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a b s t r a c t

Recently, there has been considerable work on stochastic time-varying coefficient models as vehicles
for modelling structural change in the macroeconomy with a focus on the estimation of the unobserved
paths of random coefficient processes. The dominant estimation methods, in this context, are based on
various filters, such as the Kalman filter, that are applicable when the models are cast in state space
representations. This paper introduces a new class of autoregressive bounded processes that decompose a
time series into a persistent random attractor, a time varying autoregressive component, and martingale
difference errors. The paper examines, rigorously, alternative kernel based, nonparametric estimation
approaches for such models and derives their basic properties. These estimators have long been studied
in the context of deterministic structural change, but their use in the presence of stochastic time variation
is novel. The proposed inference methods have desirable properties such as consistency and asymptotic
normality and allow a tractable studentization. In extensive Monte Carlo and empirical studies, we find
that the methods exhibit very good small sample properties and can shed light on important empirical
issues such as the evolution of inflation persistence and the purchasing power parity (PPP) hypothesis.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

This paper introduces a new class of random time varying co-
efficient (RC) models for bounded non-stationary processes with
AR(1) dynamics and proposes kernel-based nonparametric meth-
ods for inference on the paths of the unobserved drifting coeffi-
cient processes. RC models have been widely discussed in the last
fewyears in appliedmacroeconomic time series analysis.Work has
ranged across topics such as accounting for the Great Moderation,
documenting changes in the effect of monetary policy shocks and
in the degree of exchange rate pass-through, see e.g. Cogley and
Sargent (2001, 2005b), Cogley et al. (2010), Benati (2010), Pesaran
et al. (2006), Stock andWatson (1998) and Koop and Potter (2008).
It is clear that RC models provide a de facto benchmark technol-
ogy for analysing structural change. The breadth of the previous
work means that the results of this paper have many applications.
While kernel based methods form the main approach for estimat-
ing models, whose parameters change smoothly and deterministi-
cally over time, they have never been considered in the literature as
potentialmethods for inference on RCmodels, which have been es-
timated in the context of state spacemodel representations. While
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the theoretical asymptotic properties of estimating such processes
via the Kalman, or related filters are unclear, we show that under
verymild conditions, kernel-based estimates of random coefficient
processes have very desirable properties such as consistency and
asymptotic normality.

The crucial conditions that need to be satisfied to obtain our
theoretical results are also commonly imposed for RCmodels used
in applied macroeconomic analysis. These are pronounced persis-
tence of the coefficient process (usually a random walk assump-
tion) coupled with a restriction that the process remains bounded.
We formalize these conditions, in a direct intuitive way, while not-
ing that a variety of alternative bounding devices can be used.

The crucial issue of the choice of bandwidth that is perennially
present in kernel based estimation is also addressed. We find
that a simple choice of bandwidth has wide applicability and can
be used irrespective of many aspects of the true nature of the
coefficient processes. The latter may have both a deterministic
and a stochastic time varying component thus generalizing the
two existing polar paradigms. We find that kernel estimation can
cope effectively with such a general model and that the choice of
bandwidth can be made robust to this possibility.

Although we focus on a simple autoregressive form for the
model as a vehicle to investigate our estimator of the unobserved
drifting coefficient process, our results are relevant much more
widely. They apply to general regression models, multivariate
VAR-type models and can be extended to models that allow for
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time-varying stochastic volatility which are usedwidely in applied
macroeconometrics.

The theoretical analysis in this paper is coupledwith a extensive
Monte Carlo study that addresses a number of issues arising out
of our theoretical investigations. In particular, it confirms the
desirable properties of the proposed estimators, identified in our
theoretical analysis. For example, the theoretically optimal choice
of bandwidth is also one of the best in small samples. We illustrate
the usefulness of RC modelling in two applications that have
received attention in previous work. The first documents changes
in inflation persistence over time. The second analyses whether
changes in the persistence of deviations from purchasing power
parity (PPP) have occurred or not.

The rest of the paper is structured as follows. Section 1.1
discusses the existing literature and provides a framework for our
contribution. Section 2 presents the model and some of its basic
properties that are of use for theoretical developments. It also
contains the main theoretical results on the asymptotic properties
of the new estimator. Section 3 provides an extensive Monte Carlo
study while Section 4 discusses the empirical application of the
new inferencemethods to CPI inflation and real exchange rate data.
Finally, Section 5 concludes. The proofs of all results are relegated
to an Appendix.

1.1. Background literature

The investigation of structural change in applied econometric
models has been receiving increasing attention in the literature
over the past couple of decades. This development is not surprising.
Assuming wrongly that the structure of a model remains fixed
over time, has clear adverse implications. The first implication is
inconsistency of the parameter estimates. A related implication is
the fact that structural change is likely to be responsible for most
major forecast failures of time invariant models.

As a result a large literature on modelling structural change
has appeared. Most of the work assumes that structural changes
in parametric models occur rarely and are abrupt. A number of
tests for the presence of structural change of that form exist in
the literature starting with the ground-breaking work of Chow
(1960) who assumed knowledge of the point in time at which
the structural change occurred. Other tests relax this assumption.
Examples includeBrownet al. (1974), Ploberger andKramer (1992)
and many others. In this context it is worth noting that little is
being said about the cause of structural breaks in either statistical
or economic terms. The work by Kapetanios and Tzavalis (2010)
provides a possible avenue for modelling structural breaks and,
thus, addresses partially this issue.

A more recent strand of the literature takes an alternative ap-
proach and allows the coefficients of parametric models to evolve
randomly over time. To achieve this the parameters are assumed to
be persistent stochastic processes giving rise to RCmodels. An early
and influential example is Doan et al. (1984) who estimate an RC
model on macroeconomic time series and emphasize the utility of
Bayesianmethods as away to encode – amongst other things – the-
oretically informed views that explosive models for data ought to
have very low or zero probability. Cogley and Sargent (2005b) de-
ploy anRCmodel to address the question ofwhether itwas changes
in the variance of shocks, or changes in coefficients – policy or oth-
erwise – that gave rise to the period of macroeconomic calmness
in the 90s and early 2000s, dubbed the ‘Great Moderation’. In this
work, and research influenced by it, the authors assume a random
walk process for the coefficients of the VARmodel, but bound them
so that at each point in time the VAR is non-explosive. For the uni-
variate models this amounts to bounding the coefficients between
−1 and +1. This assumption is justified on the grounds that the
monetary authorities would act somehow to ensure that inflation
was not explosive. Amain point of Cogley and Sargent (2005b) was
to respond to criticisms of earlier work (Cogley and Sargent, 2001)
that had found evidence of changes in coefficients but without
allowing for changes in volatilities, thus potentially biasing their
findings in favour of documenting structural change in VAR coef-
ficients. They find evidence of change in the coefficients of the in-
flation process despite the inclusion of time-varying volatilities. In
subsequent work, Cogley et al. (2010) used the same model to in-
vestigatewhether there had been significant changes in the persis-
tence of inflation (more precisely the gap between inflation and its
time varying unobserved permanent component) during the Great
Moderation, using the same RC tool. Other examples of the use of
this RC tool abound. Benati and Surico (2008) estimate a similar
VAR model for inflation and use it to infer that the decline in the
persistence of inflation is related to an increased responsiveness
of interest rates to deviations of inflation from its target. Mum-
taz and Surico (2009) estimate an RC model to characterize evo-
lutions in the term structure and the correspondence of changes
therein with the monetary regime. Benigno et al. (2010) estimate
a VAR with random walks in the propagation coefficients involv-
ing productivity growth, real wage growth and the unemployment
rate and find that increases in the variance of productivity growth
have a long run effect on the level of unemployment. Researchers
have also debated some of the difficulties with the approach. For
example, Stock and Watson (1998) discuss how maximum likeli-
hood implementations tend to overstate the probability that the
variance of the shock to coefficients is low or zero; Koop and Potter
(2008) discuss the difficulty in imposing inequality restrictions on
the time-varying autoregressive coefficients, particularly in large
dimensional applications and note that it can be hard to find pos-
terior draws that satisfy such conditions.

While the above account gives a clear idea of the current state
of the relevant econometric literature, the economic justification
of RC models, whose parameters evolve as bounded random walk
processes, merits an additional comment. On a practical level,
these models are nowwidely used by empirical macroeconomists.
The economic reason for their attractiveness is well explained in
the discussion in Cogley and Sargent (2001), who pointed out that
fluctuations in parameters of a reduced form economic system
may result from evolving beliefs of the policymaker leading to the
evolving policy rules. The evolution in beliefs itself is a potential
product of the interaction ofmodelmisspecification by policymak-
ers and the effects produced by the policy itself, in the economy.
Cogley and Sargent (2001) refer to the seminal paper by Lucas
(1976), who noted that the practice of macroeconometric mod-
ellers of introducing intercept corrections (discussed also in Cooley
and Prescott (1973)), may ignore the risk of misspecification due
to using a model detached from macroeconomic theory. In Lucas
(1976), the author describes howpursuing a policy based on an ini-
tial estimation of an atheoretical model would result in time vary-
ing reduced form econometric coefficients (not just in intercepts,
but more generally). The subsequent work by Sargent (2001) (and
later work by Cogley and Sargent (2005a) and Sargent et al. (2006))
was an attempt to describe post war history as the result of a per-
petual repetition of themistakes (or perpetual ‘learning’) described
in the Lucas Critique paper. In summary, the evolution of beliefs
and time varying policy in a stochastic economy, may explain why
reduced form VAR parameters may evolve themselves as stochas-
tic processes over time. Clearly, the above justification of stochas-
tically varying coefficient models is only one possibility. Equally,
time variation may arise because of evolving cultural norms or be-
haviours, of any agent in the economy, providing a number of other
possible avenues for the motivation of RC AR modelling discussed
in our work.

A particular issue with the use of such models is the relative
difficulty involved in estimating them. As the focus of the analysis
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is quite often the inference of the time series of the time-varying
coefficients, models are usually cast in state space form and
estimated using variants of the Kalman filter. More recently, the
addition of various new features in these models, such as time-
varying variances for the error terms, has meant that the Kalman
filter may not be sufficient and a variety of techniques, quite often
of a Bayesian flavour, have been used for such inference.

Yet another strand of the vast structural change literature
assumes that regression coefficients change but in a smooth
deterministic way. Such modelling attempts have a long pedigree
in statistics starting with the work of Priestley (1965). Priestley’s
paper suggested that processes may have time-varying spectral
densities which change slowly over time. The context of such
modelling is nonparametric and has, more recently, been followed
up by Robinson (1989, 1991), Dahlhaus (1997), and others, some of
whom refer to such processes as locally stationary processes. We
will refer to such parametric models as deterministic time-varying
coefficient (DTVC) models. A disadvantage of such an approach is
that the change of deterministic coefficients cannot bemodelled or,
for that matter, forecasted. Both of these are theoretically possible
with RC. However, an important assumption underlying DTVC
models is that coefficients change slowly. As a result forecasting
may be carried out by assuming that the coefficients remain at
their end-of-observed-sample value. The above approach while
popular in statistics has not really been influential in applied
macroeconometric analysiswhere, asmentioned above, RCmodels
dominate. Kapetanios and Yates (2008) is an exception, usingDTVC
models to revisit the study of the evolution of inflation persistence,
in Cogley and Sargent (2005b). Finally, it is worth noting the work
of Muller and Watson (2008) and Muller and Petalas (2010) who
also examine structural change and consider both deterministic
and stochastic versions for the time-varying parameters.

While both approaches can be used for the same modelling
purposes, the underlying models have very distinct properties and
have been analyzed in very distinct contexts. As we noted in the
introduction, this paper uses the kernel approach to carry out
inference on RC models.

2. The model and its basic properties

2.1. The model

In this section we introduce a class of autoregressive models
driven by a random drifting autoregressive parameter ρt , that
evolves as a non-stationary process, standardized to take values in
the interval (−1, 1). We also allow for a random drifting intercept
term in the model.

Such an autoregressive model aims to replicate patterns of
evolution of autoregressive coefficients that are relevant for the
modelling of the evolution of macroeconomic variables such as
inflation. Such AR models have been extensively discussed in the
recent macroeconometric literature, see e.g. Cogley and Sargent
(2005b) and Benati (2010). Our objective is to develop a suitable
statistical model that allows estimation and inference.

The limit theory for stationary autoregressive models with
non-random coefficients is well understood. For AR models with
time-invariant coefficients it was developed by Anderson (1959)
and Lai and Wei (2010). Phillips (1987), Chan and Wei (1987),
Phillips and Magdalinos (2007) and Andrews and Guggenberger
(2008) extended it to AR(1) models that are local to unity. A
class of a locally stationary processes that includes AR processes
with deterministic time-varying coefficients was introduced
by Dahlhaus (1997). Estimation of such processes was discussed
in Dahlhaus and Giraitis (1998). In this paper, we develop an AR(1)
modelwith random coefficients, which encompasses stationary and
locally stationary AR(1) models. The simplest case of a random
coefficient process is a driftless random walk.

We consider the AR(1) models

yt = ρt−1yt−1 + ut , (2.1)
yt = αt + ρt−1yt−1 + ut , t = 1, 2, . . . , (2.2)

with a drifting random coefficient ρt , a random intercept αt and
initialization y0, where {ut} is a stationary ergodic martingale
difference sequence (m.d.s.) with respect to some natural filtration
Ft and ρt , αt areFt measurable, i.e. E[ut+1|Ft ] = 0 and E[ρt |Ft ] =

ρt . For example, in (2.1), one can set Ft = σ {uj, ρj, j ≤ t}.
The literature on locally stationary AR(1) processes assumes

that coefficients µt and ρt are smooth deterministic functions.
Then, yt behaves locally as a stationary process, which has differ-
ent theoretical properties compared to AR processes with random
coefficients. Moreover, the model (2.2) contains an additional pa-
rameter of interest, a random persistent attractor, see Section 2.3.
Specification of ρt requires additional structural assumptions. In
applied literature, it is often assumed that ρt is a rescaled random
walk which is a stringent restriction.

In this paper we assume that ρt is given by

ρt = ρ
at

max
0≤k≤t

|ak|
, t ≥ 0, (2.3)

where the stochastic process at determines the random drift, and
ρ ∈ (0, 1),1 restricts ρt away from the boundary points −1 and 1.
Both at and ρ are unknown, and ρt ∈ [−ρ, ρ] ⊂ (−1, 1).

