Optimal Demand for Medical and Long-Term Care
Johannes Schünemann, Holger Strulik and Timo Trimborn
Optimal Demand for Medical and Long-Term Care

Johannes Schünemann, Holger Strulik and Timo Trimborn

May 2021.

Abstract. For the population over 65, long-term care (LTC) expenditure constitutes a considerable share in health care expenditures. In this paper, we decompose health care into medical care, intended to improve one’s state of health, and personal care required for daily routine. Personal care can be either carried out autonomously or by a third party. In the course of aging, autonomous personal care is gradually substituted by LTC. We set up a life-cycle model in which individuals are subject to physiological aging, calibrate it with data from gerontology, and analyze the interplay between medical care and LTC. In comparative dynamic analyses, our theory-based approach allows us to causally investigate the impact of better health and rising life expectancy, triggered by higher income and better medical technology, on the expected expenditures for LTC in the future. We predict a 1.75-percentage increase in expected LTC expenditure per percentage increase in life expectancy. In terms of present value at age 20, this elasticity declines to around 1 percent. Even when considering different magnitudes of shocks in medical technology and income, we find that these elasticities remain remarkably stable.

Keywords: Health, Long-Term Care, Health Behavior, Life Expectancy

JEL: D11, D91, I12, J11

We would like to thank Gustav Feichtinger, Michael Kuhn, Yuliya Kulikova, and Klaus Prettner for helpful comments and suggestions. Financial support of the Swiss National Fund (SNF) and Deutsche Forschungsgemeinschaft (DFG) which co-finance the project "The Socioeconomic Health Gradient and Rising Old-Age Inequality" (grant no. 100018L_15009) is gratefully acknowledged.

† University of Fribourg, Department of Economics, Bd. de Perolles 90, 1700 Fribourg, Switzerland; email: johannes.schuenemann@unifr.ch
‡ University of Goettingen, Department of Economics, Platz der Goettinger Sieben 3, 37073 Goettingen, Germany; email: holger.strulik@wiwi.uni-goettingen.de.
§ Aarhus University, Department of Economics and Business Economics, Fuglesangs Allé 4, 8210 Aarhus V, Denmark; email: tt@econ.au.dk.
1. Introduction

The evolution of health care expenditure has attracted much attention in the economic literature over the past decades. Rapid population aging, predominantly caused by income growth and medical progress, has raised concerns about the future cost burden for the health care system (e.g. Hall and Jones, 2007; Di Matteo, 2005; see Chernew and Newhouse, 2011, for a review). Since the elderly spend most on health care, expenditure for care in old age plays an important role in this discussion. In this paper, we set up a life-cycle model that captures the intricate relationship between medical expenditure and long-term care (LTC) expenditure and use the model to analyze the effects of higher income and better medical technology on health, frailty, mortality, and the lifetime patterns of health care expenditure.

When analyzing the (future) evolution of health care expenditure, it is worth noting that LTC expenditure constitutes a considerable share in health care expenditure, especially in old age. Looking at recent decades, LTC spending on average comes into the picture around age 65 and manifests itself as the dominating health expenditure type around age 90 (De Nardi et al., 2016). In fact, De Nardi et al. (2016) find that increasing health spending in the course of aging of the population over 80 is almost entirely driven by the increase in LTC spending. Other categories of health expenditures like outpatient and inpatient care, professional services, or pharmaceutical expenditure stagnate around age 80 and even slightly decrease at later ages. We pool these latter categories of health care expenditure and call it medical care such that the sum of (formal) LTC and medical care expenditure constitutes health care expenditure.

Acknowledging the importance of informal LTC provided by the family, we will focus on formal LTC as provided under an employment contract either at home or an institution like nursing homes. This allows us to measure the direct cost of LTC for the health care system.

Apart from the different expenditure patterns, distinguishing medical care from LTC is important because the two expenditure types also affect health behavior and outcomes in different ways. Medical care spending intends to cure and prevent health deficits which in turn improves the state of health and increases the life expectancy of the individual. LTC, on the other hand, assists the individual with activities of daily living (ADL) like cleaning or moving the body and with instrumental activities of daily living (IADL) like preparing meals. In other words, LTC

1Specifically, we will define LTC in the data as "Nursing Care Facilities and Continuing Care Retirement Communities Spending", "Home Health Care Spending", and "Other Health Residential and Personal Care Spending".
assists with daily routine that is needed to survive, but it is not intended to counteract the accumulation of health deficits in the course of aging. In this paper, we aim to analyze the (future) evolution of health care expenditures by differentiating between medical care and LTC and to quantify the channels through which rising life expectancy affects expenditure patterns of LTC.

To this end, we set up a gerontologically founded life-cycle model of human aging based on Dalgaard and Strulik (2014). Individuals choose consumption and health care optimally over the life course where health care is divided into medical and personal care. Personal care is provided autonomously by the individual and is gradually replaced by LTC in the course of health deficit accumulation. We distinguish between the extensive margin of LTC demand, i.e. whether an individual relies on any kind of LTC or not, and the intensive margin of LTC demand, i.e. the extent to which an LTC recipient relies on LTC. We then calibrate the model such that it fits health behavior, health outcomes, and life expectancy for the average U.S. American in the year 2012. The model calibration allows us to study the interplay between medical care and LTC and its implication for life expectancy. In a comparative dynamic analysis, we then analyze the future evolution of life-cycle LTC expenditure as a consequence of rising life expectancy through higher income and better medical technology.

Studying the effects of better health and higher life expectancy on LTC expenditure is interesting for at least two reasons. First, LTC expenditure accounts for a considerable share in health care expenditure for the population over 65 and is thus quantitatively important. Second, the effect of improving health and life expectancy on LTC expenditure is a priori ambiguous as two counteracting mechanisms are at work. On the one hand, better health enables individuals to carry out personal care autonomously until higher ages, thus reducing the dependency on LTC for given age. This channel, taken for itself, decreases LTC expenditure. On the other hand, higher life expectancy requires LTC on average until higher ages as well, thereby c.p. increasing LTC expenditure. By analyzing various shocks in income and medical technology and their impact on individual health, we examine the quantitative importance of each channel.

