets are claims on similar fundamentals and so the presence of common
idiosyncratic risk, dZt, is to be expected.

The final component, xt, represents pricing errors in our model. Moreover, we assume
that there exists a constant α such that the logarithms of the two asset prices pit = lnPit are
cointegrated with cointegrating vector (1,−α), i.e.

xt = p1t − αp2t = ln

µ
P1t
Pα
2t

¶
, (4)

is stationary.3 Following Engle and Granger (1987), we refer to xt as the error-correction term.
In common with most of the literature, we take the price processes as exogenously given and so
they are not affected by arbitrageurs’ attempts at exploiting mispricing.4

The two asset prices in our model are correlated both because of their exposure to the same
market-wide risk factor (dBt) and a common idiosyncratic risk (dZt) but also due to the mean-
reverting error-correction term (xt) which will induce correlation between the two asset prices
even in the absence of the two former components. As an extreme case, when there is no
mispricing in either asset, λ1 = λ2 = 0 and σ1 = σ2 = 0, β1 = β2, the two prices are identical.

2.1 Cointegration Dynamics

The terms −λ1xt and λ2xt play a dual role in the above specification. First, they represent
mean excess returns over the normal mean return of r + βμm. They are the only source of
mispricing in our model and thus the only source of abnormal returns for investors. Second,
equations (2-4) constitute a continuous-time cointegrated system with −λ1xt and λ2xt as the
error correction terms. Together these terms produce mean reversion that keeps mispricing
stationary and pricing errors “small” compared to either of the integrated price processes p1t,
p2t. This ensures that, in the words of Chen and Knez (1995), “closely integrated markets should
assign to similar payoffs prices that are close” is valid in our model. When the terms −λ1xt
and λ2xt are both absent, the risk premium is determined by βiμm and only the market index

3 See also Alexander (1999) and Kawasaki et al. (2003) for analyses of trading strategies when asset prices are
cointegrated.

4 See Kondor (2008) for an approach that endogenizes the price process.
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and the riskless asset will be held. Neither of the individual risky assets will be held because of
their extra idiosyncratic risk terms which go unrewarded.

Other statistical processes could be used to capture temporary deviations from equilibrium
prices, including non-linear relations or fractional cointegration, to name a few. Our stylized
model is meant to capture essential features of pricing errors while maintaining analytical
tractability and allowing us to characterize the optimal trading strategy in closed form. For
tractability, and to make the assumption of integrated stock prices more realistic, the cointe-
grated system is specified in terms of the logarithm of asset prices and not prices themselves.

Next consider the dynamics of the error correction term. It is easy to show that xt satisfies

dxt = μxdt− λxxtdt+ βxσmdBt + σxdZt + bxdZxt. (5)

The mean reversion coefficient of xt is given by

λx = λ1 + αλ2, (6)

which we assume is positive to ensure the stationarity of xt. The mean reversion of xt captures
the temporary nature of any mispricing.

Cointegration only requires that xt be stationary which holds provided λx = λ1 + αλ2 > 0.

However, the effect of a shock to one of the prices on its own price dynamics may not be as
expected. To see this, suppose λ1 = 2, λ2 = −1, and α = 1, so λx = 1 > 0 and xt is stationary.
In this case, if P2t > P1t, the error-correction term −(lnP1t − lnP2t) will drive P2t to be even
higher and there is seemingly no mean reversion in the mispricing of P2t. However, the mean
reversion in the mispricing of P1t is stronger because λ1 = −2λ2, and so there is mean revision
in xt and p1t and p2t are still cointegrated.

The long term mean of xt is given by μx/λx, where

μx = (1− α)r + (β1 − αβ2)μm −
1

2

³
β21σ

2
m + σ21 + b21 − α(β22σ

2
m + σ22 + b22)

´
. (7)

The mean clearly depends on the β0s of the assets. Due to Jensen’s inequality, it also depends on
the differences of the variances. In many cases we would expect μx = 0. A sufficient condition
for this to hold is α = 1 and symmetry between the other parameters, i.e. β1 = β2, b1 = b2 and
σ1 = σ2.

The error correction term, xt, has exposure to the market risk of

βx = β1 − αβ2. (8)

6



Finally, the volatility of the common idiosyncratic risk component in xt is

σx = σ1 − ασ2, (9)

while the independent idiosyncratic risk component of xt is

bxdZxt = b1dZ1t − αb2dZ2t,

where the volatility parameter bx is given by

bx =
q
b21 + α2b22. (10)

This model is quite general. To gain intuition for price dynamics we next consider two polar
cases of economic interest. These arise as special cases of our general setup.

2.2 Special Cases

A special case of particular interest arises when only one of the assets is mispriced, while
the other is always correctly priced. Although intuition may suggest that only the mispriced
asset should be traded, in fact we show that due to the correlation between the two assets, the
mispriced asset will in fact also be held. Suppose that asset two is fairly priced while asset one
is subject to mispricing; the assets are identical in all other dimensions. This can be represented
by the price dynamics:

dP1t
P1t

= (r + βμm) dt+ βσmdBt + σdZt + bdZ1t − λ1xtdt;

dP2t
P2t

= (r + βμm) dt+ βσmdBt + σdZt + bdZ2t. (11)

We can interpret P2t as the fair price of both assets because it is not affected by the error-
correction term (λ2 = 0). However, asset 1 is mispriced due to the error-correction term
−λ1xt = −λ1(lnP1t − lnP2t) in the dynamics of P1t which, assuming that λ1 > 0, drives
mispricing of asset 1 to zero. When P1t > P2t, the price of asset 1 is overvalued so the error-
correction term −λ1(lnP1t − lnP2t) is negative and will “pull” the price P1t down towards its
fair value P2t, presumably due to the trading of informed investors. Similarly, when P1t < P2t,
the price of asset 1 is undervalued, and the error-correction term−λ1(lnP1t− lnP2t) is positive
which will “push” the price P1t up towards its fair value P2t.

Returning to the earlier example, there are stocks with the same dividend and voting rights
that are traded on both the Hong Kong Stock Exchange and the Chinese Stock Exchange. The
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price of a stock traded on the Chinese exchange sometimes differs significantly from the price
of the same stock traded on the Hong Kong exchange. Since the Hong Kong Stock Exchange
is presumably more efficient, the stock traded in Hong Kong is more likely to be fairly priced.
Thus one could model the prices of the stocks on the Hong Kong and Chinese exchanges as P2t
and P1t, respectively.

Another special case, which we label the perfectly symmetric case, arises when all parame-
ters of the two assets are identical and the two assets are symmetrically affected by mispricing.
This case may cover stocks cross-listed on different exchanges such as ADRs or individual
stocks such as Royal/Dutch and Shell where both markets are fairly similar and there is a de-
gree of symmetry. Therefore, the following price dynamics may be appropriate

dP1t
P1t

= (r + βμm) dt+ βσmdBt + σdZt + bdZ1t − λxtdt;

dP2t
P2t

= (r + βμm) dt+ βσmdBt + σdZt + bdZ2t + λxtdt. (12)

We can view (r + βμm) dt + βσmdBt + σdZt as the return process for both assets when there
is no mispricing while −λxtdt + bdZ1t and λxtdt + bdZ2t represent the pricing errors of asset
1 and 2 respectively. In this case, when P1t > P2t, the term −λxt = −λ(lnP1t − lnP2t) in the
dynamics of P1t will “pull” P1t down towards P2t while the term λxt = −λ(lnP2t − lnP1t) in
the dynamics of P2t will “push” P2t up towards P1t, thus keeping close the difference between
P1t and P2t. A similar conclusion holds when P1t < P2t.

One could directly assume that P1t − αP2t is stationary without separate specifications for
p1t and p2t, as in Jurek and Yang (2007). In this case, the two assets need not, strictly speaking,
be cointegrated, because P1t and P2t are positive and therefore cannot be integrated (I(1))
processes, but the specification still captures mean reversion in the mispricing.

These are polar opposite cases, and the reality is likely to fall somewhere between the two
cases. In the perfectly symmetric case covered by the standard arbitrage strategy, there is no
need to distinguish between which asset is undervalued and which is overvalued, since only
relative mispricing is needed to set up a trade. Conversely, in the more general asymmetric
case, it becomes important to make this distinction. For example, if asset 1 is mispriced, while
asset 2 is fairly priced, then whether asset 1 is under- or overpriced becomes important.

Note that the mispricing specified in our paper is stationary over time, whereas mispricing in
Liu and Longstaff (2004) and Liu, Peleg, and Subrahmanyam (2006) are expressed in terms of
a Brownian bridge and a generalized Brownian bridge. These specifications are not stationary
and are useful to describe cases where mispricing will be zero for sure at some future date.

8



For example, on the settlement date, the difference between the spot price and future price of
a futures contract has to be zero even though the underlying spot and futures prices follow
non-stationary processes, cf. Brenner and Kroner (1995).

Equations (2) and (3) model a true risky arbitrage. Replacing xt by xt
T 0−t , the above equations

for t < T 0 would represent a textbook riskless arbitrage. In this case, the price difference will
become zero for sure at time T 0. As pointed out by Liu and Longstaff (2004), without market
frictions, the investor would hold an infinite amount of the arbitrage portfolio in this case.
However, in the presence of market frictions, investors will hold finite amounts in the arbitrage
strategy.

3 Optimal Investment Strategy

We next proceed to use the asset pricing model from the previous section to characterize the
optimal portfolio choice for an investor with power utility. We denote the investor’s portfolio
weight on the market portfolio by φmt while the weights on the individual risky assets are given
by φit, i = 1, 2.