We split at = {at − Eat} + Eat into a random part {at − Eat}
and the non-randommean Eat . We shall assume that ρt combines
deterministic and random components. The most novel case is
Eat = 0.

To enable inference about ρt , we need the following assump-
tions on ρt , y0, ut and at .

Assumption 2.1. (i) The random coefficients ρt , at , t = 0, . . . , n
are Ft measurable; Ea40 < ∞, Ey40 < ∞ and Eu4

1 < ∞.
(ii) The process vt := {at − Eat} − {at−1 − Eat−1}, t = 1, . . . , n

is stationary with zero mean and finite variance.

Part (ii) implies that a non-stationary process at with Eat = 0 is
a partial sum of shocks vj:

at = a0 + v1 + · · · + vt .

The popular empirical choice of at is a driftless random walk
with i.i.d. first differences, vt , see, e.g., Cogley and Sargent (2005b).
In addition, if v1 has 2 + δ finite moments, then the process
a[τn], 0 ≤ τ ≤ 1 converges weakly in Skorokhod space D[0, 1]
to a standard Brownian motion Bτ :

n−1/2a[τn] ⇒D[0,1] σ
2
v Bτ , 0 ≤ τ ≤ 1.

In this paper, vt ’s are allowed to be dependent. The only
assumption on at is the weak convergence of a renormalized
process a[τn] to some non-degenerate limit process, which may
differ from the standard Brownian motion Bτ , and may be even
non-Gaussian.

Assumption 2.2. There exists γ ∈ (0, 1) such that

n−γ a[τn] ⇒D[0,1] Wτ + g(τ ), 0 ≤ τ ≤ 1, (2.4)

1 The results of this paper remain valid also for negative ρ ∈ (−1, 0) in (2.3).
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where (Wτ , 0 ≤ τ ≤ 1) is zero mean random process with finite
variance,W1 has continuous probability distribution, and g(τ ) is a
deterministic continuous bounded function. Moreover,

n−γ (a[τn] − Ea[τn])⇒D[0,1] Wτ ,

n−γ Ea[τn] → g(τ ), 0 ≤ τ ≤ 1,
(2.5)

|Eat − Eat+k| ≤ Ckγ , 1 ≤ k < t.

Remark 2.1. Assumption 2.2 is satisfied by the sum process at =

v1 + · · · + vt where

vj =

∞
k=0

νkζj−k, j ≥ 0,
∞
k=0

ν2k < ∞, (2.6)

is a linear process with stationary ergodic m.d. innovations ζk,
Eζ 2

1 < ∞, under a minimal additional condition that

Var(an) = Var


n

j=1

vj


∼ Cn2γ , for some γ ∈ (0, 1). (2.7)

In Theorem 3.1 of Abadir et al. (forthcoming) it is shown that
(2.6) and (2.7) imply the weak convergence n−γ a[τn] ⇒D[0,1] cWτ ,
(c > 0), to a standardized fractional Brownian motion Wτ , as
long as E|ζ1|

p < ∞ for some p > max(1/γ , 2). Assumptions
(2.6) and (2.7) are satisfied by stationary ARMA(p, q) processes
with γ = 1/2 and by ARFIMA(p, d, q), |d| < 1/2 processes with
γ = (1/2)+ d. Stationary seasonal long memory GARMA(p, d, q)
processes vj, whose spectral density has an infinite peak at a fre-
quencyω ≠ 0, also satisfy (2.6) and (2.7)with γ = 1/2, see Section
7.2.2 of Giraitis et al. (2012).

Remark 2.2. The above setup and assumptions are designed to
guarantee persistence and boundedness, which are the two main
properties of the stochastic coefficient process ρt and the intercept
αt . It is worth briefly commenting on how they lead to our results.
Boundedness is essential in avoiding explosive behaviour for yt
while persistence is needed to enable estimation of the unobserved
ρt and αt by local averaging. These properties are repeatedly
employed in the proofs. Their use is particularly apparent in
Lemma A.1 which is the main building block of the proofs of our
major results in Sections 2.2–2.4.

Under Assumption 2.2, the coefficient process ρt , as n increases,
behaves as a rescaled limit processWτ of (2.5):

ρ[nτ ] →D ρW (b)
τ , ∀τ ∈ (0, 1),

W (b)
τ :=


Wτ + g(τ )


/ sup

0≤x≤τ
|Wx + g(x)|.

In particular, Wτ can be standard or fractional Brownian motion.
Then ρ[nτ ] evolves around ρg(τ ), and can take any value in
the interval [−ρ, ρ]. Below →D and →p denote convergence in
distribution and probability, respectively, =D indicates equality
of distributions, whereas [x] denotes the integer part of a real
number x.

Example 2.1. A typical example of a process at , satisfying Assump-
tion 2.2 with the parameter 0 < γ < 1, is

at = {v1 + · · · + vt} + tγ ×
h1 + · · · + ht

t
, (2.8)

where vj’s are stationary zero mean r.v.’s and hj are non-random
numbers such that maxj |hj| < ∞. It has the stochastic part zt
:= at − Eat = v1 + · · · + vt , and the mean Eat = tγ gt where
gt = (h1 + · · · + ht)/t , which satisfies |Eat − Eat+k| = |tγ gk
− (t + k)γ gt+k| ≤ Ckγ , for 1 ≤ k ≤ t . Then, at satisfies As-
sumption 2.2, if n−γ z[τn] ⇒D[0,1] Wτ , 0 ≤ τ ≤ 1, and n−γ Ea[τn] =

n−γ
[τn]γ g([τn]/n) → τ γ g(τ ).
Such at has asymptotically non-diminishing random and deter-

ministic components. For weakly dependent vj’s, one sets γ = 1/2
and at = zt + t1/2gt . This setting also allows to generate non-
random coefficients ρt used in modelling of locally stationary pro-
cesses.

Parametric random coefficient. Example (2.8) suggests a simple
parametric model for an AR(1) random coefficient,

ρt = ρ

c
t

k=1
uk + t1/2

max
1≤j≤t

c j
k=1

uk + j1/2
 , t ≥ 1, ρ0 = ρ, (2.9)

driven by the same m.d. noise ut as in AR model (2.1), with
parameters ρ and c. If c = 0, then ρt ≡ ρ; if c → ∞, then ρt =

ρ(
t

k=1 uk)/(max1≤j≤t |
j

k=1 uk|) becomes purely random, while
for a finite c > 0, ρt combines random and deterministic patterns.

Remark 2.3. To restrict ρt in the interval [−ρ, ρ], we use the nor-
malization ρt = ρ at/max0≤k≤t |ak|. The normalization ρt = ρ at/
max0≤k≤n |ak| could also be used, and would simplify technical
derivations but at the expense of an assumption of independence
between ρt and ut . Another popular implicit standardization used
in the applied macroeconometric literature is

ρt =


at−1 + vt , if |at−1 + vt | ≤ ρ
ρ, otherwise.

The question of how best to restrict ρt is open. Usually in the
macroeconometric literature the restriction is based on computa-
tional convenience without discussing the properties of the result-
ing model, and what is the best way to restrict the process ρt from
an economic point.

Remark 2.4. The paper narrows its interest to the AR(1) time-
varying random framework and identifies conditions that allow
rigorous inference on it. It shows that kernel estimation and infer-
ence extends to coefficients composed of time varying random and
deterministic parts. Such a finding is neither intuitively obvious
nor has a trivial formal justification. Establishing the AR(1) frame-
work opens the possibility for a general inference theory for AR and
VARmodels that may possess time-varying variances. To illustrate
a flavour of such extensions we briefly outline some frameworks
used in macroeconomic applications and ways in which these can
be adapted to our setting.
(1) Time varying AR(p)model

yt =

p
i=1

ρt−1,iyt−i + ut , t ≥ 1,

can be defined using the bounding condition

ρt,i = ρ
at,i

max
0≤k≤t

p
i=1

|ak,i|
, t ≥ 1, (2.10)

where 0 < ρ < 1, and each {at,i}, i = 1, . . . , p are independent
versions of the at process used above. Under these restrictions the
maximum absolute eigenvalue of the matrix

At =

ρt,1 ρt,2 · · · ρt,p
1 0 · · · 0
· · · · · · · · · · · ·

0 · · · 1 0

 , (2.11)
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or its spectral norm ∥At∥sp, are bounded above by one, for all t . This
requirement on the companionmatrix in (2.11) plays a similar role
to standardization of at in (2.3) and is reminiscent of the standard
stationarity condition for fixed coefficient AR(p)models.
(2) Time Varying VAR(1)model is given by

yt = 9t−1yt−1 + ut , t ≥ 1,

where yt is an m-dimensional vector and Ψ t−1 = [ψt−1,ij, i, j =

1, . . . ,m]. The necessary bounding can be implemented by
defining, similarly to (2.10),

ψt−1,ij = ρ
at−1,ij

max
1≤i≤t

m
j=1

|at−1,ij|

, t ≥ 1,

where 0 < ρ < 1, and at,ij = at−1,ij+vt,ij, where vt,ij are zeromean
m.d. sequences with finite variance. This ensures that the maxi-
mum eigenvalue of9t−1 is bounded from above by one in absolute
value. A third extension concerns modelling the conditional vari-
ance of the error term ut of an ARmodel via time varying persistent
processes that can be estimated using kernel estimation methods.
The latter extensions show the great scope for adapting the sug-
gested framework to the needs of empirical researchers in applied
macroeconometrics, and are current topics of research by the au-
thors.

2.2. AR(1) model with no intercept

In this section we consider the AR(1) model yt , (2.1), with no
intercept.

2.2.1. Basic properties of yt
In this subsection we investigate the structure of yt and the

properties of its covariance function. To write yt as a moving
average of the noise uj, define the (random) weights

ct,0 = 1, ct,j := ρt−1 · · · ρt−j, 1 ≤ j ≤ t.

Note that

|ct,j| ≤ ρ j, 1 ≤ j ≤ t. (2.12)

The next theorem describes the basic properties of an AR(1) pro-
cess yt , t = 1, . . . , n, (2.1), with no intercept.

Theorem 2.1. Under Assumption 2.1, the process yt of (2.1) has the
following properties.
(i) yt can be written as

yt =

t−1
j=0

ct,jut−j + ct,ty0, t ≥ 1. (2.13)

(ii) The second and fourth moments satisfy

Ey2t ≤ 2(1 − ρ)−2(σ 2
u + Ey20),

Ey4t ≤ 4(1 − ρ)−4(Eu4
1 + Ey40).

(2.14)

The next theorem shows that yt can be approximated by a
truncated AR(1) process with an AR coefficient ρt ,

zt(ρt) :=

t−1
k=0

ρk
t ut−k, t ≥ 1, (2.15)

and establishes the properties of the autocovariance Cov(yt+k, yt),
as t → ∞.
Theorem 2.2. Suppose Assumptions 2.1 and 2.2 are satisfied. Then,
as t → ∞,

yt = zt(ρt)+ op(1), Eyt → 0. (2.16)

In addition, if ρt ’s, ut ’s and y0 are mutually independent, then

E[ytyt+k] = σ 2
u E[ρk

t (1 − ρ2
t )

−1
] + o(1),

t → ∞, ∀k ≥ 0, (2.17)
|Cov(yt , yt+k)| ≤ ρk(1 − ρ2)−1(σ 2

u + Ey20),

∀t ≥ 1, k ≥ 0. (2.18)

2.2.2. Estimation and inference
In this section we construct a feasible estimation procedure for

a path of the drifting coefficient process ρt , based on observations
y1, . . . , yn of an AR(1) model (2.1) with no intercept. The proposed
estimate of ρt can bewritten as aweighted sample autocorrelation
at lag 1. Under Assumptions 2.1 and 2.2, it is consistent and asymp-
totically normally distributed. Computation of standard errors is
straightforward and accommodates a martingale difference noise
ut . Themethod allows the construction of pointwise confidence in-
tervals for the drifting coefficient ρt under minimal restrictions.

Let H = Hn be a sequence of integers such that

H → ∞, H = o(n). (2.19)

The parameter ρt can be estimated by the moving window
estimator

ρ̂n,t :=

t+H
k=t−H

ykyk−1

t+H
k=t−H

y2k−1

,

which is a local sample correlation of yt ’s at lag 1, based on 2H + 1
observations yt−H , . . . , yt+H . This estimate belongs to a general
class of kernel estimators considered in this paper.Wewill analyse
properties of estimates

ρ̂n,t :=

n
k=1

K( t−k
H )ykyk−1

n
k=1

K( t−k
H )y

2
k−1

, (2.20)

where K(x) ≥ 0, x ∈ R is a continuous bounded function (kernel)
with a bounded first derivative such that


K(x)dx = 1,

K(x) = O(e−cx2), ∃c > 0,

|(d/dx)K(x)| = O(|x|−2), x → ∞.
(2.21)

Examples of K include

K(x) = (1/2)I(|x| ≤ 1), flat kernel,
K(x) = (3/4)(1 − x2)I(|x| ≤ 1), Epanechnikov kernel,

K(x) = (1/
√
2π)e−x2/2, Gaussian kernel.

The flat and Epanechnikov kernels have a finite support, whereas
Gaussian kernel has an infinite support. The above kernels satisfy
(2.21).

Next we discuss consistency and the asymptotic normality of
the estimator ρ̂n,t of (2.20). Denote for 1 ≤ t, k ≤ n,

btk := K

t − k
H


, σ 2

Y ,t =

n
k=1

btky2k−1,

σ 2
Yu,t =

n
k=1

b2tky
2
k−1u

2
k .

(2.22)
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To establish the asymptotic normality of ρ̂n,t , we will need the
conditional variance Vj := E[u2

j |uj−1, uj−2, . . .] of the stationary
noise ut to be bounded away from 0:

V1 = E[u2
1|u0, u−1, . . .] ≥ c > 0, ∃c > 0. (2.23)

This assumption is not restrictive and satisfied, for example, by
ARCH typewhite noises. Clearly, it holdswhen ut is an i.i.d. process.

Notation: we set H̄ = H , if the kernel K has finite support, and
H̄ = H log1/2 H , if the kernel K has infinite support.