If the effects through the two channels balanced each other, our results would be in line with the prominent Red Herring Hypothesis (Zweifel et al., 1999) stating that better health and higher life expectancy do not lead to higher health expenditures per se, but only shift health expenditures to higher ages. We indeed find that the bulk of expected LTC expenditures will be
shifted to higher ages; however, this shift turns out to be not cost-neutral. We find that expected LTC expenditures will increase in the future, implying that the increase in LTC expenditure through higher life expectancy dominates the reduction in LTC expenditure through better health. Specifically, our model implies a 1.75 percentage increase in expected LTC expenditure for each percentage increase in life expectancy. This means that, compared to the predicted evolution of medical care expenditure, the increase in LTC expenditure is rather small. The response of LTC expenditure is less pronounced when we calculate it in terms of present value at the beginning of young adulthood (around 1% for each percentage increase in life expectancy). Since LTC spending is generally delayed to higher ages as a response to higher income and better medical technology, it gets discounted more heavily. Discounting to the present dampens the effect of increasing longevity on expected LTC expenditure. Analyzing various magnitudes of income and technology shocks, we find that the reported elasticities of LTC demand with respect to life expectancy are remarkably robust to the size of the shock.

In the past decades, aggregate LTC expenditure in the U.S. has risen sharply. In fact, De Nardi et al. (2016, Table 2) report that between 1970 and 2013 aggregate LTC expenditure increased at a similar rate as total health care expenditure which is reflected by a constant share of nursing home care expenditure in total health care expenditure. Our model suggests that the effect of higher income and better technology on per capita LTC expenditure as compared to per capita medical care spending is much more moderate since higher medical spending and the resulting better health state dampen the effect of higher life expectancy on LTC spending. Therefore, the co-movement of aggregate medical and LTC expenditure does not originate from an equivalent increase in per-capita medical care and per-capita LTC expenditure following higher income and better technology, but from other reasons outside our model. These reasons may be, among others, the demographic change and thus the aging of the society and the reduction of informal care due to higher dependency ratios, changing family structures, and higher female labor force participation. Acknowledging other important determinants of the evolution of LTC expenditure, we are interested in isolating the behavioral life-cycle response of an individual with respect to medical care and LTC expenditure to a change in income and medical technology.

There exists a vast literature, both theoretical and empirical, which studies the economics of LTC (see Cremer et al. (2012), Norton (2016), and Bannenberg et al. (2019) for comprehensive
surveys). As Bannenberg et al. (2019) point out, however, "there is little (theoretical) understanding of the behavioral mechanisms behind the emergence of LTC needs and means over the individual’s life-cycle”. The survey identifies the missing inclusion of dynamics in economic models of LTC as a shortcoming of the existing literature. We aim to fill this gap by proposing a biologically founded life-cycle model of human aging in which the demand for LTC is determined by preferences, health behavior, and external factors such as income and medical technology.

Several studies provide projections for LTC expenditure in the future (e.g. Spillman and Lubitz, 2000; Comas-Herrera et al., 2006, Karlsson et al., 2006; EC, 2018). These studies typically use projection models to account for demographic change due to population aging and assume different (ad-hoc) scenarios for the evolution of dependency levels by age. We take a different and novel approach by offering a theory-based analysis where the demand for LTC is endogenously determined by the health behavior of the individual. Health behavior, in turn, is affected by the economic environment which may vary in the future. This intricate relationship between medical care and LTC allows us to causally investigate the impact of income and technology on life-cycle LTC. Therefore, we are not only able to quantify the impact that lower mortality and thus higher life expectancy has on LTC spending, but also to take into account the fact that the dependency on LTC endogenously declines for given age with an improving health status.

Our approach is particularly suitable to analyze optimal behavior towards medical care and LTC because aging is conceptualized as a process of health deficit accumulation. The health deficit model based on Dalgaard and Strulik (2014) has its foundation in gerontological research and, building on the frailty index (Mitnitski et al, 2002a,b), which measures in a straightforward way the health state of an individual. Since the frailty index can be easily (and continuously) measured, our model can be easily quantified and calibrated. The alternative paradigm, the Grossman model (1972), offers a less suitable approach since it is based on the accumulation of health capital instead of health deficits. Health capital, however, is a latent variable unknown to doctors or medical scientists, which confounds any serious calibration of the model (see also Hosseini et al. (2019) for a critique). Direct evidence on the association of the frailty index with the risk of institutionalization in nursing homes is provided by Rockwood et al. (2006) and Blodgett et al. (2016). Our model is methodologically related to other studies employing the health deficit model that study the adaptation to a deteriorating state of health (Schünemann...
et al., 2017a), the gender gap in mortality (Schünemann et al., 2017b), optimal aging in partnerships (Schünemann et al., 2020), the anticipation of deteriorating health (Schünemann et al., 2019), the historical evolution of retirement (Dalgaard and Strulik, 2017), the optimal design of social welfare systems (Grossmann and Strulik, 2019), and fetal origins of late-life health and aging (Dalgaard et al., 2021).

The paper is organized as follows. Section 2 presents the basic model of medical care and LTC. In Section 3, we calibrate the model to the health behavior and health outcomes of a reference U.S. American in the year 2012. In Section 4, we analyze the impact of better health and increasing life expectancy through higher income and better medical technology on the evolution of LTC expenditure. Section 5 concludes.

2. The Model

The individual maximizes expected life-time utility

\[V = \int_0^T e^{-\rho t} S(D(t))U(c(t))dt \]

where \(U(c(t)) \) denotes utility from consumption and is given by \(U(c(t)) = (c(t)^{1-\sigma} - 1)/(1 - \sigma) \), with \(\sigma \) being the inverse of the intertemporal elasticity of substitution. The parameter \(\rho \) captures the time preference rate of the individual. The functional form of the utility function implies negative values for \(U(c(t)) \) for \(c(t) < 1 \). For those values our postulated utility function would be problematic because life would be undesirable for the individual. Since we calibrate the model with actual data on wages, however, consumption levels will be far from this threshold. In fact, our calibrated model suggests a value of life of around $9.9 million which is close to empirical estimates of $9.1 million for the year 2012 (which is also the baseline year of our calibration), and well in the range of $5.2 and $12.9 million as identified as the lower and upper bound in Moran and Monje (2013).

The survival probability \(S(\cdot) \) decreases in the number of health deficits \(D(t) \) that the individual has accumulated up to age \(t \). Intuitively, the individual calculates the expected utility stream by multiplying instantaneous utility at age \(t \) with the probability of living beyond that age (see

\[\text{VoL} = \int_0^\tau e^{-\rho \tau} S[D(\tau)]u[c(\tau)]d\tau / u_c[c(0)] \] where \(u_c \) denotes the marginal utility of consumption. We can also think about the utility function as adding a constant in the vein of Hall and Jones (2007) and calibrate this constant to match the empirically reported value of life. Since our benchmark calibration provides a value of life matching empirical estimates for a constant equal to zero, we drop the constant when formulating the utility function.
Our modeling of the survival probability implies that mortality directly depends on the number of accumulated health deficits, as emphasized by biologists (e.g. Arking, 2006), rather than on chronological age.