The investor’s utility is assumed to be of the constant relative risk aversion form:

1

1− γ
E0
£
W 1−γ

T

¤
, (13)

where WT is the value of the investor’s wealth at time T , which satisfies

dWt =Wt

µ
rdt+ φmt

µ
dPmt

Pmt
− rdt

¶
+ φ1t

µ
dP1t
P1t
− rdt

¶
+ φ2t

µ
dP2t
P2t
− rdt

¶¶
. (14)

The following proposition characterizes the investor’s optimal portfolio weights at time t ≤
T :

Proposition 1 Suppose asset prices evolve according to equations (1 - 3) and the investor has
constant relative risk aversion preferences, (13). Then the optimal weight on the market portfo-
lio is

φ∗mt =
μm
γσ2m

+
βx

³
B + C ln

³
P1t
Pα
2t

´´
γ

− (φ∗1tβ1 + φ∗2tβ2),

while the optimal portfolio weights of the individual assets are

Ã
φ∗1t

φ∗2t

!
=

Ã
σ22 + b22 −σ1σ2
−σ1σ2 σ21 + b21

!
γ(σ21b

2
2 + σ22b

2
1 + b21b

2
2)

⎛⎝ −λ1 ln³P1t
Pα
2t

´
+ (σxσ1 + b21)

³
B + C ln

³
P1t
Pα
2t

´´
λ2 ln

³
P1t
Pα
2t

´
+ (σxσ2 − αb22)

³
B + C ln

³
P1t
Pα
2t

´´ ⎞⎠ .
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B and C are functions of time t only and satisfy a system of ordinary differential equations
(ODE) which is given in Appendix B.

Proposition 1 is a special case of a more general result (Proposition 5) with multiple assets
and risk factors which we state in Section 5 and prove in Appendix B. The first term in the
expression for the market portfolio is the standard mean-variance portfolio weight and thus
depends on the market’s Sharpe ratio divided by the investor’s coefficient of risk aversion and
market volatility. The second term is the intertemporal hedging demand for xt which, due to
its market exposure, is proportional to βx. The third term offsets the market exposure of the
individual assets which is linear in the portfolio weights φ∗1t and φ∗2t and proportional to the
respective betas.

Turning to the expression for the holdings of the individual assets, note that parameters
associated with the market index, such as β, μm, and σm, do not appear in the expression for
φ∗1t and φ∗2t . This is because the individual assets’ market exposure is hedged using the market
index. In contrast, all the asset-specific parameters such as the volatility of the common and
independent idiosyncratic risk components (σ1, σ2, b1, b2), their sensitivity to the mispricing
component (λ1 and λ2), the size of the mispricing (ln(P1t/Pα

2t) ) in addition to the investor’s
attitude to risk (γ) and investment horizon (through B and C), help determine the optimal
holdings of assets 1 and 2. The interaction between these parameters is quite complicated. To
gain intuition for the result in Proposition 1, we next consider some special cases.

3.1 Symmetric Mispricing

As a first example, suppose that both risky assets are mispriced and the degree of mispricing
is the same. To capture this we assume that β1 = β2 = β, σ1 = σ2 = σ, b1 = b2 = b > 0,
α = 1, and λ1 = λ2 = λ > 0. Both asset 1 and asset 2 are mispriced in this case because error-
correction terms affect the dynamics of both P1t and P2t. Moreover, the mispricing is symmetric
since both assets have the same exposure to the market and the common idiosyncratic risks,
they also have the same volatility of independent idiosyncratic risks, and the same rate of mean
reversion of the mispricing term.

In this case it follows from (7) - (9) that μx = βx = σx = 0. One can further show that
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B = 0 using the equations given in Appendix B. The optimal portfolio weights simplify to

Ã
φ∗1t

φ∗2t

!
=

Ã
σ2 + b2 −σ2

−σ2 σ2 + b2

!
γb2(2σ2 + b2)

Ã
−λ+ b2C

λ− b2C

!
ln

µ
P1t
P2t

¶

=

⎛⎝ −³ λ
γb2
− C

γ

´
ln
³
P1t
P2t

´³
λ
γb2
− C

γ

´
ln
³
P1t
P2t

´ ⎞⎠ . (15)

Note that φ∗1t = −φ∗2t, that is, the portfolio weight of asset 1 always has the opposite sign to
that of asset 2. Since both assets have the same beta, it follows that the optimal portfolio in the
two assets is market neutral. Because φ∗1t = −φ∗2t, the following discussions will focus only on
φ∗1t.

Let us now consider the first term of φ∗1t, i.e. −λ ln (P1t/P2t) /γb2. The risk premium is
−λ ln (P1t/P2t), γ is the risk aversion and b2 is the variance of the independent idiosyncratic
risk. This is just the investor’s myopic demand as if there is no common idiosyncratic risk. The
common idiosyncratic risk, Z, does not matter here because it cancels out and thus only the
independent idiosyncratic risk components remain.

The second term of φ∗1t, C ln (P1t/P2t) /γ, is the investor’s intertemporal hedging demand
which takes into account that the risk premium −λ ln (P1t/P2t) is time varying. This term
introduces a horizon dependence in the portfolio weight. For γ > 1, one can show that C is
negative and its magnitude increases with the horizon. Thus, when γ > 1 the intertemporal
hedging demand has the same sign as the myopic demand and the magnitude of the portfolio
weight increases with the horizon. In this case, the optimal portfolio weight φ∗1t < 0 if and only
P1t > P2t, that is, the investor will short asset 1 when it is overvalued relative to asset 2, and
vice versa. This results is quite intuitive.

As a numerical example, suppose that λ = 1, so the half life of any mispricing is 1 year,
ln (P1t/P2t) = 10%, so the price of asset 1 is about 11% higher than that of asset 2, the volatility
of independent idiosyncratic risk, b, is 10% and the risk aversion coefficient γ = 4. Then, when
time t is close to the end of the period (T − t is near zero), the investor should short asset 1
in an amount that is 63% of his wealth; when time t is far away from the end of the period
(T − t is large), the investor should short asset 1 in an amount that is 114% of his wealth. The
difference between 114% and 63% is due to the intertemporal hedging demand, which has been
extensively discussed in the literature, see for example, Liu (2007). Since we can show that the
magnitude ofC decreases as the horizon decreases, as illustrated in Figure 1, the investor should
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monotonically reduce his asset holding to the position of the myopic demand as the investment
horizon is reduced.

A broader set of scenarios is presented in Panel A of Table 1 which shows the optimal
weights as a function of the magnitude of the mispricing (x) and the length of the time horizon
(T ). In the symmetric case, the size of the asset holdings increases as the (absolute) pricing
error increases and as the investment horizon expands, but obviously the positions in assets 1
and 2 are identical in size and of opposite signs.

3.2 Asymmetric Mispricing

When the mispricing in asset 1 and 2 is symmetric, portfolio holdings in one asset must be
exactly the opposite of the holdings in the other asset. While this is an interesting benchmark,
asymmetries in the mispricing of two or more assets can easily arise in practice and may be
due to the two assets trading on different exchanges with different trading rules and/or access to
liquidity. This could give rise to differences in the volatility of the two assets’ idiosyncratic risk
components, i.e. b1 6= b2 , or to differences in their sensitivities to the error correction terms,
i.e. λ1 6= λ2. Other possibilities arise when the market exposures differ, β1 6= β2, or when the
volatilities of the common idiosyncratic risk component are different, σ1 6= σ2, although these
are perhaps less plausible sources of asymmetry.

Intuition for how asymmetries affect the holdings of assets 1 and 2 is fairly straightforward.
For example, suppose that the volatility of the common or independent idiosyncratic compo-
nents is lower for asset 1 than for asset 2 so that either b1 < b2 or σ1 < σ2. All other parameters
are assumed to be the same for assets 1 and 2. In this case, when P1t > P2t and asset 1 is
overvalued, the short position in asset 1 (assuming γ > 1) exceeds the long position in asset
2 in absolute magnitude. Moreover, the effect can be quite large. Thus, assume the same pa-
rameters from the symmetric mispricing example above, but let b1 = 0.1 while b2 = 0.2. At
short horizons when T − t is close to zero, the investor should short asset 1 in the amount of
-125% of his wealth and be long 93.5% in asset 2. At very long horizons, the investor should
be short -220% in asset 1 and long 189% of his wealth in asset 2. Figure 2 presents the ratio of
the optimal portfolio holdings, i.e. φ∗1/φ

∗
2 at different horizons. These holdings are far removed

from the equal-sized long-short position so commonly assumed in pairs trading.
Table 2 shows a more complete analysis of the effect on the relative asset holdings −φ1/φ2

of introducing various asymmetries in the asset-specific parameters, assuming a fixed value of
x = 0.1 and varying T in the interval [0, 1]. Letting λ2 vary from zero to 2 with λ1 = 1, we see
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that −φ1/φ2 exceeds one if λ2 < 1 while conversely −φ1/φ2 is less than one if λ2 > 1. Also,
the ratio of asset holdings mean reverts towards unity as the horizon gets longer.

The reverse pattern is seen when we vary b2 between zero and 0.4, with b1 fixed at 0.2. Now
instead −φ1/φ2 is less than one when b2 < b1 and it is increasing in T , while for b2 > b1, we
see that −φ1/φ2 exceeds one and is decreasing as a function of the investment horizon, T .

The effect of differences between σ1 and σ2 is similar to that of asymmetry in b1 versus b2.
However, the effect is small relative to what we observed for the other parameters, at least for
the range of values of σ1, σ2 used here.

3.3 Mispricing of One Asset

Next, we consider an example where one of the assets is mispriced (λ1 > 0) while the other
is correctly priced (λ2 = 0). For simplicity we assume that β1 = β2 = β, σ1 = σ2 = σ,
b1 = b2 = b > 0 and α = 1. In this case, asset 1 is mispriced (λ1 > 0) while there is no
mispricing in asset 2 because there is no error-correction term (λ2 = 0) in the dynamics of
P2t. Except for the impact of the error-correction terms, both assets are identical. For example,
they share the same exposure to both market and common idiosyncratic risk and have the same
idiosyncratic volatility.

In this case, μx = 0 and βx = 0, and we can show that B = 0 using equations given in
Appendix B. The optimal portfolio weights are then reduced toÃ

φ∗1t

φ∗2t

!
=

1

γ(2σ2 + b2)b2

Ã
σ2 + b2 −σ2

−σ2 σ2 + b2

!Ã
−λ1 + b2C

−b2C

!
ln

µ
P1t
P2t

¶

=
ln
³
P1t
P2t

´
γ

Ã
−
Ã

σ2 + b2

−σ2

!
λ1

(2σ2 + b2)b2
+

Ã
1

−1

!
C

!
. (16)

Since there is no mispricing in asset 2, one might expect that the investor will not hold it
and its portfolio weight should be zero. This is only true if σ = 0, which implies that returns
on asset 1 and 2 are completely independent. In this case, asset 2 is dominated by the market
index and will not be held. Conversely, when σ > 0, the optimal portfolio weight of asset 2 is
not zero because this asset can be used to hedge idiosyncratic risk that is common to assets 1
and 2. In this case, through a rotation of Brownian motions, the dynamics of asset prices can be

13



written as

dP1t
P1t

= (r + βμm) dt+ βσmdBt +
σ2dZ 0t√
σ2 + b2

+

√
2σ2 + b2bdZ 01t√

σ2 + b2
− λ1xtdt;

dP2t
P2t

= (r + βμm) dt+ βσmdBt +
√
σ2 + b2dZ 0t, (17)

where

Z 0t =
σZt + bZ2t√

σ2 + b2
,

Z 01t =
1√

2σ2 + b2

µ
σ(bZt − σZ2t)√

σ2 + b2
+ Z1t

¶
.