Theorem 2.3. Let y1, . . . , yn be a sample from the AR(1)model with
no intercept, (2.1), and t = [nτ ], where 0 < τ < 1 is fixed. Assume
that Assumptions 2.1 and 2.2 hold with some γ ∈ (0, 1), and H and
K satisfy (2.19) and (2.21), respectively.
(i) Then,

ρ̂n,t − ρt = Op

(H̄/n)γ + H−1/2. (2.24)

(ii) In addition, if ut satisfies (2.23) and H is such that (H̄/n)γ =

o(H−1/2), then

σ 2
Y ,tσYu,t

ρ̂n,t − ρt


→D N(0, 1). (2.25)

In particular, for γ ≥ 1/2, (2.25) holds, if H = o(n1/2/ log1/4 n).

Observe that studentization in (2.25), adjusted to accommodate
a martingale difference noise ut , is different from the one used in
the i.i.d. case.

Corollary 2.1 implies that the random normalizationσ 2
Y ,t/σYu,t

in the normal approximation (2.25) yields the
√
H rate of conver-

gence.

Corollary 2.1. Under assumptions of Theorem 2.3(ii),σ 2
Y ,tσYu,t = H1/2ct(1 + op(1)),

where c1 ≤ ct ≤ c2, for some finite constants c1, c2 > 0.

The above corollary is a direct implication of the results of
Lemma A.2. The next corollary shows that studentization in (2.25)
becomes operational using residuals ûj = yj − ρ̂tyj−1. Letσ 2

Yu,t :=n
j=1 b

2
tjy

2
j−1u2

j .

Corollary 2.2. Under assumptions of Theorem 2.3(ii),σ 2
Y ,tσYu,t

ρ̂n,t − ρt


→D N(0, 1).

Remark 2.5. The consistency of the estimator ρ̂n,t is guaranteed
by the persistence of the process ρt , or by stochastic or determin-
istic trending behaviour of the process at . The main restriction on
aj is the weak convergence n−γ a[τn] →D[0,1] Wτ + g(τ ) for some
0 < γ < 1 where γ does not have to be known. The main ex-
ample for at is a fractionally integrated process at ∼ I(d), 1/2 <
d < 3/2, discussed in Remark 2.1. It satisfies Assumption 2.2 with
γ = d − 1/2. When γ is close to 0, the pattern of trending be-
haviour of at and the consistency rate in (2.24) deteriorate. For a
stationary process at , the above estimation of ρt is not consistent.
It is practical to choose H = o(n1/2), leading to an asymptotic nor-
mality (2.25) for 1/2 ≤ γ < 1. In particular, γ = 1/2 corresponds
to a unit root process at ∼ I(1).
Fig. 1. Realizations of ρt ,ρn,t and 90% confidence intervals for ρt for the normal
kernel.

To give an idea of the nature of the pointwise confidence
intervals, implied by Theorem 2.3, we include Fig. 1 showing a
realization of ρt based on a random walk model for a sample size
of 500, its estimate ρ̂n,t based on a normal kernel and a bandwidth
H =

√
n, and 90% confidence intervals. The process ρt is well

tracked and the point-wise confidence band contains ρt most of
the time (for 92.8 of t ’s).

We complete this section describing properties of the weighted
samplemean ȳt := (

n
j=1 btjyj)/(

n
k=1 btk)of anAR(1)modelwith

no intercept. By Theorem 2.2, Eyt → 0, as t → ∞. We will show
consistency of the estimate ȳt →p 0 and establish its normal ap-
proximation. We also obtain for ȳt the martingale approximation
(2.26) that resembles the well-known result for stationary linear
processes, based on Beveridge–Nelson decomposition, see Phillips
and Solo (1992).

Let B1t :=
n

k=1 btk, B
2
2t =

n
k=1 b

2
tk, and ūt = B−1

1t
n

j=1 btjuj.

Proposition 2.1. Let yt satisfy assumptions of Theorem 2.3(i), and
H̄ = o(n). Then,

ȳt = (1 − ρt)
−1ūt + Op


(H̄/n)γ + H−1,

ȳt = Op

(H̄/n)γ + H−1/2, (2.26)

B1t

B2t

1 − ρt

σu
ȳt →D N(0, 1), if (H̄/n)γ = o(H−1/2). (2.27)

2.3. AR(1) process with a persistent random attractor

We showed that an AR(1) model yt with no intercept has
asymptotically negligible mean, Eyt → 0, as t → ∞, see (2.16).
Next we extend this model by adding a persistent term µt , which
in fixed coefficient AR models plays the role of the mean.

We decompose yt = µt + (yt − µt) into a persistent (random)
term µt , which we refer to as the attractor and a dynamic compo-
nent yt − µt , that evolves as an AR(1) process (2.1):

yt − µt = ρt−1(yt−1 − µt−1)+ ut , t ≥ 1. (2.28)

This model can also be written as an AR(1) process yt = αt +

ρt−1yt−1 + ut with the intercept αt = µt − ρt−1µt−1. As seen
below, although the attractor µt can be estimated, in general, it
cannot be interpreted as the mean Eyt .

Tomakedecomposition (2.28)meaningful, a randomprocessµt
has to be persistent, so that both µt and ρt can be extracted from
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the data y1, . . . , yn.We assume thatµt is bounded in the sense that
maxj Eµ2

j < ∞. To evaluate µt , ρt and αt , we use estimates

ȳt =

n
j=1

btjyj

n
j=1

btj
, ρ̂n,t :=

n
k=1

btk(yk − ȳt)(yk−1 − ȳt)

n
k=1

btk(yk−1 − ȳt)2
,

αt = ȳt −ρn,t ȳt .
(2.29)

Remark 2.6. Theprocess yt of (2.28) is bounded, i.e.maxj Ey2j < ∞.
The latter implies

max
j

P(|yj| ≥ c) ≤ c−2 max
j

Ey2j → 0, c → ∞.

To verify boundedness, notice, that Ey2j ≤ 2Eµ2
j + 2E(yj − µj)

2.
According to (2.28), yt −µt follows AR(1) model with no intercept,
and therefore by (2.14), maxj E(yt − µt)

2 < ∞. Hence, maxj Ey2j
< ∞.

The next assumption describes a class of processes µt allowing
estimation of µt and ρt .

Assumption 2.3. The attractor µt is Ft measurable, maxj Eµ4
j <

∞, and satisfies either (i) or (ii) for t ≥ 1, 1 ≤ h < t/2 with some
β ∈ (0, 1] and C < ∞.

(i) E(µt − µt+k)
2

≤ C(k/t)2β , 1 ≤ k ≤ h.

(ii) µt − µt+k = m(t, k) + m̃(t, k), where Em2(t, k) ≤ C(k/t)2β ,
1 ≤ k ≤ h, and max1≤k≤h |m̃(t, k)| = Op


(h/t)β + h−1


.

Example 2.2. A typical example ofµt , satisfyingAssumption2.3(i),
is

µt = t−β(v1 + · · · + vt)+ t−1(h1 + · · · + ht),

(0 < β ≤ 1), (2.30)

where vj’s are stationary zero mean r.v.’s such that E(v1 + · · · +

vk)
2

≤ Ck2β , and hj’s are non-random numbers, maxj |hj| < ∞. It
covers the case of a deterministic constant mean µt = t−1(µ +

· · · + µ) = µ, a time varying mean µt = g(t/n), and the case of
a purely random attractor µt = t−1/2t

j=1 vj, where vj’s are i.i.d.
random variables. An attractor, µt , satisfying Assumption 2.3(ii),
arises in an AR(1) model with intercept, see Section 2.4. Assump-
tion 2.3(i) is a subcase of (ii).

The next theorem establishes consistency rates and asymptotic
normality of estimates of the parameters µt , ρt and αt . It assumes
β ≥ γ , which means that the attractor µt is more persistent than
ρt . We use notation σ 2

Y ′,t =
n

k=1 btky
′ 2
k−1 and σ 2

Y ′u,t =
n

k=1 b
2
tk

y′ 2
k−1u

2
k where y′

k = yk − µk, k ≥ 1. B1t and B2t are the same as in
Proposition 2.1. Below notation an ≍ bn means that an/bn = Op(1)
and bn/an = Op(1).

Theorem 2.4. Let y1, . . . , yn be a sample of AR(1) model with an
attractor, (2.28), and t = [nτ ], where 0 < τ < 1 is fixed. Assume
that H andK satisfy (2.19) and (2.21), at satisfies Assumptions2.1 and
2.2with parameter 0 < γ < 1, andµt satisfies Assumption 2.3with
parameter β ≥ γ .

(i) Then, with κn := (H̄/n)γ + H−1/2, H̄ = o(n),

ȳt − µt = Op(κn), ρn,t − ρt = Op(κn),αn,t − αt = Op(κn).
(2.31)
(ii) Moreover, if (H̄/n)γ = o(H−1/2), (2.23) holds and E|u1|
4+δ <

∞ for some δ > 0, then

B1t

B2t

(1 − ρt)

σu


ȳt − µt


→D N(0, 1),

σ 2
Y ′,tσY ′u,t

ρn,t − ρt


→D N(0, 1),

(2.32)

B1t

B3t

αn,t − αt


→D N(0, 1),

B2
3t :=

n
j=1

b2nj

1 − µt

B1tσ 2
Y ′,t

y′

j−1

2
u2
j .

In addition, B1t/B2t ≍ H1/2 and B1t/B3t ≍ H1/2.

Studentization in (2.32) becomes operational by replacing uk’s
with the residuals ûk = yk − ρ̂tyk−1 − αt , k ≥ 1. Set σ 2

Ŷ û,t
:=n

k=1 b
2
tkŷ

2
k−1û

2
k andσ 2

Ŷ ,t
:=
n

k=1 btkŷ
2
k−1, where ŷk = yk − ȳt .

Corollary 2.3. Let assumptions of Theorem 2.4(ii) hold. Then1 −ρn,t
1 +ρn,t

1/2 B3/2
1t

B2t σŶ ,t (ȳt − µt)→D N(0, 1),

σ 2
Ŷ ,tσŶ û,t

ρ̂n,t − ρt


→D N(0, 1),

(2.33)

B1tB3t

αn,t − αt


→D N(0, 1),

B2
3t :=

n
j=1

b2nj

1 − ȳt

B1tσ 2
Ŷ ,t

(yj−1 − ȳt)
2

û2
j .

We showed, that an AR(1) process yt defined by an attractor
µt and an AR(1) dynamics ρt , is bounded and allows extraction of
µt and ρt together with their confidence bands. The results of this
section present a useful tool for inference, analysis and modelling
of dynamics of bounded non-stationary processes.

To justify the attractor terminology, we include Fig. 2 which
shows the plots of yt and µt , based on bounded random walk
models for ρt and µt , for a sample size of 500, the plot of the
estimate ȳt obtained using a normal kernel and a bandwidth H =√
n, and 90% confidence intervals for µt . It shows that the process

µt is well tracked and the point-wise confidence band contains the
true process most of the time (for 85.4% of t ’s).

2.4. AR(1) model with intercept

Next we discuss an AR model

yt = αt + ρt−1yt−1 + ut , t ≥ 1, (2.34)

with a persistent intercept αt , where ρt and ut are as in (2.1).
Similarly as in (2.13), yt can be written as an AR(1) model

yt = ρt−1yt−1 + {αt + ut} =


t−1
i=0

ct,iαt−i



+


t−1
i=0

ct,iut−i + ct,ty0


=: µt + y′

t , (2.35)

with attractor µt , where y′
t is an AR(1) process with no intercept,

y′
t = ρt−1y′

t−1 + ut , t ≥ 1, y′

0 = y0.
Estimation of this model reduces to that of a model with

a persistent attractor, discussed in Section 2.3. The following
assumption describes a class of permissible processes αt allowing
inference.
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Fig. 2. Realization ofµt , ȳt , yt and 90% confidence intervals forµt using the normal
kernel.

Assumption 2.4. The process αt isFt measurable, maxj Eα4
j < ∞,

and for some β ∈ (0, 1], E(αt − αt+k)
2

≤ C(k/t)2β , t ≥ 1,
1 ≤ k < t/2.

A standard example of a process αt satisfying Assumption 2.4
is provided in (2.30). Under Assumption 2.4, the corresponding
attractor µt in (2.35) satisfies Assumption 2.3:

Proposition 2.2. Suppose that yt is an AR(1) process (2.34), where
ρt is generated by at that satisfies Assumptions 2.1 and 2.2 with
parameter γ , and αt satisfies Assumption 2.4with parameter β ≥ γ .
Then µt in (2.35) satisfies Assumption 2.3(ii) with β = γ .

Moreover, as t → ∞,

µt = (1 − ρt)
−1αt + op(1). (2.36)

Since µt satisfies Assumption 2.3, estimatesαn,t , ρn,t and ȳt of
parameters αt , ρt and µt of this model have properties described
in Theorem 2.4 and Corollary 2.3.

Relations between the attractor µt =
t−1

i=0 ct,iαt−i and the
intercept αt = µt − ρt−1µt−1 indicate that persistence in µt
generates persistence in the intercept αt and vice versa.

3. Monte Carlo study

In the following Monte Carlo simulation we study the small
sample performance of the kernel estimator of a random AR(1) co-
efficient process, for the sample size n = 50, 100, 200, 400, 800,
1000. In the first set of simulations we generate data by AR(1)
model (2.1) with no intercept

yt = ρt−1yt−1 + ut , t ≥ 1

using restriction ρt = ρat/max0≤j≤t |aj|, which bounds ρt be-
tween−ρ andρ.We setρ = 0.9. The differences at−at−1 = vt are
modelled by stationary AR(1) and longmemory ARFIMA processes.

To estimateρt , we use a two-sided normal kernel estimator. The
bandwidth H is set to take values nα , α = 0.2, 0.4, 0.5, 0.6, 0.8.
The value α = 0.5 corresponds to the closest value to the optimal
bandwidth, minimizing the mean square error E(ρ̂n,t − ρt)

2 in
pointwise estimation. The global performance of the estimator
is evaluated by the average value of the mean squared error,
MSE := n−1n

t=1(ρ̂n,t − ρt)
2, computed using 1000 Monte-Carlo

replications.
Table A.1 reports the average MSE and 90% coverage probabil-
ities (CP) for the normal kernel estimate when vt follows a short
memory AR(1) model vt = φvt−1 + εt , where φ is set to take val-
ues 0, 0.2, 0.5, 0.9, and εt is a standard normal i.i.d. noise. Here, at
is an I(1) (unit root) process, and satisfies (2.4) with γ = 1/2. It
is evident that, for φ = 0 and ‘‘optimal’’ bandwidth H = n0.5, the
average MSE falls substantially with the sample size. This band-
width choice is best in terms of MSE. For coverage probabilities
we observe that a slightly lower bandwidth value of H = n0.4 is
best.