Besides an optimal consumption plan, the individual chooses optimal health care over the life cycle. With regard to health care, we distinguish between medical care and personal care. Medical care is defined as health investments which intend to cure and prevent health deficits in the course of aging, e.g. doctor visits, hospital stays or drugs. As in Dalgaard and Strulik (2014), we assume that the individual is subject to physiological aging such that health deficits accumulate over time as

\[\dot{D} = \mu(D - Ah^\gamma - a) \]

where \(\mu \) denotes the inherent biological force of aging.\(^3\) The maximum lifespan is associated with a critical deficit level \(\bar{D} \) at which the individual dies with certainty. The accumulation of health deficits can be slowed down by investing in medical care \(h \) where the health technology is captured by the parameters \(A \) (scale) and \(\gamma \) (curvature) with \(0 < \gamma < 1 \). The parameter \(a \) denotes environmental influences that affect the speed of aging but are beyond individual control. Investments in medical care reduce the speed of deficit accumulation, improve the state of health, and increase the survival probability for given age. Therefore, medical care serves to increase the life expectancy of the individual.

Personal care, on the other hand, is needed to survive but does not improve the state of health. It is required to accomplish activities of daily living (ADL) like cleaning or moving the body as well as instrumental activities of daily living (IADL) like preparing meals, but it is not intended to affect the deficit accumulation process and thus life expectancy of the individual. Depending on the number of health deficits, personal care can be provided autonomously at no cost by the individual or by a third party in which case we call it LTC. We distinguish between the extensive margin of LTC demand, i.e. whether an individual requires LTC or not, and the intensive margin of LTC, i.e. to what extent the individual requires LTC if it requires LTC. We capture the extensive margin by introducing the function \(P(D) \) which defines the probability of demanding LTC for given deficit level \(D \) and introduce \(L(D) \) as the intensive margin of LTC demand. Naturally, the ability for autonomous care declines as individuals develop more health

\(^3\)For better readability, we suppress, from now on, the fact that all variables are age \((t)\)-dependent.
deficits such that $P'(D) > 0$ and $L'(D) > 0$. Expected LTC demand can then be written as

$$\text{LTC}(D) = P(D)L(D).$$

While autonomous personal care can be provided at no monetary cost, LTC expenditure enters the budget constraint which reads

$$\dot{k} = w + (r + m)k - c - ph - q \cdot \text{LTC}(D),$$

in which w is earned labor income before retirement and pension income thereafter. Individuals allocate non-financial income w and capital income $(r + m)k$ to savings, consumption c, medical care expenditure ph, and LTC expenditure $q \cdot \text{LTC}(D)$ where p and q denote the respective relative prices. Once individuals reach retirement age R, they receive a pension income τw, where τ denotes the replacement rate. For simplicity, we assume perfect annuity markets such that the effective interest rate is given by the sum of the rate of return on capital r and the instantaneous mortality rate $m = -\dot{S}/S$.

Summarizing, individuals maximize (1) with respect to (2), (3), (4), and the boundary conditions $D(0) = D_0$, $D(T) = \bar{D}$, $k(0) = k_0$, and $k(T) = \bar{k}$. The Hamiltonian associated with this maximization problem is given by

$$H = S(D)U(c) + \lambda_D(D - Ah\gamma - a) + \lambda_k (w + (r + m)k - c - ph - q \cdot \text{LTC}(D))$$

where λ_D and λ_k denote the shadow prices of deficits and capital, respectively. The transversality condition for the optimal control problem is given by $H(T) = 0$. From the first-order conditions, we can derive the well known Euler equation for optimal consumption growth over the life cycle:

$$\frac{\dot{c}}{c} = \frac{r - \rho}{\sigma}.$$

Whether consumption rises or falls depends only on the relative size of the rate of return on capital r and the time preference rate ρ while the (inverse of the) intertemporal elasticity of substitution σ captures the degree of consumption smoothing. The optimal growth of medical care over time is given by

4 One could argue that personal care provides utility directly. Alternatively, it could be argued that relying on LTC provides disutility through the implied loss of autonomy. In order to flesh out the core mechanisms of the model, we keep it as simple as possible and neglect a direct impact of LTC through preferences.

5 In fact, Davidoff et al. (2005) show that it is optimal for the household to fully annuitize the assets even if the annuity premium is actuarially not fair.
\[\frac{\dot{h}}{h} = (r + m) - \mu + \frac{1}{\lambda} \left[\lambda_k q(P'(D)L(D) + P(D)L'(D)) - S'(D)U(c) \right] 1 - \gamma. \] \tag{7}

The first determinant of medical care expenditure growth is given by the relative size of the effective interest rate \(r + m \) and the force of aging \(\mu \). Intuitively, if the benefit of delaying medical care \(r + m \) is greater than the resulting harm of deficit accumulation \(\mu \), individuals substitute present for future medical care and expenditure growth increases. The third term of Equation (7) unambiguously affects expenditure growth negatively. To see this, note that deficits are a "bad" rather than a "good" so that the associated shadow price \(\lambda_D \) is negative. Further, \(P'(D) > 0, L'(D) > 0 \) and \(S'(D) < 0 \) follow by assumption. The economic explanation for this observation is twofold. First, the state of health enters life-time utility through the survival probability \(S(D) \), implying that less health deficits increase expected instantaneous utility at any age. This induces individuals to shift medical care to earlier life stages in order to lead an overall healthier life (the effect of \(S'(D) \)). The second effect sets in through LTC demand. Individuals tend to substitute future for present medical care in order to counteract the rising need for LTC. Finally, the curvature parameter of the health technology \(\gamma \) captures the degree of diminishing returns of health investments and thus affects the willingness to smooth health investments over the life cycle.

Our model is determined by the dynamic system consisting of Equations (2), (4), (6), and (7), together with the mentioned initial and final conditions as well as the transversality condition. Given that LTC depends on the amount of deficits accumulated, medical care directly affects expenditure for LTC. Higher medical spending slows down the accumulation of health deficits, which in turn delays the dependency on LTC and subsequently leads to lower LTC expenditure for any given age. Since the model cannot be solved analytically, we rely on numerical solution techniques to scrutinize the interplay between medical care and LTC.