Here, Z 0t and Z 01t are mutually independent. The myopic demand in the portfolio weight of
asset 1, φ∗1t, 1

γ
λ1 ln

³
P1t
P2t

´
(σ2+b2)
(2σ2+b2)b2

, is given by the risk premium λ1 ln
³
P1t
P2t

´
divided by the

risk aversion γ and the variance of the new independent idiosyncratic risk, (2σ
2+b2)b2

(σ2+b2)
. This is

the myopic demand as if there is no dZ 0t term in the dynamics of P1t. This happens because dZ 0t
risk can be completely hedged away using asset 2. In fact, the optimal portfolio weight of asset
2 is determined such that the exposure to dZ 0t risk in the optimal portfolio is zero.

As in our previous example, terms that are proportional to C are the intertemporal hedging
demands that generate horizon dependence in the portfolio weights. Again, for γ > 1, C is
negative and its magnitude increases with the horizon T − t.

Moreover, once again the simple spread strategy of taking equal-sized long-short positions
in the two assets is suboptimal and the optimal strategy is not market neutral. Any market
exposure for the two assets is hedged away by trading in the market index through the−β(φ∗1t+
φ∗2t) term in the optimal market portfolio weight.

Under the standard market-neutral arbitrage strategy, the investor would short asset 1 and
be long in asset 2 if the former asset is deemed to be overpriced (P1t > P2t), so that the
combined portfolio is market neutral. However, this is not optimal here because the market-
neutral portfolio has unnecessary exposure to dZ 0t which has no alpha associated with it. We
will later quantify this inefficiency in terms of utility losses. To the best of our knowledge, this
point has not previously been made in the literature.

As a numerical example, suppose that λ1 = 1 so the half life of the mispricing is 1 year,
ln (P1t/P2t) = 10% so the price of asset 1 is about 11% higher than that of asset 2, the volatility
of common idiosyncratic risk is 20%, σ = 20%, the volatility of independent idiosyncratic risk
is 20%, b = 20% and the risk aversion coefficient γ = 4. Figure 3 displays the optimal portfolio
weights at different horizons, T − t. Close to the end of the investment horizon (T − t near
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zero), the investor should short asset 1 in the amount of φ∗1t = 42% of his wealth while taking a
long position in asset 2 in the amount of φ∗2t = 21% of his wealth. Further away from the end of
the period (where T − t is large), the investor should short asset 1 in the amount of φ∗1t = 65%
of his wealth while taking a long position in asset 2 equal to φ∗2t = 44% of his wealth. Again,
the difference in portfolio weights at different horizons is due to the investor’s intertemporal
hedging demand.

In the asymmetric case (λ1 = 1, λ2 = 0) shown in Panel B of Table 1, even though there
is no mispricing in asset 2, this asset is held short or long depending on whether or not x > 0.
The ratio −φ1/φ2 does not depend on x, but it does depend on the horizon, T , and declines
monotonically from a value of two (T − t = 0) to a value near 1.40 for T − t = 1.

We have discussed two polar examples, where the assets have the same degree of mispricing
in the first example and only one asset is mispriced in the second example. In reality, most cases
would fall in between these two polar examples.

3.4 Constrained Arbitrage Strategies

Many popular investment strategies assume that individual assets have constant relative weights.
In this section, we study investors’ optimal strategy under such a constraint which takes the
form φ1t = −κφ2t. Liu and Longstaff (2004) and Liu, Peleg, and Subrahmanyam (2006),
among others, directly specify the dynamics of the difference in asset prices and so one can
view the strategies studied in these papers to assume that κ = 1. Under such fixed relative
weight constraints, the wealth dynamics is given by

dWt =Wt

µ
rdt+ φmt

µ
dPmt

Pmt
− rdt

¶
+ φ1t

µ
dP1t
P1t
− rdt

¶
− κφ1t

µ
dP2t
P2t
− rdt

¶¶
, (18)

while the optimal portfolio weights follow from the following proposition:

Proposition 2 The optimal portfolio weights under the fixed relative weight constraint φ1t =
−κφ2t are

φ∗mt =
μm + σ2mβx

³
B̌ + Č ln

³
P1t
Pα
2t

´´
γσ2m

− (β1 − κβ2)φ
∗
1;

φ∗1t =
−(λ1 + κλ2) ln

³
P1t
Pα
2t

´
+
³
σx(σ1 − κσ2) + (b

2
1 + καb22)

´³
B̌ + Č ln

³
P1t
Pα
2t

´´
γ
³
(σ1 − κσ2)2 + b21 + κ2b22

´ .

Here B̌ and Č are functions of time t only and satisfy a system of ordinary differential equations
(ODE) which is given in Appendix C.
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Proposition 2 is a special case of a more general multivariate result (Proposition 6) which is
proved in Appendix C. Our first example of a constant relative portfolio weight scheme is the
market neutral strategy which sets κ = β1/β2, i.e. φ1t = −β2

β1
φ2t, so β1φ1t + β2φ2t = 0. As

pointed out by Gatev et al. (2006), and confirmed empirically by these authors, paired stocks
are often selected to be market neutral.

Under the market neutral strategy, the optimal portfolio weights are characterized in closed
form as follows:

Corollary 1 The optimal portfolio weights under the market neutral strategy (β1φ1t+β2φ2t =

0) are

φ∗mt =
μm + σ2mβx

³
B̌ + Č ln

³
P1t
Pα
2t

´´
γσ2m

;

φ∗1t =
−(λ1 + β1

β2
λ2) ln

³
P1t
Pα
2t

´
+
³
σx(σ1 − β1

β2
σ2) + (b

2
1 +

β1
β2
αb22)

´³
B̌ + Č ln

³
P1t
Pα
2t

´´
γ
³
(σ1 − β1

β2
σ2)2 + b21 + (

β1
β2
)2b22

´ .

This is a popular investment strategy but it is clearly not always optimal: If the investor really
prefers a market-neutral portfolio, it can be better obtained by combining the optimal individual
asset portfolio with the market index. Such a “market layover” strategy can potentially improve
the performance of the combined portfolio.

Our second example of constant relative portfolio weights arises when the weights are pro-
portional to the cointegrating vector, i.e. φ1t = −αφ2t. Under this scheme, which we label the
cointegrated strategy, the wealth process discounted by the short rate is stationary. It coincides
with the market-neutral strategy if β1 = αβ2. This strategy is also common in the literature, see
e.g., Jurek and Yang (2006). The optimal weights under this strategy are listed below:

Corollary 2 The optimal portfolio weights under the cointegrated investment strategy are

φ∗mt =
μm + σ2mβx

³
B̌ + Č ln

³
P1t
Pα
2t

´´
γσ2m

− (β1 − αβ2)φ
∗
1;

φ∗1t =
−(λ1 + αλ2) ln

³
P1t
Pα
2t

´
+
³
σx(σ1 − ασ2) + (b

2
1 + α2b22)

´³
B̌ + Č ln

³
P1t
Pα
2t

´´
γ
³
(σ1 − ασ2)2 + b21 + α2b22

´ .

Notice that in the case with symmetric mispricing studied in the previous section, the opti-
mal strategy is market neutral and is also a cointegrated strategy.
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However, in the example where asset 1 is mispriced while asset 2 is correctly priced, we
showed that the optimal portfolio strategy is neither market neutral nor cointegrated. The sub-
optimal outcome stems from two sources: First, the risk premium associated with the mispricing
goes under-exploited. Second, the portfolio is unnecessarily exposed to (common) idiosyncratic
risk that earns no risk premium.

To gain intuition for these results, consider again the case with asymmetric risk (λ1 =
1, λ2 = 0). For this case we expect that the magnitude of the myopic demand for asset 1 in
the unconstrained optimal portfolio exceeds that under the constrained optimal portfolio. To
see why, notice that shocks to asset 1 have two components: one that is perfectly correlated
with shocks to asset 2 (Zt) and one that is independent of shocks to this asset (Z1t). The
unconstrained allocation ensures that the perfectly correlated shock is completely hedged by
taking an appropriate position in asset 2. Hence the unconstrained optimal holding is determined
by the risk premium and the variance of the independent shock.

The portfolio constrained to have, say, suboptimal relative weights (1,-1), earns the same
risk premium as asset 1 because the risk premium of asset 2 is zero (λ2 = 0). Furthermore, the
size of the independent shock to asset 2 is the same as that for asset 1, but is not completely
hedged. Thus the suboptimal portfolio earns the same risk premium but at a higher risk and so
the investor will hold less of asset 1 under the constrained strategy.

By the same token, for the intertemporal hedging demand, because the unconstrained port-
folio has the same risk premium as the constrained portfolio but also has lower risk, the investor
would take a higher position in the unconstrained portfolio.

4 Utility loss from suboptimal strategies

Differences between the optimal and suboptimal trading strategies, while interesting in their
own right, are not of economic significance unless we can demonstrate that, for sensible choices
of parameter values, they lead to sizeable economic losses. In this section we address the size of
the economic loss associated with the market neutral or cointegrated strategies. We first provide
a simple result for computing the wealth gain of the optimal investment strategy relative to
a suboptimal strategy of fixing the portfolio weights. Comparing the wealth under the two
investment strategies, we have:

Proposition 3 The wealth gain of the optimal strategy over the constant relative weight strategy
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assuming a given mispricing of x is

R = e
1

1−γ ((A−Ǎ)+(B−B̌)
0x+ 1

2
x0(C−Č)x).