The presence of short memory dependence in vt does not seem
to affect the estimator adversely. If anything, the performance of
the estimator improves slightly as vt becomes more persistent.

Table A.2 reports the average MSE and 90% coverage probabil-
ities of a normal kernel estimation of the model yt , when vt is a
stationary long memory ARFIMA process (1 − L)d−1vt = εt and εt
is the standard normal i.i.d. noise. The parameter d is set to take val-
ues d = 0.51, 0.75, 1.25, 1.49. The process at is a non-stationary
integrated I(d) process, satisfying assumption (2.4) with parame-
ter γ = d − 1/2, taking values γ = 0.01, 0.25, 0.75, 0.99, and
the persistence of at increases with d. We clearly see the familiar
patterns observed for a short memory vt , whereby larger values of
d and γ , lead to stronger persistence in at and improved quality of
estimation and inference for ρt , as suggested by the theory.

The simulation analysis above was focused on the AR(1) model
yt with i.i.d. errors ut and no intercept. In addition, our theory
allows for a model

yt = αt + ρt−1yt−1 + ut , t ≥ 1

with time varying intercept αt , and for a general martingale differ-
ence noise ut . The second set of simulations illustrates the small
sample properties of estimators α̂n,t , ρ̂n,t and ȳt , under martingale
difference noise ut . The same set of bandwidths and the sample
sizes is used as before, and ρt is defined as before setting ρ = 0.9.
We set the time varying intercept to be a bounded random walk
αt = t−1/2t

j=1 ηj, generated by another standard normal i.i.d.
noise ηj. To analyse the impact of heteroscedasticity of the noise ut
on estimation ofρt , we consider two heteroscedastic specifications
of ut :
(a) GARCH(1, 1)m.d. noise ut = σtεt , where σ 2

t = 1+ 0.25u2
t−1 +

0.25σ 2
t−1,

(b) stochastic volatility m.d. noise ut = exp(ht−1)εt , ht =

0.7ht−1 + εt .

In (a) and (b), εt is set to be a normal i.i.d. noise and the
resulting ut process is normalized to have unit variance. Table A.3
reports the averageMSE and 90% coverage probabilities of the joint
estimation of the parameters αt , ρt and µt of the model yt , using
the normal kernel. A consideration of Table A.3 suggests that the
estimator of ρt is not affected by the presence of the intercept,
and the estimators of αt and µt follow similar patterns to that of
ρt , albeit with different absolute levels for the MSEs. It is evident,
that heteroscedasticity may increase MSE and, therefore, needs
to be accounted for in the studentization, see e.g. (2.25), but in
general, it does not affect estimation, as suggested by our theory.
The coverage probabilities suggest that the estimated confidence
intervals are satisfactory for ρ̂n,t , ȳt and α̂n,t .

4. Empirical application

In this section we use the kernel estimator to provide
new evidence for two debates that have attracted considerable
attention in empiricalmacroeconomics. These debates relate to the
time-varying persistence of inflation and the validity of the PPP
hypothesis.
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Fig. 3. Time-Varying AR coefficient, intercept, attractor and 90% confidence bands in AR(1) model, fitted to CPI inflation data using a normal kernel for 6 countries: Australia,
Canada, Japan, Switzerland, US and UK. The AR coefficient panels also report the estimate of an AR parameter in a fixed coefficient AR(1) model together with its 90%
confidence bands. CPI inflation data are also presented in the third column.
4.1. Data and setup

Our CPI inflation dataset is made up of 6 countries: Australia,
Canada, Japan, Switzerland, US and UK. The real exchange rate
(RER) dataset is made up of 6 countries where the US dollar
is the base currency (and so obviously is itself excluded): Aus-
tralia, Canada, Japan, Norway Switzerland and UK. The data span
is 1957Q1 to 2009Q1. All data are obtained from the IMF (Inter-
national Financial Statistics (IFS)). We construct the bilateral real
exchange rate q against the ith currency at time t as qi,t = si,t +

pj,t−pi.t , where si,t is the corresponding nominal exchange rate (ith
currency units per one unit of the jth currency), pj,t the price level
(CPI) in the jth country, and pi,t the price level of the ith country.
That is, a rise in qi,t implies a real appreciation of the jth country’s
currency against the ith country’s currency.

We fit an AR(1) model with a time varying autoregressive
coefficient and an intercept term which is allowed to vary over
time as well. Parameters are estimated using the normal and
flat kernel estimators presented in Section 2 but having obtained
similar results for both kernels, we choose to report results only
for the normal kernel due to space considerations. A bandwidth H
equal to n1/2 is used as suggested by theory. Results are reported
pictorially in Figs. 3 and 4. Fig. 3 relates to CPI inflation and Fig. 4
to real exchange rates. They report the estimated time-varying
AR coefficient, intercept term, attractor and the standard time-
invariant AR(1) coefficient together with their 90% point-wise
confidence bands.

4.2. Empirical results

The empirical results presented in Figs. 3 and 4 can help
provide answers to two important empirical topics: the origin of
the persistence of inflation and the real exchange rate. We will
examine each issue in turn.

4.2.1. Inflation persistence
Our first application examines whether inflation persistence

has changed over time. As noted above, (Cogley et al., 2010) docu-
ment using an RC model that inflation gap persistence rose dur-
ing the Great Inflation of the 1970s, then fell in the 1980s. Be-
nati (2010) presents similar findings using different techniques:
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Fig. 4. Time-Varying AR coefficient, intercept, attractor and 90% confidence bands in AR(1) model, fitted to real exchange rates using a normal kernel for 6 countries:
Australia, Canada, Japan, Switzerland, US and UK. The AR coefficient panels also report the estimate of an AR parameter in a fixed coefficient AR(1) model together with its
90% confidence bands. Real exchange rate data are also presented in the third column.
sub-sample estimates of a fixed-coefficient univariate model for
inflation, and of a DSGE model that encodes inflation persistence
into price-setting.

Establishing whether inflation persistence has changed over
time can help shed light on its causes. The more it is observed to
have changed, the less it is likely that this persistence is a product of
hard-wired features of price-setting like those described by Chris-
tiano et al. (2005) and Smets and Wouters (2003) and the more
likely it is that this persistence reflects changes in the monetary
regime. Benati (2010) takes this view, inferring from the fact that
both structural DSGE and time-series estimates of inflation persis-
tence are highly variable across monetary regimes, that inflation
persistence has its origin in the nature of monetary policy and not
price-setting.

Fig. 3 records our results. The left hand column reports esti-
mates of the time varying AR coefficient (with horizontal lines
depicting the whole-sample, fixed-coefficient counterparts and
associated confidence intervals); the middle column shows esti-
mates of a time-varying intercept; and the third column shows
estimates of the ‘attractor’. Overall, it is quite clear that inflation
persistence has varied considerably, and, once confidence bands
are taken into account, statistically significantly, over time. The as-
sumption of a fixed autoregressive coefficient is therefore judged
inappropriate by the kernel estimator. One could justify the fixed
AR model with sufficiently strong a priori views about the in-
variance of the economic sources of persistence. However, on the
contrary, there is every reason to suspect from the perspective
of economic theory, and prior work, that some of the economic
sources of persistence have changed. We pick out a couple of ex-
amples that connect with previous work: inflation persistence in
the US is estimated to have risen from about 0.4 at the start of
the sample, to a peak of around 0.8 in 1970, falling thereafter, and
steadily, to around 0.2 in the 2000s. A similar picture emerges in
the UK, the one contrasting finding being that after falling back to a
lowpoint of almost−0.2 in 2000, inflation persistence is estimated
to have risen rapidly through the subsequent decade. This overall
pattern is not shared by every country. For example, inflation per-
sistence in Australia seems to cycle around 0.4, with a slight down-
ward trend; in Switzerland, inflation persistence is stable around
0.6 until 1995 or so when it falls rapidly to an average in the 2000s
of −0.6. However, the basic fact, that inflation persistence shows
significant time variation, is common to all countries.
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Our findings add to the evidence casting doubt on the argument
that this persistence has its route in nominal or real frictions,
since it seems to stretch the plausibility of those models that
they can be viewed as time-varying. Instead, this time-variation
suggests that persistence is more likely to have its origins in
monetary policy. In several countries persistence ends the sample
lower than it began it, and the conjecture that this might have
been caused by monetary policy accords well with other work
that has documented changes in the institutions and philosophy
governing monetary policy. During this time, there have been
many changes in the institutions governing monetary policy,
including the spread of independent central banks, the adoption
of inflation or other similar targets. These facts are documented
by, amongst others (Segalotto et al., 2006). Moreover, there arose
the widespread acceptance of the doctrine that inflation is caused
by and can be tamed by monetary policy, and that unemployment
cannot be permanently held down by loose monetary policy, a
doctrine that was not at all universal at the start of the sample
period, see, for example, Nelson (2005).

4.2.2. Persistence of deviations from PPP
Our second application considers the debate surrounding the

persistence in deviations of relative prices from purchasing power
parity (PPP). A vast literature has focused on this problem, so
we motivate our analysis with only a few examples. The survey
by Rogoff (1996) adduces the essential finding inmany papers that
deviations from PPP take a very long time to die out. We note
selectively the work of Frankel and Rose (1996), Papell (1997),
Papell and Prodan (2006), Papell and Theodoridis (1998, 2001),
Chortareas et al. (2002) and Chortareas and Kapetanios (2009). One
reason that persistent deviations from PPP can occur is because of
nominal rigidities. But Chari et al. (2002) note that this persistence
in the data – they report an autoregressive coefficient of around
0.8 for 8 US bilateral real exchange rates – is greater than can
be plausibly accounted for by nominal stickiness in traded goods
prices. Benigno (2002) offers another explanation, illustrating how
the persistence of the real exchange rate is in part a function
of the degree of interest rate inertia in monetary policy. Imbs
et al. (2005) and Chen and Engel (2005) have debated whether
real exchange rate persistence is a function of aggregation bias,
discussing differences between the persistence of the aggregate
and its subcomponents. A final possibility is that the dynamics
of PPP are affected by Balassa–Samuelson effects. When non-
traded goods like labour or land are in short supply, productivity
improvements in the traded sector bid up non-traded prices
(higher incomes in the traded sector translate to increased demand
for non-traded services) and hence the real exchange rate.

Our results are shown in Fig. 4, using the same format as the
inflation persistence charts. With the exception of the UK, real ex-
change rate persistence seems to be lower at the end of the sam-
ple than at the beginning, with the caveat that the movements in
general, are smaller than for inflation persistence, and in particu-
lar smaller relative to the confidence interval around the estimate
for each period. We discern clear upward movements in the time
varying constant in Japan, Norway, Switzerland andAustralia.With
the exception of Switzerland, these are plausibly connected with
permanent Balassa–Samuelson innovations. For Canada, Norway
and Australia upward movements would be associated with the
increase in the productivity of their traded sectors with the dis-
covery and/or increase in demand for raw material exports (from,
e.g., the emerging Asian economies like China). In the case of Japan
this would correspond to the widely studied increase in produc-
tivity in their manufacturing export sector following the second
world war. As we have already noted, the possibility that real ex-
change rate persistence is a function solely of nominal rigidities
was already strongly at odds with plausible sticky price models.
Our findings, of time-varying persistence, emphasize this.
5. Concluding remarks

This paper has proposed a new class of time-varying coefficient
models, allowing the decomposition of a non-stationary time
series into a persistent random attractor and a process with time-
varying autoregressive dynamics. The paper suggests a kernel
approach for the estimation and inference of the unobserved time-
varying coefficients and provides a rigorous theoretical analysis of
its properties.

The proposed estimation approach has desirable properties
such as consistency and studentized asymptotic normality under
very weak conditions. The potential of our theoretical findings
has been supported by an extensive Monte Carlo study and
illustrated by some informative empirical findings relating to CPI
inflation persistence and the PPP hypothesis. In particular, we
have uncovered evidence in support of the PPP hypothesis for
the recent past. Our findings suggest that estimating coefficient
processes via kernels is robust to a number of aspects of the nature
of the unobserved process such as whether it is deterministic
or stochastic and to the exact specification of the process. The
theoretical properties of the kernel estimator are to be contrasted
with the lack of knowledge about the properties of state-space
estimates of RC models which display pathologies that our
approach avoids, as documented in Stock and Watson (1998) and
Koop and Potter (2008).

One further extremely attractive aspect of the new estimator
relates to its relative computational tractability. Estimation of RC
models using standard methods, including Bayesian estimation,
is extremely computationally demanding. The computational
demands, associated with the use of kernel type estimates, are
modest, with the estimation of evenmoderately largemultivariate
models being completed almost instantly.

At this point it might be worth summarizing a possible course
of action for empirical researchers facedwith the task ofmodelling
time-variation in macroeconomic time series. It is reasonable to
assume that researchers do not know whether the true coefficient
process is random or not. In the absence of such information and
given the theoretical findings in this paper, there is a sound case in
favour of adopting a kernel estimator, since this estimator is valid
both for deterministic and stochastic coefficient processes. This
case is strengthened by our Monte Carlo evidence which shows
that the estimator works well in small samples.
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Appendix

A.1. Proof of the main results

In this subsection we prove Theorems 2.1–2.4, Corollaries 2.1
and 2.3, and Propositions 2.1 and 2.2. In the sequel, we use
repeatedly the following properties of bnj’s, valid under (2.21):

B1t :=

n
k=1

btk ∼ H


K(x)dx = H,

B2
2t :=

n
k=1

b2tk ∼ H


K 2(x)dx =: HβK ,

(A.1)

where βK =

K 2(x)dx.
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Table A.1
MSE and 90% Coverage Probability results forρn,t for the normal kernel.
Proof of Theorem 2.1. (i) Eq. (2.13) follows using recursions

yt = ρt−1yt−1 + ut = ρt−1(ρt−2yt−2 + ut−1)+ ut

= ρt−1ρt−2ρt−3yt−3 + ρt−1ρt−2ut−2 + ρt−1ut−1 + ut

= ρt−1 · · · ρ0y0 + ρt−1 · · · ρ1u1 + · · · + ρt−1ut−1 + ut

= ct,ty0 + ct,t−1u1 + ct,t−2u2 + · · · + ct,1ut−1 + ct,0ut .