3. Calibration

We calibrate the model to match health behavior and health outcomes for a reference U.S. American in the year 2012. We begin by explaining our calibration strategy for the survival function. As stated above, biologists emphasize that mortality does not depend directly on chronological age but only implicitly through the accumulated health deficits \(D(t) \) (e.g. Arking, 2006). We measure health deficits by the frailty index, an established metric in gerontology.
In simple words, the index measures the share of deficits that an individual has accumulated from a potential set of health deficits. We take into account the biological understanding of mortality and assume that survival is directly determined by health deficits. As in Schünemann et al. (2017a) we assume that the survival probability is given by

\[S(D) = \frac{1 + \omega}{1 + \omega e^{\xi D}}. \]

Our parametrization of the survival function implies that the survival probability follows a logistic function. It assumes a value of one for the state of best health \(D = 0 \) and approaches zero for high deficit levels (the first panel of Figure 1). Since we lack data on the association between health deficits and survival probability, we proceed as follows to calibrate the parameters of the survival function. First, we use results from the study by Mitnitski et al. (2002a) who estimate a power-law association between the frailty index and age. Since the study estimates this association separately for men and women, we take as the relevant health deficit index the average of the health deficit index of men and women which is weighted according to their respective survival probabilities (the second panel in Figure 1). We then feed this relationship into Equation (8). This allows us to predict the association between age and survival probability which can be confronted with actual data from life tables (the third panel of Figure 1). The parameter values which provide the best fit to the data are given by \(\omega = 0.11 \) and \(\xi = 34 \). The dots in the last panel of Figure 1 indicate the data points from U.S. life tables for the year 2012 (NVSS, 2016), implying that the model predictions are fairly accurate.

As far as the function \(P(D) \) is concerned, we postulate the following function:

\[P(D) = \kappa e^{\epsilon D}. \]

We aim to estimate the parameters such that the probability function matches for given age the share of people in the population that demands any kind of LTC (data for these shares are constructed from CDC (2013, Appendix B Table 4)). To this end, we follow the same methodology as in the case of the survival function. The lower left panel shows the association between deficits and LTC probability, the lower center panel shows the power law association between age and deficits, and the last panel shows the association between LTC probability and age that we can confront with and fit to actual data. The figure shows that for parameter values \(\kappa = 0.028 \) and \(\epsilon = 14.2 \), we are able to match the association between LTC probability and age.
reasonably well. Note that we assume that the probability function is zero before the age of 65. We acknowledge that a very small share of individuals requires LTC already before the age of 65 due to, for example, accidents. Given that we aim to analyze the effect of increasing life expectancy and better health on LTC demand, however, we are only interested in aging-related LTC, which in the data becomes quantitatively relevant at the age of 65. This view of LTC is consistent with the conceptualization of the frailty index, which includes only aging-related health deficits. It is important to note, however, that the demand for LTC does not depend on chronological age but on the level of health deficits.

We capture the intensive margin of LTC demand by per user expenditures on LTC. We assume that per user LTC demand is given by $L(D) = E + BD$. With regard to the initial deficit level, we again rely on the frailty index by Mitnitski et al. (2002a). From their regression analysis, we can back out the average initial deficit level of men and women at age 20, the starting age of our model, which yields $D_0 = 0.0328$. Moreover, we set $\gamma = 0.2$ according to Dalgaard and Strulik (2014) and Schünemann et al. (2017b). From the Consumer Expenditure Survey (BLS, 2014), we calculate average wages and salaries in 2012 of single-person households younger than 65 (the retirement age R) which yields $w = 30324$. According to OECD (2013), we set the
gross replacement rate to $\tau = 0.383$. As far as the interest rate is concerned, we set $r = 0.07$ according to Jorda et al. (2019). In Section 4.3, we check sensitivity to this assumption. In order to confine the savings motive to consumption and health expenditure, we abstract from receiving and leaving bequests and set $k_0 = \bar{k} = 0$. Finally, we normalize the relative prices to $p = q = 1$.

We simultaneously calibrate the seven free parameters σ, ρ, μ, A, a, B, and E to fit the following data moments: i) medical care expenditure at age 30, 50, 70, 90 (MEPS, 2012), ii) per user LTC expenditure at age 75, 93 (CDC (2013) and CMS, 2014)\(^6\), and iii) a life expectancy at 20 of 59.6 years (i.e. death at 79.6) (NVSS, 2016). Finally, we adjust \bar{D} such that the model provides a maximum lifespan of 100 years (according to De Nardi et al., 2016).

The parameter values providing the best model fit are given in Table 1a while Table 1b summarizes the parameters which were determined externally.

Table 1a: Calibration Results

<table>
<thead>
<tr>
<th>σ</th>
<th>ρ</th>
<th>μ</th>
<th>A</th>
<th>a</th>
<th>\bar{D}</th>
<th>B</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.17</td>
<td>0.06</td>
<td>0.033</td>
<td>0.00123</td>
<td>0.011</td>
<td>0.23</td>
<td>75000</td>
<td>18000</td>
</tr>
</tbody>
</table>

Table 1b: Externally Determined Parameters

<table>
<thead>
<tr>
<th>ω</th>
<th>ξ</th>
<th>κ</th>
<th>ϵ</th>
<th>D_0</th>
<th>γ</th>
<th>w</th>
<th>r</th>
<th>p</th>
<th>q</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>34</td>
<td>0.028</td>
<td>14.2</td>
<td>0.0328</td>
<td>0.02</td>
<td>30.324</td>
<td>0.07</td>
<td>1</td>
<td>1</td>
<td>0.383</td>
</tr>
</tbody>
</table>

While some of the parameters are of latent nature and thus cannot be directly compared to the empirical literature, our value for σ is consistent with a study by Chetty (2006) who estimates the "true" values for σ to be close to unity. Our value for the force of aging μ implies that in the absence of any medical expenditure and environmental influences, the individual accumulates 3.3% new deficits from one year to another. This pooled estimate for men and women lies well in between the estimates in Mitnitski et al. (2002a) who report values of 0.031 for women and 0.043 for men. Further, our value for a fits well with the estimate in Dalgaard and Strulik (2014)

\(^6\)LTC services refer to any services provided by professionals to individuals who need assistance with activities of daily living (ADL) and instrumental activities of daily living (IADL). We thus identify the following categories as LTC in the data: "Nursing Care Facilities and Continuing Care Retirement Communities Spending", "Home Health Care Spending", and "Other Health Residential and Personal Care Spending". Since the data on medical spending from MEPS (2012) includes home health spending, we deduct this expenditure type from medical spending to avoid double accounting.
of $a = 0.013$. We solve the model by numerically applying the relaxation method by Trimborn et al. (2008).

Figure 2 shows the predicted life-cycle trajectories for the model variables of interest. The first panel shows medical care spending of the individual over the life course. The model fits the data points, as indicated by the dots, reasonably well. In particular, medical spending is increasing throughout most parts of life and flattens out around age 80. The second panel shows that the model manages to match increasing per user expenditure on LTC in a satisfactory manner. Multiplying per user LTC expenditure (intensive margin) with the probability of demanding LTC (extensive margin), $P(D)$, generates per capita LTC expenditure displayed in the third panel. Again, the model prediction is close to the data points.