Using this result, it is easy to assess the investor’s utility loss. Figure 4 shows the outcome
of our analysis using the parameter values from the case with mispricing only in asset 1 when
the benchmark is the optimal market-neutral strategy which we compare to the unconstrained
optimal strategy. The utility loss from using the market-neutral strategy rises steadily from zero
to around two percent at the one-year horizon. A more comprehensive analysis is shown in
Table 3 which reports the wealth gain as a function of x and T . Gains grow monotonically as
a function of x and T and increase from zero to 3% as we move from short horizons with little
mispricing (x = 0, T = 0) to longer horizons with greater mispricing (x = 0.2, T = 1).

Another measure that is useful for evaluating how desirable the return properties of alterna-
tive investment strategies are, is to consider moments of the resulting return distribution. For
example, under standard risk preferences, investors prefer returns with a higher mean and a
larger (more positive) skewness, while they dislike variance and kurtosis (fat tails) of returns.
The next proposition shows how to compute the moments of the returns for the optimal (uncon-
strained) and the optimal market neutral strategies:

Proposition 4 The moments of the returns of the optimal trading strategy and the optimal mar-
ket neutral trading strategy are

E0[(W
∗
T/W0)

q] = ed(t)+h(t)
0x+1

2
x0g(t)x

and
E0[(W̌T/W0)

q] = eď(t)+ȟ(t)
0x+1

2
x0ǧ(t)x,

respectively, where d(t), g(t), h(t) and ď(t), ȟ(t), ǧ(t) are defined in Appendix (A).

This result allows us to evaluate all the moments of the terminal wealth or, equivalently,
the cumulated return distribution and hence provides a complete characterization of the returns
associated with a particular investment strategy. For example, for a given investment horizon,
T − t, expected returns (the first moment) can be computed by setting q = 1, while risk is
characterized by the standard deviation of returns which can be computed as a by-product of
the moments evaluated at q = 1 and q = 2.

One implication of this result is that the optimal unconstrained portfolio will always have
a higher mean and a higher variance than the optimal constrained portfolio. To see this, notice
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that under mean-variance utility investors will maximize expressions of the form

φ0ν − γ

2
φ0Σφ, (19)

where γ is the coefficient of risk aversion, ν is the vector of means and Σ is the covariance
matrix. Assuming a linear constraint on the portfolio weights of the form κ0φ = k, we get the
following Lagrangian:

φ0ν − γ

2
φ0Σφ+ λ2(φ

0κ− k).

The first order condition associated with this is ν−γΣφ+λ2κ = 0, while the portfolio weights
are given by

φ∗ =
1

γ
Σ−1(ν + λ2κ).

The Lagrangian multiplier can now be solved from

k =
1

γ
κ0Σ−1(ν +

γk −B

C
κ) ≡ 1

γ
(B + Cλ2).

Thus λ2 = (γk −B)/C and the constrained weights take the form

φ =
1

γ
Σ−1(ν +

γk −B

C
κ).

The associated mean and variance are given by

ν 0φ =
1

γ
(A+

γk −B

C
B) =

A

γ

µ
1− B2

AC

¶
,

φ0Σφ =
1

γ2
(A+ 2

γk −B

C
B +

(γk −B)2

C
) =

A

γ2

µ
1− B2

AC

¶
.

Similarly, for the unconstrained optimal portfolio we have φ∗ = γ−1Σ−1ν and

v0φ =
A

γ
>

A

γ

µ
1− B2

AC

¶
,

φ0Σφ =
A

γ2
>

A

γ2

µ
1− B2

AC

¶
.

It follows directly that the expected return and the variance of the optimal (unconstrained) port-
folio exceeds the mean and variance of the constrained optimal portfolio.

Table 4 provides a numerical illustration of these results by presenting moments of returns
as a function of x and T for both the optimal and the constrained strategy. The same parameter
values as in the earlier case were assumed here with the only source of asymmetry arising from
b1 = 0.2, b2 = 0.1. Higher mispricing or a longer investment horizon leads to higher expected
returns for both the optimal and constrained strategies, with the expected return differential
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increasing as x or T rises. A parallel pattern is seen for the standard deviation of returns.
Consistent with the theory, both the mean and standard deviation are higher for the optimal than
for the constrained portfolio. Moreover, the Sharpe ratio rises from about 0.2 to around 2 as x
or T increase and is always higher for the optimal than for the constrained portfolio strategy.

The coefficient of skew is always negative for both portfolios and, except when x and T are
both very small, the constrained portfolio has a larger negative skew than the optimal portfolio,
making the optimal portfolio more desirable. Conversely, both portfolios generate returns with
a large positive coefficient of kurtosis. Again, except for very small values of x and T , the
constrained portfolio is more fat-tailed than the optimal portfolio, making it less desirable to
risk averse investors.

These results show that the optimal (unconstrained) portfolio has higher expected returns,
higher standard deviation and (in most cases) a higher skew and a smaller kurtosis than the
optimal market-neutral portfolio.

5 Generalization to Multiple Risk Factors and Multiple As-

sets

To gain intuition for the portfolio choice problem in the presence of mean-reverting mispricing
and cointegrated asset prices, we have so far focused on the case with one common risk factor
and two risky assets. In the interest of establishing generality of our results, we next consider
the case with many risk factors, multiple cointegrating relations and multiple assets.

Suppose that there are K common risk factors and K factor assets trading at prices P k
mt,

k = 1, ...,K. In a direct generalization of (1), the dynamics of the prices of these common
factor assets is given by

dP k
mt

P k
mt

= (r + μkm)dt+ (σmdBmt)
k, k = 1, ..., K, (20)

where μm is a constant K × 1 vector and σm is a K ×K constant matrix; dBmt is a vector of
standard Brownian motions of dimension K × 1. A superscript on a vector indicates the k0th
element.

Moreover, as a generalization of (2) and (3) we assume that there are N individual assets
with prices (for i = 1, ..., N)

dP i
mt

P i
mt

= (r + (βμm)
i)dt+ (βσmdBmt)

i + (σdBt)
i + (bdZt)

i − (λxt)idt. (21)
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Here β is an N ×K matrix, σ is an N ×m matrix (m < N), b is a diagonal N ×N matrix, λ
is an N × h matrix. Bt is an m-dimensional standard Brownian motion; for each i = 1, ..., N ,
Zi
t is a one-dimensional standard Brownian motion. All Brownian motions, Bmt, Bt, and Zi

t ,
i = 1, ..., N , are independent of each other. Let α denote the h × N dimensional matrix of
cointegrating vectors, where h ≤ N gives the number of cointegrating vectors. Then xt =

α lnPt is an h-dimensional process of pricing errors which satisfies

dxt = (μx − λxxt)dt+ βxσmdBmt + σxdBt + bxdZt, (22)

where

μx = α(r + βμm)−
1

2
αD(βσmσ0mβ0 + σσ0 + bb0);

λx = αλ;

βx = αβ; (23)

σx = ασ;

bx = αb.

The notation D denotes the vector of the diagonal elements of a square matrix. The wealth
process for this general case is now given by

dWt =Wt

³
(r+φ0mμm+φ0(βμm−λxt))dt+φ0mσmdBmt+φ0βσmdBmt+φ0σdBt+φ0bdZt

´
.

Once again λx must satisfy the conditions such that xt is stationary, i.e. the eigenvalues of αλ
must be negative.

As before, the value function J(xt,Wt, t) takes the form

J(xt,Wt, t) =
1

1− γ
Et
£
W ∗1−γ

T

¤
,

where W ∗
T is the wealth at time T associated with the optimal trading strategy.

The following proposition which generalizes Proposition 1 gives the optimal portfolio weights
for the general case with multiple risk factors and multiple assets:

Proposition 5 The optimal portfolio weights with multiple common factors and risky assets are

φ∗mt + β0φ∗t =
1

γ
(σmσ

0
m)
−1μm +

β0x(B + Cα lnPt)

γ
;

φ∗t =
1

γ

³
σσ0 + bb0

´−1³
− λα lnPt + (σσ

0
x + bb0α)(B + Cα lnPt)

´
.
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where B(t) and C(t) are an h × 1 dimensional vector function and an h × h dimensional
symmetric matrix function of time t respectively. They satisfy a system of Riccati ODE given in
Appendix B.

Proposition 5 is proved in Appendix B. The first term in the expression for φ∗mt is again the
weight from the standard mean-variance case, while the second term represents the intertem-
poral hedging demand. Turning to the expression for φ∗t , as in the earlier case with two risky
assets, the optimal demand for the risky assets can be decomposed into a myopic mean-variance
portion and an intertemporal hedging portion.

Finally, as a generalization of 2 we derive the optimal portfolio weights under the fixed
constant relative weights constraint, φ0κ = 0 :

Proposition 6 Under the constraint κ0φt = 0, the optimal portfolio weights with multiple com-
mon factors and risky assets are

φ∗mt + β0φ∗t =
1

γ
(σmσ

0
m)
−1(μm + σmσ

0
mβ

0
x(B̌ + Čα lnPt))

φ∗t =
1

γ
(σσ0 + bb0)−1

³
I − κ(κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1

´
×
³
− λα lnPt + (σσ

0 + bb0)α0(B̌ + Čα lnPt)
´
,

where B̌(t) and Č(t) are an h × 1 dimensional vector function and an h × h dimensional
symmetric matrix function of time t, respectively. These functions satisfy a system of Riccati
ODEs given in Appendix C.

Proposition 6, which is proved in Appendix C, provides a closed-form expression for the
optimal portfolio holdings subject to the constraint that the relative weights are kept constant
through time. While the intuition for the expression is more complicated than that for 2, the
components of the two expressions are very similar.

This framework with multiple common factors and risky assets is very general and allows
for the possibility that there may be more than just a single co-integrating vector and so there
can also be multiple error-correction terms that affect the dynamics of any mispricing.

6 Conclusion

This paper studies the optimal portfolio strategy in the presence of temporary errors in the
relative prices of two or more assets that are close substitutes. We assume that the relative
mispricing is mean reverting and model the dynamics in the underlying asset prices through

22



a continuous time cointegrated system. Our model is very general and can comprise multiple
common risk factors, many cointegrating relations, multiple assets whose idiosyncratic risks
may be correlated. We characterize how investors seek to optimally exploit predictability in
pricing errors while using the factor assets to control the associated exposure to common risk
factors and also account for correlated sources of idiosyncratic risk.