The above recursion also implies

yt =

k
j=0

ct,jut−j + ct,k+1yt−k−1, 1 ≤ k ≤ t − 1. (A.2)

(ii) To prove (2.14), use |ct,j| ≤ ρ j, E|ujuk| ≤ Eu2
1, and (2.13), to

obtain

Ey2t = E


t−1
j=0

ct,jut−j + ct,ty0

2

≤ 2E


t−1
j=0

ρ j
|ut−j|

2

+ 2ρ2tEy20

≤ 2

 t−1
j=0

ρ j

2

+ ρ2t

 (σ 2
u + Ey20)

≤ 2(1 − ρ)−2(σ 2
u + Ey20).

Similarly, since E|uj1 · · · uj4 | ≤ (Eu4
j1

· · · Eu4
j4
)1/4 = Eu4

1,

Ey4t ≤ E


t−1
j=0

ρ j
|ut−j| + ρty0

4

≤ 4

 t−1
j=0

ρ j

4

Eu4
1 + ρ4tEy40


≤ 4(1 − ρ)−4(Eu4

1 + Ey40). �

Proof of Theorem 2.2. The first equality in (2.16) holds, because
(A.20) of Lemma A.1 implies E(yt − zt(ρt))2 = o(1), as t → ∞.
To show the second claim of (2.16), setting h = log t , write yt =

zt(ρt−h)+{yt−zt(ρt−h)}. Becauseρt−h isFt−k−1, k < hmeasurable,
then E[ρk

t−hut−k] = E[ρk
t−hE[ut−k|Ft−k−1]] = 0 for k < h, and

therefore |Ezt(ρt−h)| = |E
t−1

k=0 ρ
k
t−hut−k| = |E

t−1
k=h ρ

k
t−hut−k| ≤t−1

k=h ρ
kE|ut−k| = O(ρh) → 0. Since by (A.20), E(yt −zt(ρt−h))

2
=

o(1), this proves Eyt → 0, as t → ∞.
Proof of (2.17). Let k ≥ 0. It suffices to show that, as t → ∞,

E

yt+kyt − zt(ρt)zt+k(ρt)


→ 0,

E

zt(ρt)zt+k(ρt)] − σ 2

u E[ρk
t (1 − ρ2

t )
−1

→ 0.
(A.3)

By (A.20), E(yt−zt(ρt))2 = o(1) and E(yt+k−zt+k(ρt))
2

= o(1). By
(2.14), Ey2t < ∞ and Ez2t+k < ∞. Thus, by the Cauchy inequality,
E|yt+kyt−zt(ρt)zt+k(ρt)| ≤ E|(yt+k−zt+k(ρt))yt |+E|zt+k(ρt)(yt−
zt(ρt))| ≤ C{E(yt+k − zt+k(ρt))

2
}
1/2

+ C{E(yt − zt(ρt))2}1/2 =

o(1), which verifies the first claim in (A.3). To show the second
claim, use the independence between ρj’s and uj’s, to obtain
E[zt(ρt)zt+k(ρt)] = σ 2

u E[
t−1

i=0 ρ
k+2i
t ] → σ 2

u E[ρk
t


∞

i=0 ρ
2i
t ] =

σ 2
u E[ρk

t (1 − ρ2
t )

−1
], as t → ∞, which proves (2.17).

Proof of (2.18). By (A.2), and mutual independence of ρt ’s, ut ’s
and y0,

Ey2t = E


t−1
j=0

ct,jut−j + ct,ty0

2

= E


t−1
j=0

ct,jut−j

2

+ E

ct,ty0

2
≤

t−1
j=0

E[c2t,j]σ
2
u + c2t,tEy

2
0 ≤ (σ 2

u + Ey20)
∞
j=0

ρ2j

≤ (σ 2
u + Ey20)(1 − ρ2)−1. (A.4)

Next, by (A.2) and the fact that E[ut+iyt ] = E[ytE[ut+i|Ft ]] = 0,
i ≥ 1,

Cov(yt+k, yt) = Cov


k−1
j=0

ct+k,jut+k−j + ct+k,kyt , yt


= Cov


ct+k,kyt , yt


≤ (E[c2t+k,ky

2
t ])

1/2(Ey2t )
1/2

≤ ρkEy2t , k ≥ 1,

which together with (A.4) implies (2.18). �

Proof of Theorem 2.3. (i) By yj = ρj−1yj−1 + uj,

ρn,t − ρt = σ−2
Y ,t


n

j=1

btjyj−1uj +

n
j=1

btj(ρj−1 − ρt)y2j−1


=: σ−2

Y ,t


SYu,t + rn,t


. (A.5)
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Table A.2
MSE and 90% Coverage Probability results forρn,t for the normal kernel.
By (A.22),σ−2
Y ,t = Op(H−1). Observe that ES2Yu,t =

n
j=1 b

2
tjE[y2j−1u

2
j ].

Below, we show that

E
n

j=1

b2tjy
2
j−1u

2
j = O(H), (A.6)

rn,t = Op

(H̄/n)γH + 1


, (A.7)

which yields SYu,t = Op(H1/2) and together with (A.5) proves
(2.24):ρn,t − ρt = Op


(H̄/n)γ + H−1/2


. To prove (A.6), note that

by (2.14), E[y2j−1u
2
j ] = E[y4j−1] + E[u4

j ] ≤ C for all j, which implies
E
n

j=1 b
2
tjy

2
j−1u

2
j ≤ C

n
j=1 b

2
tj ≤ CH , by (A.1). To show (A.7),

select h := bH̄ such that (A.16) holds and bound |rn,t | ≤
n

j=1

btj|ρj−1 − ρt |y2j−1 ≤ Rt,h


|j−t|≤h btjy
2
j−1 + 2


|j−t|>h btjy

2
j−1 where

Rt,h := maxj: |t−j|≤h |ρj − ρt |. This implies (A.7) because

Rt,h = Op((H̄/n)γ ),


|j−t|≤h

btjy2j−1 = Op(H),
|j−t|>h

btjy2j−1 = op(1).
(A.8)

By (A.20), Rt,h = Op((h/t)γ ). Since t ∼ τn and h = bH̄ , this
implies the first claim in (A.8). The second and third claims follow
noting that maxj Ey2j ≤ C by (2.14), while (A.1) and (A.16) imply
E


|j−t|≤h btjy
2
j−1 ≤ CH and E


|j−t|>h btjy

2
j−1 ≤ C


|j−t|>h btj =

o(1).
(ii) ForH such that (H̄/n)γ = o(H−1/2), by (A.7) rn,t = op(H1/2),

while by Lemma A.2,σ−1
Yu,t = Op(H−1/2). Hence,σ−1

Yu,t rn,t = op(1),
and by (A.5),σ 2

Y ,tσYu,t (ρn,t − ρt) =
SYu,tσYu,t +

rn,tσYu,t =
SYu,tσYu,t + op(1).

Sinceσ−1
Yu,tSYu,t → N(0, 1) by (A.38) of Lemma A.4, this completes

the proof of (2.25). �

Proof of Corollary 2.2. In view of the asymptotic normality result
in (2.25), it remains to show that σ 2

Yu,t/σ 2
Yu,t →p 1 which follows
from |σ 2
Yu,t/σ 2

Yu,t − 1| = σ−2
Yu,t |σ 2

Yu,t − σ 2
Yu,t | = op(1), becauseσ−2

Yu,t = Op(H−1) by Lemma A.2, and

σ 2
Yu,t −σ 2

Yu,t = op(H). (A.9)

To verify (A.9), useu2
j − u2

j = (uj − uj)
2

+ 2(uj − uj)uj and the
Cauchy inequality, to obtain

|σ 2
Yu,t −σ 2

Yu,t | ≤

n
j=1

b2tjy
2
j−1|u2

j − u2
j | ≤ q2n + 2qnσYu,t ,

where q2n :=
n

j=1 b
2
tjy

2
j−1(uj − uj)

2 and σYu,t is as in (2.22). By
Lemma A.2, σYu,t = Op(H1/2). Hence, to prove (A.9), it suffices to
show that

q2n = op(H). (A.10)

Notice, |uj − uj| = |yj − ρ̂n,tyj−1 − uj| = |(ρj−1 − ρ̂t)yj−1| ≤

(|ρj−1−ρt |+|ρt − ρ̂n,t |)|yj−1|. Then y2j−1(uj−uj)
2

≤ 2y4j−1{(ρj−1−

ρt)
2
+ (ρt − ρ̂n,t)

2
}, and

q2n ≤ 2
n

j=1

b2tjy
4
j−1(ρj−1 − ρt)

2
+ 2(ρt − ρ̂n,t)

2
n

j=1

b2tjy
4
j−1

=: 2(qn,1 + qn,2). (A.11)

To bound qn,1, note that |ρj| ≤ ρ, maxj btj < ∞ and, by (2.14),
maxj Ey4j < ∞. Hence, by the same argument as in the proof of
(A.7), it follows qn,1 ≤ C

n
j=1 btj|ρt − ρt |y4j−1 = Op


H̄/n)γH +

1


= op(H).
To bound qn,2, note that by (2.24), ρt − ρ̂n,t = op(1), whilen
j=1 b

2
tjEy

4
j−1 ≤ C

n
j=1 b

2
tj = O(H), by (A.1). This implies qn,2 =

op(H), completing the proof of (A.10). �

Proof of Proposition 2.1. The first claim in (2.26) in shown in
(A.47) of Lemma A.5. It implies the second claim noting that Eū2

t =

σ 2
u B

−1
2t = O(H−1), by (A.1).
In addition, if H is such that (H̄/n)γ = o(H−1/2), then (A.47)

implies (1 − ρt)ȳt = ūt + op

H−1/2


, which together with (A.48)

proves (2.27). �
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Table A.3
MSE and 90% Coverage Probability (CP) results forρn,t , αn,t and ȳt for the normal kernel.
Proof of Theorem 2.4. By definition, y′

j = yj − µj, j ≥ 1 follows
the AR(1)model (2.1). First, we prove the claims about ȳt . Note that

ȳt − µt = B−1
1t

n
j=1

btj(yj − µt) = B−1
1t

n
j=1

btj(µj − µt)

+ B−1
1t

n
j=1

btjy′

j =: r1t + ȳ′

t .

By (A.1), B1t ∼ H , which togetherwith (A.52) of LemmaA.6 implies
r1t = Op


(H̄/n)β+H−1


. Since by (2.26), ȳ′

t = Op

(H̄/n)γ +H−1/2


,

and β ≥ γ , this proves (2.31). In addition, if (H̄/n)γ = o(H−1/2),
then r1t = op(H−1/2), so that ȳt − µt = ȳ′

t + op(H−1/2), which
together with (2.27) proves (2.32).

To prove the claims about ρn,t , set ŷj := yj − ȳt , SYY ,t :=n
j=1 btjŷjŷj−1, SY ′Y ′,t :=

n
j=1 btjy

′

jy
′

j−1, σ̂
2
Ŷ ,t

:=
n

j=1 btjŷ
2
j−1 and

σ̂ 2
Y ′,t :=

n
j=1 btjy

′ 2
j−1. By definition (2.29),ρn,t = SŶ Ŷ ,t/σ 2

Ŷ ,t
. Ob-

serve thatρn,t := SY ′Y ′,t/σ 2
Y ′,t is the estimator of the parameter ρt

of an AR(1) model with no intercept.
Hence, by (A.53) of Lemma A.6, with ξn := Op

(H̄/n)γH + 1


,

|ρn,t −ρn,t | =

SYY ,tσ 2
Ŷ ,t

−
SY ′Y ′,tσ 2

Y ′,t

 =

SY ′Y ′,t + ξnσ 2
Y ′,t + ξn

−
SY ′Y ′,tσ 2

Y ′,t


≤

|ξn|{|SY ′Y ′,t/σ 2
Y ′,t | + 1}σ 2

Y ′,t + ξn

= Op(|ξn|H−1) = δn, (A.12)

where δn = Op

(H̄/n)γ + H−1


, since |ρn,t | = |SY ′Y ′,t/σ 2

Y ′,t | =

Op(1) by (2.24), andσ 2
Y ′,t ≥ cH for some c > 0 by (A.22).

Hence, ρ̂n,t = ρn,t + δn. Sinceρn,t satisfies (2.24), this together
with Corollary 2.1 implies (2.31), while for (H̄/n)γ = o(H−1/2),ρn,t satisfies (2.25) which implies asymptotic normality (2.32).

Finally, we discuss the estimate αn,t = ȳt(1 − ρn,t) of αt =

µt − ρt−1µt−1. Note that

ȳt − µt = ȳ′

t + B−1
1t

n
j=1

btj(µj − µt) = ūt(1 − ρt)
−1

+ δn,
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in view of (2.26), (A.52), and assumption β ≥ γ . Moreover, by
(A.12), ρn,t − ρn,t = δn, while by (A.48), ūt = Op(H−1/2), and,
by (2.32),ρn,t − ρt = Op(H−1/2)+ δn. Hence,

αn,t =


µt + ūt(1 − ρt)

−1
+ δn


({1 − ρt} + {ρt −ρn,t})

= µt(1 − ρt)+ ūt + µt(ρt −ρn,t)+ δn

= µt(1 − ρt)+ ūt + µt(ρt −ρn,t)+ δn. (A.13)

Assumption 2.3 and (A.20) straightforwardly imply thatαt−µt(1−
ρt) = µtρt − µt−1ρt−1 = δn. Hence αn,t − αt = Zn,t + δn,

where Zn,t = ūt + µt(ρt −ρn,t). Clearly, the above bounds imply
Zn,t = Op(H−1/2)+δn, which proves (2.31). In addition, if (H̄/n)γ =

o(H−1/2), then δn = op(H−1/2). Since (B1t/B3t)Zn,t →D N(0, 1) by
(A.39), and B1t/B3t = Op(H1/2) by (A.1) and (A.23), this implies
(2.32) forαn,t and completes the proof. �

Proof of Corollary 2.3. To prove the first claim, use Lemmas A.2
and A.6 to obtain σ 2

Ŷ ,t
= σ 2

Y ′,t + op(H) = Hv21,t + op(H), where

v21,t = σ 2
u (1−ρ2

t )
−1. This together withρn,t −ρt = op(1) of (2.31)

and B1/2
1t ∼ H1/2 of (A.1) implies1 − ρ̂n,t

1 + ρ̂n,t

1/2 B3/2
1t

B2tσŶ ,t =

1 − ρt

1 + ρt

1/2 B1t(1 − ρ2
t )

1/2

B2tσu
(1 + op(1))

=
B1t

B2t

(1 − ρt)

σu
(1 + op(1)),

which, in view of asymptotic normality (2.32), proves the first
claim in (2.33).