Figure 2: Life-Cycle Trajectories: Benchmark Run

Dots indicate data points. Data for medical care spending are from MEPS (2012), data for per user LTC expenditure and per capita LTC expenditure are constructed from CDC (2013) and CMS (2014).

Our model predictions are in line with findings from De Nardi et al. (2016). The authors report that medical care spending for people over 80 starts to stagnate or even slightly decreases
for some ages, implying that increasing health expenditure during these ages is entirely driven by LTC expenditures. Combining the findings of the upper and lower left panel, our model is capable of capturing these disaggregated patterns of health spending. The fourth panel shows that, consistent with the findings of Mitnitski et al. (2002a), deficits accumulate exponentially over the life cycle. Note that although we only take the initial deficit level directly from the Mitnitski et al. study, our model matches the empirically observed health deficit index as indicated by the dots reasonably well.

4. COMPARATIVE DYNAMIC ANALYSIS: THE FUTURE OF LTC EXPENDITURES

With the model at hand, we now perform comparative dynamic experiments to examine the future evolution of life-cycle LTC expenditures. In particular, we are interested in the impact that better health and higher life expectancy have on expected per capita LTC spending. A priori, this effect is ambiguous as two counteracting mechanisms are triggered by an improving health status. On the one hand, through better health individuals start demanding LTC on average at later ages and thus exhibit lower dependency on LTC for given age which leads to a reduction of LTC spending. On the other hand, the resulting higher life expectancy and life span of the individual requires LTC on average until higher ages, thereby increasing expected LTC expenditures. We aim to investigate which of these effects quantitatively dominates by analyzing the impact of higher income and better medical technology.

To this end, we analyze changes in health behavior and health outcomes when the individual faces higher wages or/and better health technology. In particular, we endow the individual with a wage \(w \) in our model) and health technology \(A \) in our model) that would prevail 10 years later as compared to the benchmark run. With respect to the wage rate, we calculate the compound annual growth rate of average wages in the U.S. of the last 20 years from our baseline year (2012) and use this growth rate to predict the wage rate 10 years after our baseline year. This procedure yields an annual growth rate of \(\hat{w} = 1.21\% \) (OECD, 2019) such that the individual wage rate 10 years later from our baseline year amounts to \(w = 30,324 \times 1.01^{10} \). It should be noted that the individual still faces a constant wage rate \(w \) in both the benchmark run and the experiment. For the comparative dynamic analysis, however, the individual experiences a (constant) level of \(w \) that has increased for 10 years by 1.21% from the benchmark run.
With regard to medical technology, we fit the medical technology parameter A such that our model matches the average life expectancy at age 20 in the year 1992 of 56.9 years (VS, 1992), taking into account also the lower income level in that year. This gives a value of approximately $A = 0.00101$ which in turn implies an annual rate of medical progress of $\dot{A} = 1.00\%$. This value fits nicely with the result by Abeliantsky et al. (2020) who – using the frailty index approach – estimate that white American men born between 1904 and 1966 experienced health deficit reducing medical progress at a rate of 1.30 percent per year (with a standard deviation of 0.18 percent). We use this growth rate to calculate the technology parameter 10 years after our baseline year such that it amounts to $A = 0.0123 \times 1.01^{10}$. Again, the individual still faces a constant health technology A in all runs. For the comparative dynamic analysis, however, the individual faces a medical technology that has improved for 10 years by 1.00% from the benchmark run. As a sensitivity check we will also consider smaller and greater changes in income and medical technology.

4.1. **Better Medical Technology.** Figure 3 shows the effect of better medical technology on medical care expenditures (first panel), LTC probability (second panel), per user LTC expenditures (third panel), per capita LTC expenditures (fourth panel), expected per capita LTC expenditures (fifth panel) i.e. per capita LTC expenditures adjusted by the survival rate, and the share of LTC expenditures in total health expenditures (sixth panel). Blue (solid) lines represent the benchmark run from Figure 2. Red (dashed) lines show results for better medical technology.

Due to technological advances in curing and preventing health deficits, the individual spends more on medical care since the marginal return to medical care increases. In other words, the higher productivity of medical treatment triggers a substitution effect towards medical care. Through the combined effect of greater efficacy and higher utilization of medical care, the individual accumulates deficits more slowly and is thus healthier at any given age. This reduces the probability to require LTC for any given age as displayed in the second panel. As can be seen in the third panel of Figure 3, per user expenditures for LTC also decline such that the amount of LTC demand of an LTC recipient declines for any given age. The effect on per capita LTC expenditure is shown in the fourth panel. It combines the probability effect and the per user effect such that per capital LTC expenditure at any age is lower for better medical technology. Thus, the substitution effect, taken for itself, reduces future LTC expenditures.
The fact that people exhibit better health through better medical technology increases survival probabilities at any age and thus increases life expectancy. The calibrated model predicts that life expectancy at 20 increases from 59.6 to 61.0 years due to better medical technology. This in turn increases the average age until people require LTC. This effect, taken for itself, increases expenditure for LTC.
Multiplying per capita LTC expenditure by the survival rate yields for any given age the expected per capita LTC expenditure. The fifth panel of Figure 3 shows the associated trajectories for the three different scenarios. Expected LTC expenditure exhibits an inversely u-shaped profile. The dominating effect on the rising part of the trajectories is that people demand more LTC as they age. After a certain point in the life cycle, this effect is balanced out by declining survival probability. With better medical technology and the associated improvements in health and life expectancy, the peak of expected LTC expenditures moves to higher ages. This finding is qualitatively consistent with the Red Herring Hypothesis stated by Zweifel et al. (1999). The authors argue that increasing life expectancy is neutral for health care costs as age per se does not affect health expenditure once time to death is controlled for. Instead, the bulk of health expenditure is simply shifted to higher age groups in the population as mortality decreases. We see a similar picture when we look at the impact of technological advancement on expected LTC expenditures. As individuals become healthier, the peak of expenditures moves from approximately 81.5 years to around 83.0 years. In contrast to the Red Herring Hypothesis, however, we find that this shift of expenditures is not entirely neutral for expected LTC expenditures.

The upper part of Table 2 summarizes the impact of better medical technology on longevity and expected expenditure. The first column of Table 2 shows the net effect for expected per capita LTC expenditures, i.e. the sum of the expected per capita LTC expenditures over the life cycle. All numbers represent percentage deviations from the benchmark run. The model predicts a 4.16% increase when medical technology is more effective. In other words, our projections suggest that the effect of higher life expectancy on LTC expenditures dominates the effect of lower dependency on LTC for given age.