We show that the source of mispricing is important. Under a set of intuitive symmetry
assumptions where both assets are mispriced, the standard market-neutral arbitrage strategy is
optimal. However, in the presence of asymmetries such as when one asset is mispriced while
the other is not, the standard long-short market-neutral strategy ceases to be optimal. Moreover,
a cointegrated strategy where the portfolio weights are proportional to the cointegration vector,
is not, in general, optimal.

23



Appendix
Propositions 1 and 2 are special cases of Propositions 5 and 6 and so we do not prove them separately here.

A Proof of Proposition 4

We are interested in deriving the moments of the portfolio return process. Given portfolio weight processes
(φmt, φt), the wealth process is

dWt =Wt

³
(r + φ0mtμm + φ0t(βμm − λxt))dt+ (φ

0
mt + φ0tβ)σmdBmt + φ0t(σdBt + bdZt)

´
.

Using Ito’s lemma, we have

d lnWt = (r + φ0mtμm + φ0t(βμm − λxt))dt+ (φ
0
mt + φ0tβ)σmdBmt + φ0t(σdBt + bdZt)

−1
2
((φ0mt + φ0tβ)σmσ

0
m(φmt + β0φt) + φ0t(σσ

0 + bb0)φt)dt.

Thus,

W q
T = W q

0 exp
³Z T

0

q(r + (φ0mt + φ0tβ)μm − φ0tλxt)dt+ q(φ0mt + φ0tβ)σmdBmt + qφ0t(σdBt + bdZt)

−q
2
((φ0mt + φ0tβ)σmσ

0
m(φmt + β0φt) + φ0t(σσ

0 + bb0)φt)dt
´
.

We are interested in characterizing
E0 [W

q
T ] .

Using Girsanov’s theorem, we can write

E0[W
q
T ] = W q

0E0

h
exp

³Z T

0

q(r + φ0mtμm + φ0t(βμm − λxt))dt+ q(φ0mt + φ0tβ)σmdBmt + qφ0t(σdBt + bdZt)

−q
2
((φ0mt + φ0tβ)σmσ

0
m(φmt + β0φt) + φ0t(σσ

0 + bb0)φt)dt
´i

= W q
0E

Qq

0

h
exp

³Z T

0

q(r + (φ0mt + φ0tβ)μm − φ0tλxt)dt

+
q2 − q

2
((φ0mt + φ0tβ)σmσ

0
m(φmt + β0φt) + φ0t(σσ

0 + bb0)φt)dt
´i
, (A-1)

where EQq denotes the expectation under the equivalent martingale measure specified by the following Radon-
Nykodym derivative with respect to the physical measure, P :

dQq

dP
= exp

³Z T

0

q(φ0mt+φ
0
tβ)σmdBmt+qφ

0
t(σdBt+bdZt)−

q2

2
((φ0mt+φ

0
tβ)σmσ

0
m(φmt+β

0φt)+φ
0
t(σσ

0+bb0)φt)dt
´
.

The standard Brownian motions under the Qq measure are

dB
Qq

mt = dBmt − qσ0m(φmt + β0φt)dt;

dB
Qq

t = dBt − qσ0φtdt;

dZ
Qq

t = dZt − qb0φtdt.

The dynamics of x is

dxt = (μx − λxxt + qβxσmσ
0
m(φmt + β0φt) + qσxσ

0φt + qbxb
0φt)dt+ βxσmdB

Qq

mt + σxdZ
Qq

t + bxdZ
Qq

xt .

24



Suppose that φmt and φt are affine functions of xt. Then the expectation in equation (A-1) is a function of x0,
f(x, t). According to the Feynman-Kac formula, the function f(x, t) satisfies

0 = ft + (μx − λxx+ qβxσmσ
0
m(φm + β0φ) + qσxσ

0φ+ qbxb
0φ)0fx +

1

2
Tr
£
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)fxx0

¤
+q(r + (φ0m + φ0β)μm − φ0λx)f +

q2 − q

2
((φ0m + φ0β)σmσ

0
m(φm + β0φ) + φ0(σσ0 + bb0)φ)f. (A-2)

with f(x, T ) = 1.
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A.1 Optimal (unconstrained) Strategy

Substituting the optimal portfolio weights φ∗, φ∗m into (A-2), we get

0 = ft +

µ
μx − αλx+

q

γ
βxσmσ

0
m

£
(σmσ

0
m)
−1μm + β0x(B + Cx)

¤¶0
fx

+

µ
q

γ
[σxσ

0 + bxb
0]
³
σσ0 + bb0

´−1³
− λx+ (σσ0x + bb0α0)(B + Cx)

´¶0
fx

+
1

2
Tr [α(βσmσ

0
mβ + σσ0 + bb0)α0fxx0 ] + qrf

+
q

γ

³
(σmσ

0
m)
−1μm + β0x(B + Cx)

´0
μmf

− q

γ

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´0³
σσ0 + bb0

´−1
λxf

+
q2 − q

2γ2
(μ0m(σmσ

0
m)
−1 + (B + Cx)0βx)σmσ

0
m

£
(σmσ

0
m)
−1μm + β0x(B + Cx)

¤
f

+
q2 − q

2γ2

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´0³
σσ0 + bb0

´−1
×
³
− λx+ (σσ0x + bb0α0)(B + Cx)

´
f.

The coefficients are quadratic in x and we can conjecture that f(x; q) = ed(t)+h(t)
0x+ 1

2x
0g(t)x and derive an ODE

for d, h, and g. Substituting the functional form of f into the above equation, we get

0 = dt + h0tx+
1

2
x0gtx+

µ
μx − αλx+

q

γ
βxσmσ

0
m

£
(σmσ

0
m)
−1μm + β0x(B + Cx)

¤¶0
(h+ gx)

+

µ
q

γ
[σxσ

0 + bxb
0]
³
σσ0 + bb0

´−1³
− λx+ (σσ0x + bb0α0)(B + Cx)

´¶0
(h+ gx)

+
1

2
Tr
h
α(βσmσ

0
mβ + σσ0 + bb0)α0

³
(h+ gx)(h+ gx)0 + g

´i
+ qr

+
q

γ

³
(σmσ

0
m)
−1μm + β0x(B + Cx)

´0
μm −

q

γ

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´0³
σσ0 + bb0

´−1
λx

+
q2 − q

2γ2

³
μm + σmσ

0
mβ

0
x(B + Cx)

´0
(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
x(B + Cx)

´
+
q2 − q

2γ2

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´0³
σσ0 + bb0

´−1³
− λx+ (σσ0x + bb0α0)(B + Cx)

´
.

Setting the coefficients of the various powers of x to zero, we get the following system of ODEs

0 = dt +

µ
μx +

q

γ
βx
£
μm + σmσ

0
mβ

0
xB
¤¶0

h

+

µ
q

γ
α(σσ0 + bb0)α0B

¶0
h

+
1

2
Tr
h
α(βσmσ

0
mβ

0 + σσ0 + bb0)α0
³
hh0 + g

´i
+ qr

+
q

γ
μ0m(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
xB
´

+
q2 − q

2γ2

³
μm + σmσ

0
mβ

0
xB
´0
(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
xB
´

+
q2 − q

2γ2
B0(σσ0x + bb0α0)0

³
σσ0 + bb0

´−1
(σσ0x + bb0α0)B.
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0 = ht +

µ
−αλ+ q

γ
βxσmσ

0
mβ

0
xC

¶0
h+ g0

µ
μx +

q

γ
βxσmσ

0
m[(σmσ

0
m)
−1μm + β0xB]

¶
+

µ
q

γ
α
³
− λ+ (σσ0x + bb0α0)C

´¶0
h

+g0
q

γ
α(σσ0x + bb0α0)B

+g0α(βσmσ
0
mβ

0 + σσ0 + bb0)α0h

+
q

γ
Cαβμm −

q

γ
λ0
³
σσ0 + bb0

´−1³
(σσ0x + bb0α0)B

´
+
q2 − q

γ2
Cβx(μm + σmσ

0
mβ

0
xB)

+
q2 − q

γ2

³
− λ+ (σσ0x + bb0α0)C

´0³
σσ0 + bb0

´−1
(σσ0x + bb0α0)B.

0 = gt +

µ
−αλ+ q

γ
βxσmσ

0
mβ

0
xC

¶0
g + g0

µ
−αλ+ q

γ
βxσmσ

0
mβ

0
xC

¶
+
q

γ

³
− λ+ (σσ0x + bb0α0)C

´0
α0g +

q

γ
g0α
³
− λ+ (σσ0x + bb0α0)C

´
+g0α

³
βσmσ

0
mβ

0 + σσ0 + bb0
´
α0g +

2q

γ
λ0
³
σσ0 + bb0

´−1
λ

− q

γ

³
Cαλ+ λ0α0C

´
+

q2 − q

γ2
C 0βx(σmσ

0
m)β

0
xC

+
q2 − q

γ2

³
− λ+ (σσ0x + bb0α0)C

´0³
σσ0 + bb0

´−1³
− λ+ (σσ0x + bb0α0)C

´
.

The expected portfolio return is given by f(x; 1) and the variance of the portfolio return is given by f(x; 2)−

f2(x; 1). Higher order moments can be derived for other values of q in a similar manner.

A.2 Constrained Strategy

The constrained strategy satisfies κ0φt = 0. Equation (A-2) then becomes

0 = ft + (μx − λxx+ qβxσmσ
0
m(φm + β0φ) + qσxσ

0φ+ qbxb
0φ)0fx +

1

2
Tr
£
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)fxx0

¤
+q(r + (φm + β0φ)0μm − φ0tλx)f +

q2 − q

2
((φm + β0φ)0σmσ

0
m(φm + β0φ) + φ0(σσ0 + bb0)φ)f.

As we have show in the proof of Proposition 6, the optimal value of φm + β0φ is given by

(φm + β0φ) =
1

γ
(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
.

and the optimal value of φ is given by

φ =
1

γ
(σσ0 + bb0)−1

³
I − κ(κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1

´³
− λx+ (σσ0 + bb0)α0(B̌ + Čxt)

´
=

1

γ
(σσ0 + bb0)−1(B1 + C1xt).
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Using the equations for φm + β0φ, φ and λx, βx, σx, and bx, we get

0 = ft + (μx − λxx+ qβxσmσ
0
m(φm + β0φ) + qα(σσ0 + bb0))0fx +

1

2
Tr
£
α(βσmσ

0
mβ

0 + σσ0 + bb0)α0fxx0
¤

+q(r + (φm + β0φ)μm − φ0λx)f +
q2 − q

2

³
σmσ

0
m(φm + β0φ)2 + φ0(σσ0 + bb0)φ

´
f.