To prove the second and third claims in (2.33), in view of (2.32),
it suffices to show that

(σ 2
Ŷ ,t
/σŶ û,t)/(σ 2

Y ′,t/σY ′u,t)→p 1, B̂2
3t/B

2
3t →p 1. (A.14)

To check the first claim, note that by Lemma A.6, σ 2
Ŷ ,t

= σ 2
Y ′,t +

op(H) andσ 2
Ŷ û,t

= σ 2
Y ′u,t + op(H), while by (A.22)σ−2

Y ′,t = Op(H−1)

and σ−2
Y ′u,t = Op(H−1). Therefore, σ 2

Ŷ ,t
/σ 2

Y ′,t →p 1 and σŶ û,t/σY ′u,t

→p 1, which implies the first result of (A.14).
To prove the second result, note that |B2

3t/B
2
3t − 1| = B−2

3t |B2
3t −

B2
3t | = op(1), since B−2

3t = Op(H−1) by Lemma A.2, and as shown
below,B2

3t − B2
3t = op(H). Indeed, settingσ 2

Y ′uu,t :=
n

j=1 b
2
tjy

′

j−1u
2
j

and σ 2
Ŷ ûû,t

:=
n

j=1 b
2
tjŷj−1û2

j , from definition of B3t andB3t we
obtain

B2
3t −B2

3t = −2µt
B1tσ 2
Y ′,t

σ 2
Y ′uu,t + 2ȳt

B1tσ 2
Ŷ ,t

σ 2
Ŷ ûû,t

+µ2
t
B2
1tσ 4
Y ′,t

σ 2
Y ′u,t − ȳ2t

B2
1tσ 4
Ŷ ,t

σ 2
Ŷ û,t
. (A.15)

Combining the above properties ofσ 2
Y ′,t ,σ 2

Ŷ ,t
σ 2
Y ′u,t andσ 2

Ŷ û,t
with

ȳt = µt + op(1) of (2.31) and σ 2
Ŷ ûû,t

= σ 2
Y ′uu,t + op(H) = Op(H)

of Lemma A.6, and noting that Eµ2
t < ∞ implies µt = Op(1), we

obtain

ȳt
B1tσ 2
Ŷ ,t

σ 2
Ŷ ûû

= µt
B1tσ 2
Y ′,t

σ 2
Y ′uu,t + op(H),

ȳ2t
B2
1tσ 4
Ŷ ,t

σ 2
Ŷ û

= µ2
t
B2
1tσ 4
Y ′,t

σ 2
Y ′u,t + op(H),

which yields B2
3t −

B2
3t = op(H), completing the proof of (A.14). �
Proof of Proposition 2.2. Let 1 ≤ k ≤ h < t/2. Write, by (2.35),

µt+k − µt =

t+k−1
i=0

ct+k,iαt+k−i −

t−1
i=0

ct,iαt−i = m(t, k)+ m̃(t, k),

where m̃(t, k) :=
t−1

i=0 (ct+j,i − ct,i)αt−i, and m(t, k) = µt+k −

µt − m̃(t, k). To verify Assumption 2.3(ii), it remains to show that
Em2(t, k) ≤ C |k/t|2γ , 1 ≤ k ≤ h, and max1≤k≤h |m̃(t, k)| ≤

C

(h/t)γ + h−1


. By Assumption 2.4, maxi E|αi| < ∞ and E|αt+k−i

− at−i| ≤ C(k/(t − i))β for i ≤ t/2. Since |ct,i| ≤ ρ i, then

E|m(t, k)| ≤ CE


t+k−1
i=t

|ct+k,i||αt+k−i|

+

t−1
i=1

|ct+k,i||αt+k−i − at−i|



≤ C


∞

i=t/2

ρ i
+

t/2
i=1

ρ i(k/(t − i))β


≤ C(ρ[t/2]
+ |k/t|β) ≤ C |k/t|β .

On the other hand, m̃(t, j) =
h

i=1[· · ·]+
t−1

i=h+1[· · ·] =: snj + rnj.
By (A.17), for i = 1, . . . , h, |ct+j,i − c it | ≤ 3iρ i−1Rt,h, where
Rt,h = maxj:|j−t|≤h |ρt − ρj| = Op((h/t)γ ) by (A.20). Hence, |snj| ≤

CRt,h
h

i=1 ρ
i−1i|αt−i| = Op((h/t)γ ), because E

h
i=1 ρ

i−1i|αt−i| ≤

C


∞

i=1 ρ
i−1i < ∞. Finally, |rnj| ≤ 2

t−1
i=h+1 ρ

i
|αt−i| for all j ≤ h.

Since E
t−1

i=h+1 ρ
i
|αt−i| ≤ Cρh

= O(h−1), this implies maxj=1,...,h

|rnj| = Op(h−1), which completes the verification of Assump-
tion 2.3(ii) with β = γ .

Proof of (2.36). By (2.35), αt = µt − ρt−1µt−1. Thus, |µt − (1 −

ρt)
−1αt | ≤ (1 − ρt)

−1
|(1 − ρt)µt − αt | ≤ C |ρtµt − ρt−1µt−1| ≤

C(|ρt − ρt−1||µt | + ρ|µt − µt−1|) = op(1), because ρt − ρt−1 =

op(1) by (A.20) and µt − µt−1 = (µt − µt+h)+ (µt+h − µt−1) =

op(1) byAssumption 2.3(ii) verified forµt above. This proves (2.36)
and completes the proof of proposition. �

A.2. Auxiliary results

This section contains auxiliary results used to prove the main
theorems.

Recall notation: H̄ := H when K has finite support, and H̄ =

H log1/2 H when K has infinite support. We will repeatedly use the
following property of the kernel weights btj: there exists b > 0
such that, as H → ∞,
1≤j≤n, |t−j|≥bH̄

btj = o(1). (A.16)

Indeed, if kernel K has finite support, then K(x) = 0, |x| ≥ x0 for
some finite x0 > 0 and (A.16) holds with b > x0. If K has infi-
nite support, use b such that b2c ≥ 1, where c is the same as in
K(x) = O(e−cx2) in (2.21). Then,


|t−j|≥bH̄ btj ≤ C


∞

bH̄ e−c(x/H)2dx

≤ (bH̄)−1


∞

bH̄ e−c(x/H)2xdx ≤ CHH̄−1
= o(1).

We shall use the notation Rt,h := maxj:|j−t|≤h |ρt − ρj|. In the
following lemma, yt , ut and ct,j are as in Theorem 2.1.

Lemma A.1. (i) For t ≥ 1, and 1 ≤ j, s ≤ t − 1,

|ct,j − ρ
j
t | ≤ ρ j−1j max

k=1,...,j
|ρt − ρt−k|,

|ρ
j
t − ρ j

s| ≤ ρ j−1j|ρt − ρts|.

(A.17)
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(ii) For 1 ≤ t0 ≤ t, j ≥ 1,

|ρt+j − ρt | ≤ 2ρ|at0 |
−1 max

k=1,...,j
|at+k − at |. (A.18)

(iii) For t ≥ 1, 1 ≤ h < t/2 and j such that |t − j| ≤ h,

|yj − zj(ρt)| ≤ (Rt,2h + h−1)Yj,h, EY 4
j,h ≤ C, (A.19)

where random variables Yj,h do not depend on t, and C does not
depend on t, h and j.
(iv) Under Assumptions 2.1 and 2.2, as t → ∞, h → ∞ and
h = o(t),

Rt,h = Op

(h/t)γ


, max

j:|t−j|≤h
E(yj − zj(ρt))2 = o(1). (A.20)

Proof. (i) Notice that |a1 · · · aj − b1 · · · bj| = |(a1 − b1)a2 · · · ak +

b1(a2−b2)a3 · · · aj+b1 · · · bj−1(aj−bj)| ≤ jmaxi=1,...,j |ai−bi|aj−1,
if |ai| ≤ a and |bi| ≤ a. Thus, for 1 ≤ j ≤ t − 1,

|ct,j − ρ
j
t | = |ρt−1 . . . ρt−j − ρ

j
t | ≤ jρ j−1 max

i=1,...,j
|ρt − ρt−i|,

which proves the first claim of (A.17), while the second claim
follows by the same argument.

(ii) To prove (A.18), denote mt := max0≤s≤t |as|. Then, mt+j ≥

mt ≥ |at0 |, mt ≥ |at |, and

|ρt+j − ρt | = ρ

 at+j

mt+j
−

at
mt


≤ ρ


|at+j − at |

mt+j
+ |at |

|mt+j − mt |

mt+jmt


≤ ρ|at0 |

−1(|at+j − at | + |mt+j − mt |).

We show that

|mt+j − mt | ≤ max
k=1,...,j

|at+k − at |, (A.21)

which completes the proof of (A.18). Let mt+j = |aj∗ |. If j∗ ≤ t ,
then mt+j − mt = 0 and (A.21) holds. If t < j∗ ≤ t + j, then
mt+j ≥ mt ≥ |at |, and mt+j − mt ≤ |aj∗ | − |at |, and (A.21) holds.

(iii) Proof of (A.19). By (2.13) and (2.15), |yj−zj(ρt)| =
j−1

k=1(cj,k−
ρk
t )uj−k +cj,jy0

, where by (2.12) and (2.3), |cj,k| ≤ ρk and |ρt | ≤ ρ.
For |j − t| ≤ h, by (A.17), |cj,k − ρk

t | ≤ |cj,k − ρk
j | + |ρk

j − ρk
t | ≤

ρk−1k{maxi=1,...,k |ρj − ρj−i| + |ρj − ρt |} ≤ 3ρk−1kRt,2h, while
|cj,j| ≤ ρ j

≤ ρh
≤ (h| log ρ|)−1, since ρ < 1 and j ≥ h. Hence,

|yj − zj(ρt)| =

h−1
k=1

|cj,k − ρk
t ||uj−k| + 2

j−1
k=h

ρk
|uj−k| + ρh

|y0|

≤ (Rt,2h + h−1)CYj,h,

where Yj,h =
h−1

k=1 3ρ
k−1k|uj−k| + 2

j−1
k=h ρ

k−h
|uj−k| + |y0|. Since

0 < ρ < 1, Eu4
1 < ∞ and Ey40 < ∞, then by the same argument as

in the proof of (2.14), EY 4
j,h ≤ C


(3


∞

k=1 ρ
k−1k)4+(2


∞

k=0 ρ
k)4+

Ey40

< ∞. This proves (A.19).

(iv) To prove the first claim in (A.20), let t0 := t − h. Then by
|ρt − ρj| ≤ |ρt − ρt0 | + |ρj − ρt0 | and (A.18),

Rt,h ≤ 2 max
k=1,...,2h

|ρt0+k − ρt0 | ≤ 4ρ|at0 |
−1in,

in := max
k=1,...,2h

|at0+k − at0 |.

We will show that |at0 |
−1

= Op(t−γ ) and in = Op(hγ ) which
implies Rt,h = Op((h/t)γ ). Firstly, |at0 |

−1
= Op(t−γ ) holds since
by Assumption 2.2 t−γ0 at0 →D W1 + g(1) as t0 = t − h → ∞,
where W1 has continuous distribution. To bound in, let a′

j :=

aj − Eaj and ĩn := maxk=1,...,2h |a′

t0+k − a′
t0 |. Then in ≤ ĩn +

maxk=1,...,2h |Eat0+k−Eat0 | ≤ ĩn+Chγ , because |Eat0+k−Eat0 | ≤ Ckγ
by (2.5). The stationarity of vi’s in Assumption 2.1(ii) implies that
ĩn =D maxk=1,...,2h |a′

k−a′

0|. Thus, by theweak convergence (2.5), as
h → ∞,

(2h)−γ ĩn =D sup
0≤τ≤1

(2h)−γ |a′

[2τh] − a′

0| →D sup
0≤τ≤1

|Wτ | = Op(1).

Hence, ĩn = O(hγ ), in = Op(hγ ) which completes the proof of the
first claim of (A.20).

To show the second claim in (A.20), use (A.19) and the Cauchy
inequality, to obtain for |j − t| ≤ h, E(yj − zj(ρt))2 ≤ E[(Rt,2h +

h−1)2Y 2
j,h] ≤ C(E(Rt,2h+h−1)4)1/2,where C < ∞ does not depend

on t, j, h. Because h−1
→ 0, and |ρt | ≤ ρ implies Rt,2h ≤ 2ρ,

it remains to show that ERt,2h → 0. Note that for any ϵ > 0,
ERt,2h ≤ ϵP(|Rt,2h| < ϵ) + 2P(|Rt,2h| ≥ ϵ) ≤ 2ϵ, as t → ∞,
because by the first part of (A.20), Rt,2h = op(1). This completes
the proof of (A.20) and the lemma. �

Denote v21,t = σ 2
u (1 − ρ2

t )
−1, v22,t = βKE[U2

0 (a)u
2
1]|a=ρt and

v23,t := βKE[(1 − δU0(a))2u2
1]|a=ρt , δ=δt , whereU0(a)=


∞

k=0 a
ku−k

and δt := µt(1 − ρ2
t )/σ

2
u . Observe that v22,t = βK


∞

i,s=0 ρ
i+s
t

E[u−iu−su2
1]. Let B3t be as in (2.32) of Theorem 2.4. In the lemma

below, c1, c2 > 0 denote some positive finite constants.

Lemma A.2. The following holds for σ 2
Y ,t in Theorem 2.3(i), for σ 2

Yu,t
in Theorem 2.3(ii) and for B2

3,t in Theorem 2.4(ii):

σ 2
Y ,t/(Hv

2
1,t)→p 1, σ 2

Yu,t/(Hv
2
2,t)→p 1, (A.22)

B2
3,t/(Hv

2
3,t)→p 1, (A.23)

where c1 ≤ v2s,t ≤ c2, s = 1, 2 and c1 ≤ v23,t = Op(1).