The second column shows that the relative change in expected medical care expenditure is of considerably greater magnitude, indicating an increase of 14.9%. This implies a change in total health expenditure of 13.0%. As a result, the share of LTC expenditure in total health expenditure decreases by 7.85%. The fifth column shows that life expectancy increases by 2.36% through better medical technology. In the last column, we report the ratio of the relative change in expected LTC expenditure to the relative change in life expectancy. We find that expected LTC expenditure increases by 1.76% for each percentage increase in life expectancy.
Table 2: Evolution of Expenditures

<table>
<thead>
<tr>
<th>case</th>
<th>exp LTC (PV)</th>
<th>exp medical (PV)</th>
<th>exp total (PV)</th>
<th>share LTC (PV)</th>
<th>life expectancy</th>
<th>elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{A} = 0.0100 $</td>
<td>4.16 (2.65)</td>
<td>14.9 (10.2)</td>
<td>13.0 (10.1)</td>
<td>-7.85 (-6.75)</td>
<td>2.36</td>
<td>1.76 (1.12)</td>
</tr>
<tr>
<td>$0.5 \times \hat{A}$</td>
<td>2.02 (1.38)</td>
<td>7.17 (5.03)</td>
<td>6.26 (4.97)</td>
<td>-3.99 (-3.42)</td>
<td>1.13</td>
<td>1.79 (1.22)</td>
</tr>
<tr>
<td>$1.5 \times \hat{A}$</td>
<td>6.47 (3.92)</td>
<td>23.4 (15.5)</td>
<td>20.4 (15.3)</td>
<td>-11.6 (-9.87)</td>
<td>3.70</td>
<td>1.75 (1.06)</td>
</tr>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{w} = 0.0121$</td>
<td>1.13 (0.77)</td>
<td>19.8 (18.5)</td>
<td>16.5 (18.1)</td>
<td>-13.2 (-14.7)</td>
<td>0.63</td>
<td>1.79 (1.22)</td>
</tr>
<tr>
<td>$0.5 \times \hat{w}$</td>
<td>0.54 (0.32)</td>
<td>9.47 (8.87)</td>
<td>7.90 (8.73)</td>
<td>-6.82 (-7.73)</td>
<td>0.31</td>
<td>1.74 (1.03)</td>
</tr>
<tr>
<td>$1.5 \times \hat{w}$</td>
<td>1.67 (1.06)</td>
<td>31.0 (28.8)</td>
<td>25.8 (28.3)</td>
<td>-19.2 (-21.2)</td>
<td>0.95</td>
<td>1.76 (1.12)</td>
</tr>
<tr>
<td>Technology and Income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{A} = 0.0100, \hat{w} = 0.0121$</td>
<td>5.46 (3.40)</td>
<td>37.7 (30.4)</td>
<td>32.1 (29.9)</td>
<td>-20.2 (-20.4)</td>
<td>3.11</td>
<td>1.76 (1.09)</td>
</tr>
<tr>
<td>$0.5 \times \hat{w}, 0.5 \times \hat{A}$</td>
<td>2.59 (1.63)</td>
<td>17.3 (14.3)</td>
<td>14.7 (14.1)</td>
<td>-10.6 (-10.9)</td>
<td>1.47</td>
<td>1.76 (1.11)</td>
</tr>
<tr>
<td>$1.5 \times \hat{w}, 1.5 \times \hat{A}$</td>
<td>8.57 (4.95)</td>
<td>61.9 (48.3)</td>
<td>52.5 (47.5)</td>
<td>-28.8 (-28.9)</td>
<td>4.95</td>
<td>1.73 (1.00)</td>
</tr>
</tbody>
</table>

All values as percentage deviation from the benchmark run in the year 2012. exp LTC, exp medical, and exp total refer to expected LTC expenditure, expected medical care expenditure, and expected total health expenditure, respectively. share LTC refers to the share of LTC expenditure in total health expenditure. PV refers to present value. Elasticity refers to the ratio of the percentage change between expected LTC expenditure and life expectancy.

The values in parentheses in Table 2 show the respective relative change in spending when expenditures are discounted by the effective interest rate $(r + m)$ to the beginning of the individual’s life cycle. As shown, the present value of expected LTC expenditure increases by 2.65%. Therefore, the increase is less pronounced when discounting expected LTC expenditure. The reason for this result can be readily seen in the fifth panel of Figure 3. As expected LTC expenditures are shifted to higher ages, their present value declines. This capital market effect leads to a smaller change in expected expenditures. Specifically, a one-percent increase in life expectancy is associated with a 1.12% increase in the present value of expected LTC expenditure and thus less pronounced as in the previous case. When looking at column 2, the table implies that calculating the present value also reduces the increase in expected medical expenditure to 10.2%. The same explanation as in the case of LTC expenditure also applies here. The first panel of Figure 3 shows that medical expenditure increases relatively more for higher ages through better medical technology, implying that the bulk of the increase in medical care is discounted more heavily. As a consequence, the predicted increase in total health expenditure declines to 10.1%.

In order to illustrate the impact of different changes in medical technology, we conduct a comparative analysis with regard to the growth rate \hat{A}. Specifically, in Table 2 we show the results for both increasing and decreasing the rate of medical progress by 50% which we apply.
for predicting the associated values for the technology parameter. Applying a smaller or greater increase in medical technology can be either interpreted as a change in the rate of medical progress or a change in the time horizon. As can be seen in the table, the effects described above increase in the change of medical technology. In particular, moving from the lowest to the highest rate considered here, the relative increase in expected LTC expenditure rises from 2.02% to 6.47%, while the relative change in life expectancy increases from 1.13% to 3.70%. Interestingly, the ratio between the relative increase in expected LTC expenditure and life expectancy remains remarkably constant at $1.75 - 1.79$ in any case considered. As far as the present value of LTC expenditure is concerned, we find throughout that a 1% increase in life expectancy is associated with a 1.06-1.22% increase in spending. Further, the last panel of Figure 3 shows that the share of LTC expenditure in total health care expenditure decreases with higher medical technology.

4.2. **Higher Income.** Figure 4 shows results for a similar experiment in which we analyze the effect of higher income. The effects are qualitatively similar to those from better medical technology, though somewhat lower in magnitude. As a result to higher income, individuals spend more on medical care. Medical care also rises relative to consumption. The reason is that life-time utility is concave in per-period consumption but linear in longevity. When income increases, individuals spend a lower share on per-period consumption because decreasing marginal utility sets in more quickly.