Substituting φm and φ into the above equation, we get

0 = ft +

µ
μx − αλx+

qβx
γ

³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
+

q

γ
α(B1 + C1x)

¶0
fx +

1

2
Tr
£
α(βσmσ

0
mβ

0 + σσ0 + bb0)α0fxx0
¤

+

µ
qr +

q

γ
μ0m(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
− q

γ
(B1 + C1x)

0(σσ0 + bb0)−1λx

¶
f

+
q2 − q

2γ2
¡
(μm + σmσ

0
mβ

0
x(B̌ + Čx))0(σmσ

0
m)
−1(μm + σmσ

0
mβ

0
x(B̌ + Čx)) + (B1 + C1xt)

0(σσ0 + bb0)−1(B1 + C1x)
¢
f.

If we conjecture that f̌ = eď(t)+ȟ(t)
0x+ 1

2x
0ǧ(t)x, we can write the ODE for ď, ȟ, and ǧ. We get the following PDE

0 = ďt + ȟ0tx+
1

2
x0ǧtx+

µ
μx − αλx+

qβx
γ

³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
+

q

γ
α(B1 + C1x)

¶0
(ȟ+ ǧx)

+
1

2
Tr
h
α(βσmσ

0
mβ

0 + σσ0 + bb0)α0
³
(ȟ+ ǧx)(ȟ+ ǧx)0 + ǧ

´i
+qr +

q

γ
μ0m(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
− q

γ
(B1 + C1x)

0(σσ0 + bb0)−1λx

+
q2 − q

2γ2

µ³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´0
(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0
x(B̌ + Čx)

´
+ (B1 + C1x)

0(σσ0 + bb0)−1(B1 + C1x)

¶
.

Furthermore, we get the following system of ODEs

0 = ďt +

µ
μx +

qαβ

γ
(μm + σmσ

0
mβ

0α0B̌) +
q

γ
αB1

¶0
ȟ+

1

2
Tr
h
α(βσmσ

0
mβ

0 + σσ0 + bb0)α0
³
ȟȟ0 + g

´i
+qr +

q

γ
μ0m(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0α0B̌
´

+
q2 − q

2γ2

µ³
μm + σmσ

0
mβ

0α0B̌
´0
(σmσ

0
m)
−1
³
μm + σmσ

0
mβ

0α0B̌
´
+B0

1(σσ
0 + bb0)−1B1

¶
;

0 = ȟt +

µ
−λ0α0 + q

γ
σmσ

0
mČ

0αββ0α0 +
q

γ
C01α

0
¶
ȟ+ ǧ0

µ
μx +

q

γ
βx(μm + σmσ

0
mβ

0
xB̌) +

q

γ
αB1

¶
+ǧ0α(βσmσ

0
mβ

0 + σσ0 + bb0)α0ȟ

+
q

γ
Č 0αβμm −

q

γ
λ0(σσ0 + bb0)−1B1 +

q2 − q

γ2

³
Čαβ(μm + σmσ

0
mβ

0α0B̌) + C 01(σσ
0 + bb0)−1B1

´
;

0 = ǧt +

µ
−αλ+ q

γ
βxσmσ

0
mβ

0
xČ +

q

γ
αC1

¶0
ǧ + ǧ0

µ
−αλ+ q

γ
βxσmσ

0
mβ

0
xČ +

q

γ
αC1

¶
+ǧ0α(βσmσ

0
mβ

0 + σσ0 + bb0)α0ǧ

− q

γ
(C01(σσ

0 + bb0)−1λ+ λ0(σσ0 + bb0)−1C1) +
q2 − q

γ2

³
Čαβ(σmσ

0
m)β

0α0Č + C 01(σσ
0 + bb0)−1C1

´
.

The expected portfolio return is given by f̌(x; 1) and the variance of the portfolio return is given by f̌(x; 2) −

f̌2(x; 1). Again generalizations to higher order moments are straightforward.
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B Proof of Proposition 5

We use the dynamic programming principle to solve the optimization problem in Proposition 5. To this end we
define the value function J(xt,Wt, t)

J(xt,Wt, t) =
1

1− γ
Et

h
W ∗1−γT

i
,

where W ∗T is the wealth at time T associated with the optimal investment strategy. The dynamic programming
principle implies that the value function J satisfies the multivariate HJB equation

0 = max Jt + (μx − λxx)
0Jx +

1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)Jxx0

´
+
³
r + φ0mμm + φ0(βμm − λx)

´
WJW

+
³
βxσmσ

0
m(φm + β0φ) + σxσ

0φ+ αbb0φ
´0
WJxW

+
1

2

³
(φ0m + φ0β)σmσ

0
m(φm + β0φ) + φ0σσ0φ+ φ0bb0φ

´
W 2JWW .

We conjecture that
J(x,W, t) =

1

1− γ
W 1−γeA(t)+B(t)

0x+ 1
2x

0C(t)x,

where A(t), B(t), and C(t) are a scalar function, an h×1 vector function, and an h×h symmetric matrix function

of time t, respectively.
Substituting this into the HJB equation, we obtain the following expression

0 = max At +B0
tx+

1

2
x0Ctx+ (μx − λxx)

0(B + Cx)

+
1

2
Tr
³
βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)((B + Cx)(B + Cx)0 + C)

´
+
³
r + φ0mμm + φ0(βμm − λx))

´
(1− γ)

+
³
βxσmσ

0
m(φm + β0φ) + σxσ

0φ+ αbb0φ
´0
(B + Cx)(1− γ)

+
1

2

³
(φ0m + φ0β)σmσ

0
m(φm + β0φ) + φ0σσ0φ+ φ0bb0φ

´
(−γ)(1− γ). (B-3)

The first order conditions for the optimal values of φm + β0φ and φ are

μm + σmσ
0
mβ

0
x(B + Cx)− σmσ

0
mγ(φm + β0φ) = 0;

−λx+
³
σσ0x + bb0α0

´
(B + Cx)−

³
σσ0 + bb0

´
φγ = 0.

These form a system of linear equations in φm and φ that can be solved to get

φ∗m =
1

γ
(σmσ

0
m)
−1μm +

β0x(B + Cx)

γ
− β0φ∗,

φ∗ =
1

γ

³
σσ0 + bb0

´−1³
− λx+

³
σσ0x + bb0α0

´
(B + Cx)

´
.

The optimal portfolio weights given in the proposition are obtained from this using that xt = α lnPt. Substituting
the optimal portfolio weights into equation (B-3), we have

0 = At +B0
tx+

1

2
x0Ctx+ (μx − λxx)

0(B + Cx)

+
1

2
Tr
³
βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)((B + Cx)(B + Cx)0 + C)

´
+(1− γ)r +

(1− γ)

2γ

¡
μm + σmσ

0
mβ

0
x(B + Cx)

¢0
(σmσ

0
m)
−1 ¡μm + σmσ

0
mβ

0
x(B + Cx)

¢
+
(1− γ)

2γ

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´0
(σσ0 + bb0)−1

³
− λx+ (σσ0x + bb0α0)(B + Cx)

´
.
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This is a quadratic equation in x which must hold for all values of x. Thus, the coefficients of all powers of x
should be zero, which leads to the following system of ODEs

0 = At + μ0xB +
1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)(BB

0 + C)
´

+(1− γ)r +
(1− γ)

2γ

¡
μm + σmσ

0
mβ

0
xB
¢0
(σmσ

0
m)
−1 ¡μm + σmσ

0
mβ

0
xB
¢

+
(1− γ)

2γ
B0(σσ0x + bb0α0)0(σσ0 + bb0)−1(σσ0x + bb0α0)B;

0 = Bt + Cμx − λ0xB + C(βxσmσ
0
mβ

0
x + σxσ

0
x + bxb

0
x)B

+
(1− γ)

γ
Cβx

¡
μm + σmσ

0
mβ

0
xB
¢

+
(1− γ)

γ

³
− λ+ (σσ0x + bb0α0)C

´0³
σσ0 + bb0

´−1
(σσ0x + bb0α0)B;

0 = Ct − (λ0xC + Cλx) + C
³
βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x

´
C

+
(1− γ)

γ
Cβxσmσ

0
mβ

0
xC

+
(1− γ)

γ

³
− λ+ (σσ0x + bb0α0)C

´0³
σσ0 + bb0

´−1³
− λ+ (σσ0x + bb0α0)C

´
.

The boundary conditions in this case are A(T ) = B(T ) = C(T ) = 0.

C Proof of Proposition 6

For the constrained strategy we have κ0φt = 0. Market neutral strategies arise as a special case when κ = β. The
HJB equation then reduces to

0 = max Jt + (μx − λxx)
0Jx +

1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)Jxx0

´
+
³
r + (φm + β0φ)0μm − φ0λx

´
WJW

+
³
βxσmσ

0
m(φm + β0φ) + σxσ

0φ+ αbb0φ
´0
WJxW

+
1

2

³
(φm + β0φ)0σmσ

0
m(φm + β0φ) + φ0σσ0φ+ φ0bb0φ

´
W 2JWW − φ0κL,

where L is the Lagrangian multiplier for the constraint. We again conjecture that

J(x,W, t) =
1

1− γ
W 1−γeǍ(t)+B̌(t)

0x+ 1
2x

0Č(t)x,

where Ǎ(t), B̌(t), and Č(t) are a scalar function, an h× 1 dimensional vector function, and an h× h dimensional
symmetric matrix function of time t, respectively. Substituting this conjecture into the HJB equation, we get

0 = max Ǎt + B̌0
tx+

1

2
x0Čtx+ (μx − λxx)

0(B̌ + Čx)

+
1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)(Č + (B̌ + Čx)(B̌ + Čx)0)

´
+
³
r + (φm + β0φ)0μm − φ0λx

´
(1− γ)

+
³
βxσmσ

0
m(φm + β0φ) + σxσ

0φ+ αbb0φ
´0
(1− γ)(B̌ + Čx)

+
1

2

³
(φm + β0φ)0σmσ

0
m(φm + β0φ) + φ0σσ0φ+ φ0bb0φ

´
(−γ)(1− γ)− φ0κL. (C-4)
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The first order conditions for the optimal φm + β0φ and φ are

μm + σmσ
0
mβ

0
x(B̌ + Čx)− γσmσ

0
m(φm + β0φ) = 0;

−λx+
³
σσ0xφ+ bb0α0

´
(B̌ + Čx)− γ(σσ0 + bb0)φ− κL = 0.