Proof. First we verify the claims about v21,t , v
2
2,t and v

2
3,t . The claim

c1 ≤ v21,t ≤ c2 holds, because |ρt | ≤ ρ implies σ 2
u ≤ v21,t ≤

σ 2
u (1 − ρ2)−1. The claim v22,t ≤ c2 follows by applying in v22,t =

βKE[U2
0 (a)u

2
1]|a=ρt the bound E[U2

0 (a)u
2
1] ≤ E[U4

0 (a)] + Eu4
1 ≤

(1 − ρ)−4Eu4
1 + Eu4

1 < ∞, valid for |a| ≤ ρ. The claim v22,t ≥ c1
follows by noting that by (2.23), V1 := E[u2

1|u0, · · ·] ≥ c > 0,
which implies E[U2

0 (a)u
2
1] = E[U2

0 (a)V1] ≥ cE[U2
0 (a)] ≥ cσ 2

u > 0.
To verify the claim that v23,t = Op(1), use the bound E[(1 −

δU0(a))2u2
1] ≤ 4(1+δ4E[U4

0 (a)]+Eu4
1) ≤ 4(1+δ4(1−ρ)−4Eu4

1 +

Eu4
1) < ∞ for 0 ≤ a ≤ ρ, and note that δt = Op(1), because

E|δt | ≤ E|µt |2σ−2
u < ∞. To show that v23,t ≥ c1, note that

V1 = E[u2
1|u0, . . .] ≥ c > 0 implies E[(1 − δU0(a))2u2

1] =

E[(1 − δU0(a))2V1] ≥ cE[(1 − δU0(a))2] = c + δ2EU2
0 (a) ≥ c .

Proof of (A.22). We verify the second claim, (the first claim can be
verified similarly). Set t0 = t − 2h where h = bH̄ with b as in
(A.16). We shall approximateσ 2

Yu,t by

σ 2(apr)
Yu,t :=


j:|t−j|≤h

b2tjz
2
t0,j−1u

2
j , zt0,j :=

h
k=0

ρk
t0uj−k. (A.24)

We show below thatσ 2
Yu,t −σ 2(apr)

Yu,t = op(H), (A.25)

σ 2(apr)
Yu,t /(Hv22,t0)→p 1, v22,t0/v

2
2,t →p 1. (A.26)

Together with v2,t ≥ c1 > 0 this implies (A.22): (Hv22,t)
−1σ 2

Yu,t =

(Hv22,t)
−1(σ 2

Yu,t −σ 2(apr)
Yu,t )+ (Hv22,t)

−1σ 2(apr)
Yu,t →p 1.
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Proof of (A.25). The claim follows from the bound |σ 2
Yu,t −σ 2(apr)

Yu,t |

≤


j:|t−j|≥h b
2
tjy

2
j−1u

2
j +


j:|t−j|<h b
2
tj|y

2
j−1−z2t0,j−1|u

2
j , observing that

E


j:|t−j|≥h

b2tjy
2
j−1u

2
j = op(1), (A.27)

E


j:|t−j|<h

b2tj|y
2
j−1 − z2t0,j−1|u

2
j = o(H). (A.28)

The result (A.27) follows from (A.1) since E[y2j−1u
2
j ] ≤ Ey4j−1+Eu4

j ≤

C for all j by (2.14). To prove (A.28), use
n

j=1 b
2
tj = O(H) of (A.1)

and

max
j: |j−t|<h

E|y2j−1 − z2t0,j−1|u
2
j = o(1). (A.29)

In turn, to verify (A.29), first we show that

max
j:|j−t|<h

E(y2j−1 − z2t0,j−1)
2

→ 0. (A.30)

By the same argument as in the proof of (A.19) it follows that

|yj − zt0,j| ≤ (Rt,2h + h−1)Yj,h, EY 2
j,h ≤ C, |j − t| ≤ h (A.31)

where random variables Yj,h do not depend on t , and C does not
depend on t, h and j. Thus, (A.30) follows by the same argument as
in the proof of the second claim in (A.20). Now, to show (A.29),
set uj,1 := ujI(|uj| ≥ L), L > 0. Then |y2j−1 − z2t0,j−1|u

2
j ≤

|y2j−1 − z2t0,j−1|(u
2
j,1 + L2). By the Cauchy inequality and stationarity

of ut , E|y2j−1 − z2t0,j−1|u
2
j,1 ≤ (E(y2j−1 − z2t0,j−1)

2)1/2(Eu4
j,1)

1/2
≤

C(Eu4
1,1)

1/2
→ 0, as L → ∞ uniformly in j, because Ey4j ≤ C

and Ez4t0,j ≤ C for all j, h and t , see (2.14). On the other hand,
E|y2j−1 − z2t0,j−1| = E

(yj−1 − zt0,j−1)
2

+ 2zt0,j−1(yj−1 − zt0,j−1)


≤ E(yj−1 − zt0,j−1)
2

+ 2(E(yj−1 − zt0,j−1)
2)1/2(Ez2t0,j−1)

1/2
→ 0

uniformly in |j − t| ≤ h because of (A.30). This proves (A.29).

Proof of (A.26). Let e2t0 :=
h

i,s=0 ρ
i+s
t0


j:|t−j|≤h b

2
tjE[uj−1−iuj−1−s

u2
j ]. To prove the first result of (A.26), it suffices to show

e2t0 = Hv22,t0(1 + op(1)), σ 2(apr)
Yu,t − e2t0 = op(H). (A.32)

First, as h → ∞,


j:|t−j|≤h b
2
tj ∼ HβK , by (A.16) and (A.1), while

|


∞

s=h+1 ρ
2s
t0 | ≤


∞

s=h+1 ρ
2s

→ 0, and by stationarity E[uj−1−i

uj−1−su2
j ] = E[u−iu−su2

1]. Therefore,

e2t0 =

∞
i,s=0

ρ i+s
t0 E[u−iu−su2

1]HβK (1 + op(1)) = Hv22,t0(1 + op(1)).

To prove the second claim in (A.32), bound

H−1
|σ 2(apr)

Yu,t − e2t0 | =

 h
i,s=0

ρ i+s
t0 Tn,is

 ≤

h
i,s=0

ρ i+s
|Tn,is|,

Tn,is := H−1


j:|t−j|≤h

b2tjxj,

where xj := uj−1−iuj−1−su2
j − E[uj−1−iuj−1−su2

j ]. We will show that

max
i,s

E|Tn,is| ≤ C; Tn,is →p 0, ∀s, t, (A.33)

which implies H−1
|σ 2(apr)

Yu,t − e2t0 | →p 0, since then for any fixed
L,
L

i,s=0 ρ
i+s

|Tn,is| →p 0, while E
h

max(i,s)>L ρ
i+s

|Tn,is| ≤ C


∞

i=L

ρ i
→ 0, as L → ∞.
The first claim in (A.33) is valid because E|Tn,is| ≤ H−1

j:|t−j|≤h

b2tj2Eu
4
1 ≤ C by (A.1). To verify Tn,is →p 0 for fixed i, s we shall use
Lemma A.3. Write Tn,is =
n

j=1 znjxj, where znj := H−1b2tjI(|j −

t| ≤ h). Note that xj is a stationary ergodic process, because
uj is stationary ergodic, see Theorem 3.5.8 in Stout (1974). In
addition, Ex1 = 0, E|x1| < ∞ and Tn,is = 0. Moreover, the
znj’s satisfy the assumptions of Lemma A.3 with νn = 1. Indeed,n

j=1 |znj| ≤ H−1n
j=1 b

2
tj = O(1), by (A.1), while

n
j=1 |znj −

zn,j−1| ≤ H−1(


j:|t−j|≤h |b2nj − b2n,j−1| + b2n,t−h + b2n,t+h) = o(1),
because of (2.21). Hence, by Lemma A.3, Tn,is = op(νn) = op(1).
This completes the proof of (A.33).

Proof of the second claim in (A.26). We have |v22,t/v
2
2,t0

− 1| ≤

|v22,t − v22,t0 |/v
2
2,t0

= op(1) because v22,t0 ≥ c1 > 0 and v22,t −

v22,t0 →p 0. To show the latter, recall v22,t = βK


∞

i,s=0 ρ
i+s
t E[u−iu−s

u2
1] and E|u−iu−su2

1| ≤ Eu4
1 < ∞. Then by (A.17),

v22,t − v22,t0

 ≤

C


∞

i,s=0 |ρ i+s
t0 − ρ i+s

t | ≤ C |ρt0 − ρt |


∞

i,s=1(i+ s)ρ i+s−1
≤ C |ρt0 −

ρt | = op(1), because |ρt0 − ρt | ≤ Rt,2h = Op((h/t)γ ) = op(1) by
(A.20).

Proof of (A.23). Observe that y′

j = yj − µj is an AR(1) process
(2.28) with no intercept. Let gt := µtB1t/σ 2

Y ′,t . Then B2
3t =n

j=1 b
2
tj(1 − gty′

j−1)
2u2

j . We shall approximate B2
3t by B2 (apr)

3t :=
|j−t|≤h b

2
tj(1− g̃t0zt0,j−1)

2u2
j , where t0 and zt0,j are as in (A.24) and

g̃t0 = µt0B1t0/(Hv
2
1,t0
). We shall prove that

B2
3t − B2 (apr)

3t = op(H), (A.34)

B2 (apr)
3t /(Hv23,t0)→p 1, v23,t0/v

2
3,t →p 1, (A.35)

which implies (A.23): (Hv23,t)
−1B2

3t = (Hv23,t)
−1(B2

3t − B2 (apr)
3t ) +

(Hv23,t)
−1B2 (apr)

3t →p 1 because v3,t ≥ c1 > 0.
Claim (A.34) follows using a similar argument as in the proof of

(A.25) combined with

gt − g̃t0 = op(1), g̃t0 = Op(1). (A.36)

To verify (A.36), note that

|gt − g̃t0 | ≤ B1t{|(µt − µt0)σ−2
Y ′,t | + |µt0 |(|σ−2

Y ′,t −σ−2
Y ′,t0

|

+ |σ−2
Y ′,t0

− (Hv21,t0)
−1

|)} = op(1).

The latter holds because B1t = O(H) by (A.1), µt − µt0 = Op((h/
n)β + h−1) = op(1) and µt0 = Op(1) by Assumption 2.3, whereas
by (A.22)σ−2

Y ′,t = Op(H−1),σ−2
Y ′,t0

− (Hv21,t0)
−1

= op(H) and

σ−2
Y ,t −σ−2

Y ,t0
= op


H−1. (A.37)

To verify (A.37), note that an approximation, similar to (A.25),
impliesσ 2

Y ,t −σ 2
Y ,t0

= op

H

, while by (A.22),σ−2

Y ,t = Op(H−1) andσ−2
Y ,t0

= Op(H−1). Hence, |σ−2
Y ,t −σ−2

Y ,t0
| = σ−2

Y ,t σ
−2
Y ,t0

|σ 2
Y ,t −σ 2

Y ,t0
| =

op

H−1


. The above bounds also yield |g̃t0 | = B1t |µt0 |(Hv

2
1,t0
)−1

=

Op(1), proving (A.36).
Claims in (A.35) follow by arguing as in the proof of (A.26) and

using (A.36). This completes the proof of the lemma. �

We state for convenience the following result, which is shown
in Lemma 4.7 of Dalla et al. (2012).

Lemma A.3. Let Tn =


j∈Z znjxj, where {xj} is a stationary ergodic
sequence, E|x1| < ∞, and znj are real numbers such that for some
νn < ∞,


j∈Z |znj| = O(νn) and


j∈Z |znj − zn,j−1| = o(νn), as

n → ∞. Then E|Tn − ETn| = o(νn).

Next we establish asymptotic normality of the sum SYu,t =n
j=1 btjyj−1uj appearing in (A.5), and of Zn,t = ūt + µt(ρt −ρn,t),

used in (A.13). Recall definition (2.32) of B3t .
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Lemma A.4. The following holds for SYu,t in Theorem 2.3(ii) and for
Zn,t in Theorem 2.4(ii):

σ−1
Yu,tSYu,t →D N(0, 1), (A.38)

B−1
3t B1tZn,t →D N(0, 1). (A.39)

Proof. To prove (A.38), set h = bH̄ with b as in (A.16), and t0 =

t − 2h. We shall approximate SYu,t by S(apr)Yu,t =


|j−t|≤h btjzt0,j−1uj
with zt0,j as in (A.24). We will show that

SYu,t − S(apr)Yu,t = op(H1/2), (A.40)

d−1
n S(apr)Yu,t →D N (0, 1), d2n := Hv22,t0 . (A.41)

By (A.22) and (A.26), d2n/σ 2
Yu,t →p 1, andσ−1

Yu,t = Op(H−1/2), which
implies (A.38):

SYu,tσYu,t =
SYu,t − S(apr)Yu,tσYu,t +

S(apr)Yu,t

dn

dnσYu,t
= op(1)+

S(apr)Yu,t

dn
(1 + op(1))→D N (0, 1).

Proof (A.40). Since uj is a m.d. noise,

E

SYu,t − S(apr)Yu,t

2
= E

 
|j−t|≤h

btj(yj−1 − zt0,j−1)uj

2

+ E

 
j:|j−t|>h

btjyj−1uj

2

≤ E


|j−t|≤h

b2tj(yj−1 − zt0,j−1)
2u2

j

+ E


j:|j−t|>h

b2tj(yj−1uj)
2

= o(H)

by the same argument as in the proof of (A.25). This proves (A.40).

Proof (A.41). Notice that dn is Ft0 measurable and Xnj := d−1
n

btjzt0,j−1ujI(|j − t| ≤ h) are martingale differences with respect
to filtration Fj. By Theorem 3.2 of Hall and Heyde (1980), to proven

j=1 Xnj →D N (0, 1) it suffices to verify that

(a)
n

j=1

X2
nj →p 1, (b) max

1≤j≤n
|Xnj| →p 0,

(c) E max
1≤j≤n

X2
nj → 0.

(A.42)

Claim (a) is shown in (A.26). To show (b), notice d−1
n ≤ CH−1/2

because v2,t0 ≥ c > 0 by Lemma A.2. Bound |zt0,j| = |
h

k=0 ρ
k
t0

uj−k| ≤ ζj :=


∞

k=0 ρ
k
|uj−k| where ζj is a stationary process with

Eζ 4
1 < ∞. Thus, |Xnj| ≤ CH−1/2bnjθj ≤ C ′H−1/2θj, θj := |ζj−1uj|.