As stated already for the case of better medical technology, better health leads to lower dependency on LTC for any given age while the resulting higher life expectancy makes individuals more likely to demand LTC until higher ages. The first column in the center part of Table 2 shows the net effect on expected LTC expenditures. According to our model predictions, expected LTC spending increases by 1.13%. Since expected medical care expenditures increase to a much higher degree (19.8%), expected total health expenditure increase by 16.5%. As a result, the share of LTC expenditure in total health expenditure declines. Although the increase in medical expenditure is more pronounced under higher income than under better medical technology, the impact on life expectancy is more modest (0.63%). The reason is that although in both regimes people spend more on medical care, with better medical technology medical care becomes additionally more effective.

As shown above, discounting the different expenditure types provides a more moderate relative change of expected medical care and LTC spending due to improving life expectancy. We also
report results for increasing and decreasing the rate of income growth by 50% applied for calculating the associated value of the wage rate. Table 2 shows that, in general, the size of the response increases in the size of the income change. Comparing the lowest to the highest increase in income, the relative change in expected LTC expenditure increases from 0.54% to 1.67%. In all specifications, the ratio between the relative increase in expected LTC expenditure
and life expectancy remains between 1.76 and 1.79, while in present value terms the ratio stays between 1.03-1.22, similar to the observed responses to improving medical technology.

4.3. Better Medical Technology and Higher Income. In order to wrap up the results, we also show the implications of the model for better medical technology combined with higher income. The results are shown in the bottom part of Table 2. Combining better medical technology and higher income does not change the main results of the experiment. A 1% increase in life expectancy is still associated with a 1.75% increase in expected LTC expenditures and a 1% increase in the present value of expected LTC expenditures. Compared to the change in medical care, the change in LTC is rather modest, since better health of the individual and thus lower dependency on LTC for given age counteracts the expenditure-increasing effect of rising life expectancy.

4.4. Sensitivity Analysis. The study of Jorda et al. (2019) shows that the average real interest rate on residential real estate and equities has been about 7% on average in the period 1870–2015. This seems to be the relevant interest rate if we assume that old-age health expenditure and institutionalization in nursing homes is financed by savings in these assets and past interest rates can be extrapolated into the future. However, perhaps later born generations, such as the one of our Reference American, will face lower interest rates. It is thus interesting to check the robustness of results in this regard. In the following, we set \(r = 0.05 \) and adjust the utility parameter \(\sigma \), medical technology \(A \), and the maximum deficit level \(\bar{D} \) such that the present value of expected medical care expenditure, life expectancy and the maximum lifespan of the benchmark run are matched. This procedure automatically matches the data on LTC for given parameters of the benchmark run.

For \(r = 0.05 \), the parameter value for \(\sigma \) slightly decreases from \(\sigma = 1.17 \) in the benchmark case to \(\sigma = 1.12 \), while the technology parameter increases from \(A = 0.00123 \) to \(A = 0.00135 \). The value for \(\bar{D} \) remains virtually unchanged at \(\bar{D} = 0.23 \). After recalibrating the model, we then rerun the experiment from the previous section. Table 3 summarizes the results.

The upper part of the table shows the results for different interest rates in the case of improvements in medical technology, the center part for the case of higher income, and the lower part when both improvements in medical technology and higher income are combined. The first lines in each part of the table reiterate the results for \(r = 0.07 \). In all three cases, the gain in life expectancy reduces mildly for a lower interest rate.
Table 3: Sensitivity Analysis

<table>
<thead>
<tr>
<th>case</th>
<th>exp LTC (PV)</th>
<th>exp medical (PV)</th>
<th>exp total (PV)</th>
<th>share LTC (PV)</th>
<th>life expectancy</th>
<th>elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{A} = 0.0100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 0.07$</td>
<td>4.16 (2.65)</td>
<td>14.9 (10.2)</td>
<td>13.0 (10.1)</td>
<td>-7.85 (-6.75)</td>
<td>2.36</td>
<td>1.76 (1.12)</td>
</tr>
<tr>
<td>$r = 0.05$</td>
<td>3.99 (3.44)</td>
<td>12.8 (10.6)</td>
<td>9.93 (10.3)</td>
<td>-5.40 (-6.18)</td>
<td>2.34</td>
<td>1.71 (1.47)</td>
</tr>
<tr>
<td>$\hat{w} = 0.0121$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 0.07$</td>
<td>1.13 (0.77)</td>
<td>19.8 (18.5)</td>
<td>16.5 (18.1)</td>
<td>-13.2 (-14.7)</td>
<td>0.63</td>
<td>1.79 (1.22)</td>
</tr>
<tr>
<td>$r = 0.05$</td>
<td>1.05 (0.93)</td>
<td>18.8 (18.2)</td>
<td>13.0 (17.4)</td>
<td>-14.6 (-14.0)</td>
<td>0.61</td>
<td>1.72 (1.52)</td>
</tr>
<tr>
<td>$\hat{A} = 0.0100$, $\hat{w} = 0.0121$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 0.07$</td>
<td>5.46 (3.40)</td>
<td>37.7 (30.4)</td>
<td>32.1 (29.9)</td>
<td>-20.2 (-20.4)</td>
<td>3.11</td>
<td>1.76 (1.09)</td>
</tr>
<tr>
<td>$r = 0.05$</td>
<td>5.21 (4.41)</td>
<td>33.9 (30.1)</td>
<td>24.6 (29.3)</td>
<td>-15.6 (-19.2)</td>
<td>3.07</td>
<td>1.70 (1.44)</td>
</tr>
</tbody>
</table>

All values as percentage deviation from the benchmark run. exp LTC, exp medical, and exp total refer to expected LTC expenditure, expected medical care expenditure, and expected total health expenditure, respectively. share LTC refers to the share of LTC expenditure in total health expenditure. PV refers to present value. The upper part refers to better medical technology ($\hat{A} = 0.01$), the center part to higher income ($\hat{w} = 0.0121$), and the lower part combines improvements in medical technology and higher income.

Expected medical care expenditures increase by less when reducing the interest rate. Lowering the interest rate from 0.07 to 0.05, the increase due to better medical technology reduces from 14.9% to 12.8%, from 19.8% to 18.8% due to higher income, and from 37.7% to 33.9% when both income and medical technology improve. Since the level of medical technology is calibrated to be slightly higher for a lower interest rate, these changes result in about the same gain in life expectancy.