Thus, thee optimal φm + β0φ is given by

(φm + β0φ) =
1

γ
(σmσ

0
m)
−1(μm + σmσ

0
mβ

0
x(B̌ + Čx))

while the optimal φ is

φ =
1

γ
(σσ0 + bb0)−1

³
− λx+ (σσ0 + bb0)α0(B̌ + Čx)− κL

´
,

where L is the Lagrangian multiplier for the constraint κ0φt = 0. Using the constraint

0 = κ0(σσ0 + bb0)−1
³
− λx+ (σxσ

0 + αbb0)0(B̌ + Čx)− κL
´
,

the Lagrangian multiplier can be obtained as

L = (κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1
³
− λx+ (σxσ

0 + αbb0)0(B̌ + Čx)
´
.

The optimal constrained portfolio weight φ is

φ =
1

γ
(σσ0 + bb0)−1

³
I − κ(κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1

´³
− λx+ (σσ0 + bb0)α0(B̌ + Čx)

´
=

1

γ
(σσ0 + bb0)−1(B1 + C1x),

where the last equality defines B1 and C1:

B1 =
³
I − κ(κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1

´
(σσ0 + bb0)α0B̌;

C1 =
³
I − κ(κ0(σσ0 + bb0)−1κ)−1κ0(σσ0 + bb0)−1

´³
− λ+ (σσ0 + bb0)α0Č

´
.

Substituting the optimal portfolio weight back in equation (C-4), we get

0 = Ǎt + B̌0
tx+

1

2
x0Čtx+ (μx − λxx)

0(B̌ + Čx)

+
1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)(Č + (B̌ + Čx)(B̌ + Čx)0)

´
+ r(1− γ)

+
1− γ

2γ

³
(μm + σmσ

0
mβ

0
x(B̌ + Čx))0(σmσ

0
m)
−1(μm + σmσ

0
mβ

0
x(B̌ + Čx)) + (B1 + C1x)

0(σσ0 + bb0)−1(B1 + C1x)
´
.

Comparing the coefficient of various powers of x, we get the following system of ODEs:

0 = Ǎt + μ0xB̌ +
1

2
Tr
³
(βxσmσ

0
mβ

0
x + σxσ

0
x + bxb

0
x)(Č + B̌B̌0)

´
+ r(1− γ)

+
1− γ

2γ

³
(μm + σmσ

0
mβ

0
xB̌)

0(σmσ
0
m)
−1(μm + σmσ

0
mβ

0
xB̌) +B0

1(σσ
0 + bb0)−1B1

´
;

0 = B̌t + Čμx − λ0xB̌ + Č(βxσmσ
0
mβ

0
x + σxσ

0
x + bxb

0
x)B̌

+
1− γ

γ

³
Čβx(μm + σmσ

0
mβ

0
xB̌) + C1(σσ

0 + bb0)−1B1
´
;

0 = Čt − (λ0xČ + Čλx) + Č(βxσmσ
0
mβ

0
x + σxσ

0
x + bxb

0
x)Č

+
1− γ

γ

³
Čβx(σmσ

0
m)
−1β0xČ + C1(σσ

0 + bb0)−1C1
´
.
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Figure 1: Optimal portfolio weights under symmetric mispricing. The computations assume
the following parameter values: Volatility of common idiosyncratic risk: σ1 = σ2 = 20%.
Volatility of independent idiosyncratic risk: b1 = b2 = 20%; Sensitivity to error correction
term: λ1 = λ2 = 1. Size of mispricing: xt = 10%. Coefficient of risk aversion, γ = 4.
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Figure 2: Ratio of optimal portfolio weights under asymmetric mispricing. The computations
assume the following parameter values: Volatility of common idiosyncratic risk: σ1 = σ2 =
20%. Volatility of independent idiosyncratic risk: b1 = 10%, b2 = 20%; Sensitivity to error
correction term: λ1 = λ2 = 1. Size of mispricing: xt = 20%. Coefficient of risk aversion,
γ = 4.
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Figure 3: Optimal portfolio weights under mispricing only in asset 1. The lower line tracks the
(short) investment in asset 1, while the upper line tracks holdings in asset 2. The computations
assume the following parameter values: Volatility of common idiosyncratic risk: σ1 = σ2 =
20%.Volatility of independent idiosyncratic risk: b1 = b2 = 20%; Sensitivity to error correction
term: λ1 = 1, λ2 = 0. Size of mispricing: xt = 20%. Coefficient of risk aversion, γ = 4.
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Utility cost of spread strategy under mispricing only in asset 1

Figure 4: Utility cost of using market neutral spread strategy under mispricing in asset 1. The
computations assume the following parameter values: Volatility of common idiosyncratic risk:
σ1 = σ2 = 20%. Volatility of independent idiosyncratic risk: b1 = b2 = 20%; Sensitivity to
error correction term: λ1 = 1, λ2 = 0. Size of mispricing: xt = 20%. Coefficient of risk
aversion, γ = 4.
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Table 1: Effect of changes in the state variable, x, on optimal portfolio holdings

A: Symmetric case (λ1 = λ2 = 1)
Asset 1 Asset 2

Horizon, x -0.2 -0.15 -0.1 -0.05 -0.2 -0.15 -0.1 -0.05

0 1.25 0.94 0.63 0.31 -1.25 -0.94 -0.63 -0.31

0.1 1.43 1.07 0.71 0.36 -1.43 -1.07 -0.71 -0.36

0.2 1.59 1.19 0.79 0.40 -1.59 -1.19 -0.79 -0.40

0.3 1.73 1.30 0.86 0.43 -1.73 -1.30 -0.86 -0.43

0.4 1.85 1.39 0.92 0.46 -1.85 -1.39 -0.92 -0.46

0.5 1.95 1.47 0.98 0.49 -1.95 -1.47 -0.98 -0.49

0.6 2.04 1.53 1.02 0.51 -2.04 -1.53 -1.02 -0.51

0.7 2.12 1.59 1.06 0.53 -2.12 -1.59 -1.06 -0.53

0.8 2.18 1.64 1.09 0.55 -2.18 -1.64 -1.09 -0.55

0.9 2.24 1.68 1.12 0.56 -2.24 -1.68 -1.12 -0.56

1 2.28 1.71 1.14 0.57 -2.28 -1.71 -1.14 -0.57

B: Asymmetric case: mispricing in asset 1 only (λ1 = 1, λ2 = 0)
Asset 1 Asset 2

Horizon, x -0.2 -0.15 -0.1 -0.05 -0.2 -0.15 -0.1 -0.05

0 0.83 0.63 0.42 0.21 -0.42 -0.31 -0.21 -0.10

0.1 0.89 0.67 0.45 0.22 -0.48 -0.36 -0.24 -0.12

0.2 0.95 0.71 0.48 0.24 -0.54 -0.40 -0.27 -0.13

0.3 1.01 0.75 0.50 0.25 -0.59 -0.44 -0.29 -0.15

0.4 1.06 0.79 0.53 0.26 -0.64 -0.48 -0.32 -0.16

0.5 1.10 0.83 0.55 0.28 -0.69 -0.52 -0.34 -0.17

0.6 1.15 0.86 0.57 0.29 -0.73 -0.55 -0.37 -0.18

0.7 1.19 0.89 0.60 0.30 -0.77 -0.58 -0.39 -0.19

0.8 1.23 0.92 0.61 0.31 -0.81 -0.61 -0.41 -0.20

0.9 1.26 0.95 0.63 0.32 -0.85 -0.64 -0.42 -0.21

1 1.30 0.97 0.65 0.32 -0.88 -0.66 -0.44 -0.22

Note: This table shows the optimal holdings in two risky assets for different time horizons

(T-t) and different values of the state variable, x, that captures mispricing in the model:
dPmt
Pmt

= (r + µm)dt+ σmdBt
dP1t
P1t

= (r + β1µm)dt+ β1σmdBt + σ1dZt + b1dZ1t − λ1xtdt
dP2t
P2t

= (r + β2µm)dt+ β2σmdBt + σ2dZt + b2dZ2t + λ2xtdt,

where we assume the following parameter values: β1 = β2 = 1, σ1 = σ2 = 0.2, α = 1,

b1 = b2 = 0.2, µm = 0.06, r = 0.03, σm = 0.15.

The coefficient of relative risk aversion is set at γ = 4.

38



Table 2: Effect of differences in risk parameters on the ratio of optimal portfolio holdings (−φ1/φ2)

λ2 (λ1 = 1): b2 (b1 = 0.2): σ2 (σ1 = 0.2):

Horizon 0 0.5 1.5 2 0 0.1 0.3 0.4 0.05 0.1 0.15 0.25

0 2.00 1.25 0.88 0.80 0.67 0.75 1.42 2.00 0.58 0.70 0.84 1.17

0.1 1.87 1.22 0.89 0.83 0.70 0.78 1.35 1.82 0.63 0.73 0.86 1.15

0.2 1.78 1.20 0.90 0.85 0.73 0.80 1.31 1.70 0.66 0.76 0.87 1.13

0.3 1.71 1.19 0.91 0.87 0.75 0.81 1.28 1.62 0.68 0.77 0.88 1.12

0.4 1.65 1.17 0.92 0.87 0.76 0.82 1.26 1.56 0.69 0.78 0.89 1.11

0.5 1.61 1.16 0.92 0.88 0.77 0.83 1.24 1.51 0.71 0.79 0.89 1.11

0.6 1.57 1.16 0.93 0.88 0.78 0.84 1.23 1.48 0.72 0.80 0.90 1.10

0.7 1.54 1.15 0.93 0.89 0.78 0.84 1.22 1.45 0.72 0.81 0.90 1.10

0.8 1.51 1.14 0.93 0.89 0.79 0.84 1.21 1.43 0.73 0.81 0.90 1.09

0.9 1.49 1.14 0.93 0.89 0.79 0.85 1.20 1.41 0.73 0.82 0.91 1.09

1 1.47 1.14 0.93 0.89 0.79 0.85 1.20 1.39 0.74 0.82 0.91 1.09

Note: This table shows the effect that differences in the parameters of two risky asset prices has on the ratio

of the optimal portfolio holdings, −φ1/φ2. The following model is assumed:
dPmt
Pmt

= (r + µm)dt+ σmdBt
dP1t
P1t

= (r + β1µm)dt+ β1σmdBt + σ1dZt + b1dZ1t − λ1xtdt
dP2t
P2t

= (r + β2µm)dt+ β2σmdBt + σ2dZt + b2dZ2t + λ2xtdt

where the parameter values are set at x = 0.1, β1 = β2 = 1, σ1 = σ2 = 0.2, α = 1,

b1 = b2 = 0.2, λ1 = λ2 = 1, µm = 0.06, r = 0.03, σm = 0.15.

The coefficient of relative risk aversion is set at γ = 4.
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Table 3. Wealth gains for the optimal versus the constrained strategy

Horizon, x 0 0.05 0.1 0.15 0.2

0.1 0.02 0.04 0.11 0.22 0.38

0.2 0.09 0.13 0.25 0.46 0.75

0.3 0.19 0.24 0.41 0.70 1.11

0.4 0.32 0.38 0.59 0.95 1.45

0.5 0.48 0.55 0.79 1.20 1.78

0.6 0.65 0.73 1.00 1.45 2.09

0.7 0.85 0.93 1.21 1.70 2.39

0.8 1.06 1.14 1.44 1.95 2.68

0.9 1.28 1.36 1.67 2.20 2.95

1 1.50 1.59 1.90 2.44 3.22

Note: This table shows how the wealth gains (measured in

percentage terms) depend on the size of the mispricing

component (x) and the length of the investment horizon (T).

The following model is assumed:
dPmt
Pmt

= (r + µm)dt+ σmdBt
dP1t
P1t

= (r + β1µm)dt+ β1σmdBt + σ1dZt + b1dZ1t − λ1xtdt
dP2t
P2t

= (r + β2µm)dt+ β2σmdBt + σ2dZt + b2dZ2t + λ2xtdt

where β1 = β2 = 1, σ1 = σ2 = 0.2, α = 1, b1 = b2 = 0.2,

λ1 = 2, λ2 = 0, µm = 0.06, r = 0.03, σm = 0.15.

The coefficient of relative risk aversion is set at γ = 4.
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Table 4: Moments of returns for the optimal unconstrained and market neutral strategies

A. Mean returns

optimal weights constrained weights

horizon, x 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

0.1 0.012 0.0165 0.0307 0.0547 0.0895 0.0115 0.0157 0.0286 0.0506 0.0821

0.2 0.0323 0.0401 0.065 0.1083 0.172 0.0307 0.0379 0.0606 0.0999 0.1575

0.3 0.0593 0.0696 0.1032 0.1623 0.2509 0.056 0.0653 0.0959 0.1495 0.2293

0.4 0.0919 0.1042 0.1451 0.2178 0.3283 0.0863 0.0975 0.1346 0.2003 0.2995

0.5 0.1296 0.1434 0.1906 0.2755 0.4057 0.1212 0.1337 0.1766 0.253 0.3696

0.6 0.1718 0.1869 0.2399 0.3357 0.484 0.1602 0.1739 0.2218 0.308 0.4404

0.7 0.2183 0.2346 0.2928 0.3989 0.5641 0.203 0.2177 0.2702 0.3654 0.5126

0.8 0.2689 0.2862 0.3494 0.4651 0.6465 0.2495 0.2651 0.3219 0.4256 0.5867

0.9 0.3236 0.3418 0.4097 0.5348 0.7317 0.2995 0.316 0.3769 0.4887 0.6631

1 0.3822 0.4013 0.4738 0.608 0.82 0.3531 0.3702 0.4352 0.5548 0.7422

B. Standard deviation

horizon, x optimal weights constrained weights

0.1 0.045 0.0535 0.0745 0.1019 0.134 0.044 0.052 0.0716 0.0974 0.1274

0.2 0.0724 0.08 0.1013 0.1326 0.1729 0.0703 0.0774 0.0971 0.126 0.1631

0.3 0.0953 0.102 0.1221 0.1543 0.1986 0.0921 0.0982 0.1166 0.1458 0.1859

0.4 0.1157 0.1218 0.1411 0.1734 0.2204 0.1113 0.1168 0.1341 0.1631 0.2047

0.5 0.1349 0.1406 0.1595 0.1922 0.2414 0.1291 0.1342 0.1509 0.1798 0.2227

0.6 0.1535 0.1591 0.178 0.2116 0.2631 0.1463 0.1512 0.1678 0.197 0.2414

0.7 0.1721 0.1777 0.197 0.2318 0.2861 0.1632 0.1682 0.1849 0.2149 0.2612

0.8 0.191 0.1968 0.2168 0.2532 0.3107 0.1804 0.1854 0.2027 0.2338 0.2824

0.9 0.2105 0.2165 0.2375 0.2759 0.337 0.1979 0.2032 0.2211 0.2538 0.3051

1 0.2309 0.2371 0.2592 0.2999 0.365 0.2161 0.2216 0.2404 0.2748 0.3292

C. Sharpe ratio

horizon, x optimal weights constrained weights

0.1 0.1993 0.2529 0.3715 0.5079 0.6454 0.1942 0.2447 0.3577 0.4885 0.6211

0.2 0.3628 0.4264 0.5829 0.7713 0.9599 0.3512 0.4118 0.5621 0.7445 0.9289

0.3 0.5273 0.5939 0.7709 0.9933 1.2174 0.5095 0.5736 0.7451 0.9629 1.185

0.4 0.6901 0.7563 0.9429 1.1863 1.435 0.6672 0.7313 0.9137 1.1546 1.4046

0.5 0.8487 0.9123 1.1008 1.3544 1.618 0.8217 0.8839 1.0697 1.3233 1.5917

0.6 1.001 1.0607 1.2457 1.501 1.7707 0.9711 1.0299 1.2138 1.4715 1.7493

0.7 1.1454 1.2004 1.3783 1.6289 1.8973 1.1138 1.1684 1.3466 1.6018 1.8812

0.8 1.2809 1.331 1.4995 1.7408 2.0024 1.2487 1.2987 1.4688 1.7165 1.9914

0.9 1.4071 1.4521 1.6099 1.8391 2.0899 1.3752 1.4204 1.5809 1.818 2.0838

1 1.5237 1.5638 1.7103 1.9257 2.1633 1.493 1.5334 1.6836 1.9081 2.1619

D. Skew

horizon, x optimal weights constrained weights

0.1 -0.7518 -0.9975 -0.9776 -0.7432 -0.5037 -0.7448 -1.0165 -1.032 -0.8083 -0.5694

0.2 -0.8819 -0.9967 -1.035 -0.8828 -0.668 -0.9046 -1.0401 -1.1148 -0.9819 -0.7721

0.3 -0.8624 -0.9228 -0.9711 -0.8901 -0.7286 -0.9074 -0.9832 -1.0661 -1.0115 -0.8623

0.4 -0.8053 -0.8372 -0.8753 -0.8336 -0.7191 -0.8661 -0.9094 -0.9782 -0.9664 -0.8711

0.5 -0.7356 -0.7515 -0.7756 -0.751 -0.6688 -0.8076 -0.8316 -0.8818 -0.8872 -0.8284

0.6 -0.6628 -0.6692 -0.681 -0.6616 -0.5987 -0.7426 -0.7547 -0.788 -0.7962 -0.7581

0.7 -0.5911 -0.5919 -0.5942 -0.5748 -0.5223 -0.676 -0.6807 -0.7005 -0.7054 -0.6771

0.8 -0.5223 -0.5197 -0.5155 -0.4943 -0.4473 -0.6105 -0.6106 -0.6205 -0.6204 -0.5958

0.9 -0.4573 -0.4528 -0.4442 -0.4212 -0.3771 -0.5474 -0.5447 -0.5477 -0.5429 -0.5191

1 -0.3962 -0.3907 -0.3795 -0.3553 -0.3132 -0.4874 -0.4832 -0.4816 -0.4731 -0.4492

E. Kurtosis

horizon, x optimal weights constrained weights

0.1 5.6766 5.5865 4.4976 3.5684 3.0598 5.5538 5.623 4.6241 3.6657 3.1146

0.2 5.4941 5.4816 4.8592 3.9674 3.299 5.5555 5.6167 5.0627 4.1428 3.4127

0.3 5.0325 5.0765 4.8178 4.191 3.5641 5.1653 5.2574 5.0664 4.4338 3.7482

0.4 4.7456 4.7566 4.6122 4.1909 3.6822 4.9145 4.9588 4.8758 4.4682 3.9174

0.5 4.4983 4.4865 4.3818 4.0905 3.6989 4.6844 4.6954 4.6419 4.3745 3.9588

0.6 4.2833 4.2588 4.168 3.9528 3.6525 4.475 4.4653 4.414 4.2243 3.9125

0.7 4.0982 4.0674 3.9823 3.8117 3.5761 4.2875 4.2656 4.209 4.06 3.8191

0.8 3.9399 3.9068 3.8257 3.6828 3.492 4.1215 4.0929 4.0311 3.9037 3.709

0.9 3.8054 3.7723 3.6957 3.5717 3.4126 3.9759 3.9442 3.8794 3.7648 3.6006

1 3.6915 3.6599 3.5886 3.4793 3.3438 3.8489 3.8166 3.7515 3.6461 3.5032

Note: This table shows the mean, standard deviation, Sharpe ratio, skew and kurtosis of portfolio returns for the optimal and

the constrained (fixed relative weights) portfolios as a function of the mispricing component (x) and the investment horizon (T).

The model assumed in the calculations is given in equations (1)-(3).

The table assumes the following parameter values: β1 = β2 = 1, σ1 = σ2 = 0.2, α = 1, b1 = b2 = 0.2, λ1 = 2,

λ2 = 0, µm = 0.06, r = 0.03, σm = 0.15, γ = 4. 41