Turning now to the evolution of expected LTC expenditure, the table shows that it increases by slightly less for a lower interest rate. In the first case, the increase reduces from 4.16% to 3.99%, in the second case from 1.13% to 1.05%, and in the third case from 5.46% to 5.21%. The reason behind these results is that for lower interest rates, individuals tend to concentrate medical care spending relatively more on early stages in life, thereby delaying the age at which they have to rely on LTC. However, the ratio of the change in expected LTC expenditure and life expectancy lies in a stable range between 1.70 and 1.79. Naturally, the present value of expected LTC expenditures increases by more when lowering the interest rate. The lower the interest rate, the less the individual gains from delaying LTC expenditures to higher ages. In the first case, the increase in present-value expenditure changes from 2.65% to 3.44%, in the second case from 0.77% to 0.93%, and in the third case from 3.40% to 4.41%. The elasticity in the case of the lower interest rate, however, stays stable between 1.44 and 1.52 in all three cases considered.
5. Conclusion

In this paper, we proposed a gerontologically founded life-cycle model of human aging in which we studied the interplay between medical care and LTC over the life-cycle. We calibrated the model to a reference American in the year 2012 and analyzed the impact of better health and increasing life expectancy, triggered by higher income and better medical technology, on expected LTC expenditure. Projecting the future evolution of income and technology, we found that each percentage increase in life expectancy is associated with 1.75 percentage increase in expected LTC spending. Discounting expected LTC spending to the beginning of the individual’s life cycle showed that the present value of expected LTC expenditure can be expected to increase more moderately (around 1%) in the future as LTC expenditures tend to be shifted to higher ages with improving health status. We also find that these elasticities are remarkably stable when analyzing different sizes of shocks in income and medical technology.

Compared to the increase in medical care spending, we find that the increase in LTC spending is expected to be moderate since, for given age, the level of dependency on LTC reduces with better health. This effect partially offsets the expenditure-increasing effect of higher life expectancy. Therefore, the empirical observation that the share of aggregate LTC expenditure in total health care expenditure is constant over time cannot be attributed to equally increasing per-capita expenditure in medical care and LTC following higher income and better medical technology, but to other determinants of LTC expenditure outside the model.
The first-order conditions associated with the given optimal control problem read

\[\frac{\partial H}{\partial c} = 0 \iff \lambda_k = S(D)c^{-\sigma} \] (10)

\[\frac{\partial H}{\partial h} = 0 \iff \lambda_D = -\frac{p}{\mu A\gamma} \lambda_k \gamma h^{1-\gamma} \] (11)

\[\frac{\partial H}{\partial k} = -\dot{\lambda}_k + \lambda_k \rho \]

\[\iff \frac{\dot{\lambda}_k}{\lambda_k} = \rho - r \] (12)

\[\frac{\partial H}{\partial D} = -\dot{\lambda}_D + \lambda_D \rho \]

\[\iff \frac{\dot{\lambda}_D(t)}{\lambda_D(t)} = \rho - \mu + \frac{1}{\lambda_D} (\lambda_k q(p'(D)L(D) + P(D)L'(D)) - S'(D)U(c)) \] (13)

Log-differentiating (10) w.r.t. time and using (12) yields

\[\frac{\dot{\lambda}_k(t)}{\lambda_k(t)} = \frac{S'(D)}{S(D)} \frac{\dot{D} - \sigma \frac{\dot{c}}{c}}{-m} \]

\[\iff \rho - r - m = -m - \sigma \frac{\dot{c}(t)}{c(t)} \] (14)

Solving (14) for consumption growth gives Equation (6) in the main text.

Log-differentiating (11) w.r.t. time and using (12) and (13) yields

\[\frac{\dot{\lambda}_D}{\lambda_D} = \frac{\dot{\lambda}_k}{\lambda_k} + (1 - \gamma) \frac{\dot{h}(t)}{h(t)} \] (15)

Using (12) and (13) and solving (15) for health expenditure growth provides Equation (7) in the main text.
References

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020-10</td>
<td>Do We Really Know that U.S. Monetary Policy was Destabilizing in the 1970s?</td>
<td>Qazi Haque, Nicolas Groshenny and Mark Weder</td>
</tr>
<tr>
<td>2020-11</td>
<td>Uncertainty and Monetary Policy during Extreme Events</td>
<td>Giovanni Pellegrino, Efrem Castelnuovo and Giovanni Caggiano</td>
</tr>
<tr>
<td>2020-12</td>
<td>The Impact of Pessimistic Expectations on the Effects of COVID-19-Induced Uncertainty in the Euro Area</td>
<td>Giovanni Pellegrino, Federico Ravenna and Gabriel Züllig</td>
</tr>
<tr>
<td>2020-13</td>
<td>Pupil Well-being in Danish Primary and Lower Secondary Schools</td>
<td>Anna Folke Larsen, Afonso Saraiva Câmara Leme and Marianne Simonsen</td>
</tr>
<tr>
<td>2020-14</td>
<td>Anticipation of Deteriorating Health and Information Avoidance</td>
<td>Johannes Schünemann, Holger Strulik and Timo Trimborn</td>
</tr>
<tr>
<td>2020-15</td>
<td>Cooperation and Norm-Enforcement under Impartial vs. Competitive Sanctions</td>
<td>Jan Philipp Krügel and Nicola Maaser</td>
</tr>
<tr>
<td>2020-16</td>
<td>The Amortization Elasticity of Mortgage Demand</td>
<td>Claes Bäckman and Peter van Santen</td>
</tr>
<tr>
<td>2020-17</td>
<td>The Optimal Extraction of Non-Renewable Resources under Hyperbolic Discounting</td>
<td>Anna M. Dugan and Timo Trimborn</td>
</tr>
<tr>
<td>2021-01</td>
<td>Endogenous Product Scope: Market Interlacing and Aggregate Business Cycle Dynamics</td>
<td>Oscar Pavlov and Mark Weder</td>
</tr>
<tr>
<td>2021-02</td>
<td>American Business Cycles 1889-1913: An Accounting Approach</td>
<td>Dou Jiang and Mark Weder</td>
</tr>
<tr>
<td>2021-03</td>
<td>Offspring Migration and Nutritional Status of Left-behind Older Adults in Rural China</td>
<td>Chang Liu, Tor Eriksson and Fujin Yi</td>
</tr>
<tr>
<td>2021-04</td>
<td>Firm Productivity, Wages, and Sorting</td>
<td>Benjamin Lochner and Bastian Schulz</td>
</tr>
<tr>
<td>2021-05</td>
<td>Uncertainty and Monetary Policy during the Great Recession</td>
<td>Giovanni Pellegrino, Efrem Castelnuovo and Giovanni Caggiano</td>
</tr>
<tr>
<td>2021-06</td>
<td>Social emotional learning in the classroom: One-year follow-up results from PERSPEKT 2.0</td>
<td>Anna Folke Larsen and Marianne Simonsen</td>
</tr>
<tr>
<td>2021-07</td>
<td>Optimal Demand for Medical and Long-Term Care</td>
<td>Johannes Schünemann, Holger Strulik and Timo Trimborn</td>
</tr>
</tbody>
</table>