Hence, EX2
njI(|Xnj| ≥ ε) ≤ CH−1b2njE[θjI(C ′ 2H−1/2θj ≥ ε)], and

P

max
1≤j≤n

|Xnj| ≥ ε


≤ ε−2
n

j=1

EX2
njI(|Xnj| ≥ ε)

≤ Cε−2E[θ21 I(C
′ 2H−1/2θ1 ≥ ε)] → 0,

H → ∞, ∀ε > 0 (A.43)

by stationarity of θj, Eθ21 < ∞ and (A.1). This proves (b) and (c).

Proof of (A.39). By definition, B1tZn,t =
n

j=1 btjuj − gtSY ′u,t =n
j=1 btj(1 − gty′

j−1)uj where gt = µt(B1t/σ 2
Y ′,t) and y′

j = yj − µj
is an AR(1) process (2.28) with no intercept. We shall approximate
this sum by Q (apr)

n,t =


|j−t|≤h btj(1− g̃t0zt0,j−1)uj, where t0 and zt0,j
are as in (A.24), and g̃t0 = µt0B1t0/(Hv

2
1,t0
).

We show that

B1tZn,t − Q (apr)
n,t = op(H1/2), (A.44)

d̃−1
n Q (apr)

n,t →D N (0, 1), d̃2n := Hv23,t0 . (A.45)

By (A.23) and (A.35), B−1
13 = Op(H−1/2) and d̃n/B3,t →p 1, which

implies (A.39):

B1tZn,t
B3,t

=
B1tZn,t − Q (apr)

n,t

B3,t
+

Q (apr)
n,t

d̃n

d̃n
B3,t

= op(1)+
Q (apr)
n,t

d̃n
(1 + op(1))→D N (0, 1).

Proof of (A.44). Let in :=


|j−t|>h btjuj. Then

|B1tZn,t − Q (apr)
n,t | ≤ |in| + |(gt − g̃t0)SY ′u,t + g̃t0(SY ′u,t − S(apr)Y ′u,t )|,

where in = op(1) because E|in| ≤ E|u1|


j:|j−t|≥h btj = o(1) by

(A.16), SYu,t = Op(H1/2) by (A.38) and (A.22), and SYu,t − S(apr)Y ′u,t =

op(H1/2) by (A.40). Together with (A.36), this implies |B1tZn,t −

Q (apr)
n,t | = op(H1/2), proving (A.44).

Proof of (A.45). Write d̃−1
n Q (apr)

n,t =
n

j=1 νnj where νnj := d̃−1
n btj

(1 − g̃t0zt0,j−1)ujI(|j − t| ≤ h). Let pn := logH and Xnj :=

νnjI(|µt0 | ≤ pn). Since Eµ2
t0 ≤ C and H → ∞, then P(|µt0 | ≥

pn) → 0. Hence, it suffices to verify that
n

j=1 Xnj → N (0, 1),
which in turn holds if m.d.s. Xnj satisfies (a), (b) and (c) of (A.42).

Claim (a) follows from (A.35). To show (b) and (c), observe
that d̃−1

n ≤ CH−1/2 by Lemma A.2, while |zt0,j| ≤ ζj where ζj
is the same as in the proof of (A.41). Note that Eζ 4

1 < ∞ and
|g̃t0 | = |µt0B1t0/(Hv

2
1,t0
)| ≤ C |µt0 | by (A.1) and Lemma A.2. Hence,

|Xnj| ≤ CH−1/2pnbnjθj ≤ C ′H−1/2pnθj, θj = |ζj−1uj|. We shall show
that

E[p2nθ
2
1 I(C

′H−1/2pnθ1 ≥ ε)] → 0, n → ∞, ∀ε > 0, (A.46)

which yields (b) and (c) by the same argument as in (A.43). By
assumption, E|u1|

4+δ < ∞ for some δ > 0. Since |θ1| =

|ζ0u1| ≤ max(ζ 2
0 p

−2
n , p

2
nu

2
1), then p2nE[θ21 I(C

′H−1/2pnθ1 ≥ ε)] ≤

p2n

E[ζ 4

0 p
−4
n ] + E[p4nu

4
1I(C

′H−1/2p2nu
2
1 ≥ ε)]


≤ Cp2n(p

−4
n + E[p4nu

4
1

(C ′H−1/2p2nu
2
1/ε)

δ/2
]) ≤ C


p−2
n + p6+δn H−δ/4E|u1|

4+δ

≤ C(p−2

n +

p6+δn H−δ/4) → 0 as H → ∞, proving (A.46). �

Let ȳt and ūt be as in Proposition 2.1.

Lemma A.5. Let yt satisfy the assumptions of Theorem 2.3(i), and
H̄ = o(n). Then,

ȳt = (1 − ρt)
−1ūt + Op


(H̄/n)γ + H−1, (A.47)

(B2tσu)
−1B1t ūt →D N(0, 1). (A.48)

Proof. First we prove (A.47). Let h := bH̄ be as in (A.16) and
t0 := t − 2h. Set Sy,t :=

n
j=1 btjyj, Su,t :=

n
j=1 btjuj and

S ′
u,t :=


j:|t−j|≤h btjuj. Bound

|ȳt − (1 − ρt)
−1ūt | = B−1

1t |Sy,t − (1 − ρt)
−1Su,t |

≤ B−1
1t {|Sy,t − (1 − ρt0)

−1S ′

u,t | + |{(1 − ρt0)
−1

− (1 − ρt)
−1

}S ′

u,t + (1 − ρt)
−1(S ′

u,t − Su,t)|}

≤ CH−1
{|Sy,t − (1 − ρt0)

−1S ′

u,t |

+ |(ρt0 − ρt)S ′

u,t | + |Su,t − S ′

u,t |}, (A.49)
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using B1t ∼ H and |ρt | ≤ ρ < 1. Observe that ρt0 − ρt =

Op

(H̄/n)γ


by (A.20), S ′

u,t = Op(H1/2), because ES ′ 2
u,t ≤ CB1t ≤ H ,

and Su,t−S ′
u,t = op(1), because E|Su,t−S ′

u,t | ≤ E|u1|


j:|j−t|≥h btj =

o(1) by (A.16). This, together with

Sy,t − (1 − ρt0)
−1S ′

u,t = Op

(H̄/n)γH + 1


(A.50)

and (A.49) implies (A.47). To show (A.50), let zt0,j be as in (A.24).
Then, Sy,t − (1 − ρt0)

−1S ′
u,t = tn,1 + tn,2 + tn,3, where tn,1 =

|t−j|≤h btj(yj − zt0,j),

tn,2 :=


|t−j|≤h

btjzt0,j −


h

k=0

ρk
t0


S ′

t ,

tn,3 :=


|t−j|>h

btjyj −
∞

k=h+1

ρk
t0S

′

t .

Thus, it suffices to verify that

tn,1 = Op

(H̄/n)γH + 1


, tn,2 = Op(1), tn,3 = Op(1). (A.51)

To bound tn,1, note that by (A.31), |tn,1| ≤ C(Rt,2h + h−1)


|t−j|≤h
btj|Yj,h|, where E


|t−j|≤h btj|Yj,h| ≤ C


|t−j|≤h btj ≤ CH , and

Rt,h = Op

(h/t)γ ) = Op


(H̄/n)γ ) by (A.20). This implies (A.51)

for tn,1.
To bound tn,2, write

tn,2 =


j:|t−j|≤h

btj
h

k=0

ρk
t0uj−k −

h
k=0

ρk
t0


j:|t−j|≤h

btjuj =

h
k=0

ρk
t0θk,

where θk :=


j:|t−j|≤h btj(uj−k−uj).We shall show that E|θk| ≤ Ck,
which implies E|tn,2| ≤

h
k=0 ρ

kE|θk| ≤ C


∞

k=0 ρ
kk < ∞,

that proves tn,2 = Op(1). Let b′

tj := btjI(|j − t| ≤ h). Then
θk =

n
j=2(b

′

t,j+k − b′

tj)uj, and

E|θk| ≤ E|u1|

n
j=2

|b′

t,j+k − b′

tj| ≤ Ck
n

j=2

|b′

t,j+1 − b′

tj|

≤ Ck

 
|t−j|≤h

|bt,j+1 − btj| + bt,t−h + bt,t+h


≤ Ck,

because bnj’s are bounded and under (2.21),
n

j=1 |bt,j+1−btj| ≤ C .
Finally, |tn,3| ≤


j:|t−j|≥h bnj|yj| + CρhS ′

t . By (2.14) and (A.16),
E


j:|t−j|≥h bnj|yj| = O(1), which together with ρh
= O(H−1) and

E|S ′
t | ≤ E|u1|

n
j=1 bnj = O(H) implies tn,3 = Op(1).

Proof of (A.48). Write (σuB2t)
−1B1t ūt =

n
j=1 Xnj, where Xnj :=

(σuB2t)
−1btjuj. Since Xnj is a m.d. sequence, to show the asymptotic

normality (A.48), it suffices to verify conditions (a), (b) and (c) of
(A.42). Observe that E

n
j=1 X

2
nj = 1. Thus, the claim (a)

n
j=1 X

2
nj

→p 1 follows by the same argument as in the proof of the second
claim in (A.33), while (b) and (c) can be verified arguing as
in (A.43). �

In the next lemma, SŶ Ŷ ,t , SY ′Y ′,t ,σ 2
Ŷ ,t

andσ 2
Y ′,t are defined as in

the proof of Theorem 2.4, and σ 2
Ŷ û,t

, σ 2
Y ′uu,t , σ 2

Ŷ ûû,t
, ŷj and ûj as in

Corollary 2.3 and (A.15).

Lemma A.6. Suppose the assumptions of Theorem 2.4(i) hold and
H̄ = o(n). Then,

n
j=1

btj(µj − µt) = Op

(H̄/n)βH + 1


, (A.52)
SŶ Ŷ ,t − SY ′Y ′,t = Op((H̄/n)γH + 1),σ 2
Ŷ ,t

−σ 2
Y ′,t = Op((H̄/n)γH + 1),

(A.53)

σ 2
Ŷ û,t

−σ 2
Y ′u,t = op(H),σ 2

Ŷ ûû,t
= σ 2

Y ′uu,t + op(H) = Op(H).
(A.54)

Proof. Since Assumption 2.3(i) is covered by Assumption 2.3(ii),
it suffices to show (A.52) when µj satisfies Assumption 2.3(ii).
Let h = bĤ be as in (A.16) and t0 := t − h. Write

n
j=1 btj(µj

− µt) =


|j−t|>h[· · ·] +


|j−t|≤h[· · ·]. By assumption, maxj E|µj|

< ∞, and therefore, E|


|j−t|>h btj(µj − µt)| ≤ C


|j−t|>h btj =

o(1) by (A.16), so the first sum is op(1). Bound


|j−t|≤h btj|µj −

µt | ≤ 2
2h

k=0 bt,t0+k|µt0+k − µt0 | =: sn. Recall t ∼ τn and
h = o(n). Assumption 2.3(ii) implies that |µt0+k − µt0 | ≤

|m(t0, k)| + |m̃(t, k)|, and by the properties of m(t0, k) and
m̃(t0, k), E

2h
k=0 bt,t0+k|m(t0, k)| ≤ C(h/t)β

2h
k=0 bt,t0+k ≤ O((h/

t)βH) by (A.1), while
2h

k=0 bt,t0+k|m̃(t0, k)| = Op((h/t)β + h−1)2h
k=0 bt,t0+k = Op((h/t)βH+1). This yields sn = Op((H̄/t)βH+1),

which proves (A.52).

Proof of (A.53). By (2.28), yj = µj + y′

j where y′

j is an AR(1) pro-
cess with no intercept. Since ŷj = yj − ȳt implies

n
j=1 btjŷj = 0,

then SŶ Ŷ ,t −SY ′Y ′,t =
n

j=1 btj{ŷjŷj−1−y′

jy
′

j−1} =
n

j=1 btj{ŷj(yj−1−

µt)−y′

jy
′

j−1}where ŷj(yj−1 −µt)−y′

jy
′

j−1 = ŷj(µj−1 −µt)+ (µj −

ȳt)y′

j−1 = (µj−1 − µt)ŷj + (µj − µt)y′

j−1 + (µt − ȳt)y′

j−1. Thus,

SŶ Ŷ ,t − SY ′Y ′,t = qn,1 + qn,2 + (µt − ȳt)qn,3, (A.55)

qn,1 :=

n
j=1

btj(µj−1 − µt)ŷj,

qn,2 :=

n
j=1

btj(µj − µt)y′

j−1, qn,3 :=

n
j=1

btjy′

j−1.

By (2.14) and Assumption 2.3. Ey′ 2
j ≤ C and Ey2j = E(y′

j + µj)
2

≤

2Ey′ 2
j + 2Eµ2

j ≤ C uniformly in j. Hence, Eŷ2j ≤ 2Ey2j + 2Eȳ2t ≤ C
for all j. Thus, the same argument as used in the proof of (A.52) im-
plies qn,i = Op


(H̄/n)βH + 1


, i = 1, 2. In addition, by (2.26), ȳ′

t =

Op

(H̄/n)γ + H−1/2


. Therefore, qn,3 = Bn1ȳ′

t = Op

(H̄/n)γH +

H1/2

, whileµt − ȳt = B−1

n1
n

j=1 btj(µt −µj)− ȳ′
t = Op


(H̄/n)γ +

H−1/2

by (A.52), (2.26) and β ≥ γ . Hence, (µt − ȳt)qn,3 =

Op

(H̄/n)γH + 1


and SŶ Ŷ ,t − SY ′Y ′,t = Op


(H̄/n)γH + 1


. This

completes the proof of the first claim in (A.53). The proof of the
second claim in (A.53) follows using a similar argument.

Proof of (A.54). We verify the first claim. (The second claim fol-
lows using the same argument.) By ŷ2j−1û

2
j − y′ 2

j−1u
2
j = (ŷj−1ûj −

y′

j−1uj)
2
+ 2y′

j−1uj(ŷj−1ûj − y′

j−1uj) and the Cauchy inequality,

|σ 2
Ŷ û,t

−σ 2
Y ′u,t | ≤

n
j=1

b2nj|ŷ
2
j−1û

2
j − y′ 2

j−1u
2
j | ≤ qn,1 + 2q1/2n,1 q

1/2
n,2 ,

qn,1 :=

n
j=1

b2nj(ŷj−1ûj − y′

j−1uj)
2, qn,2 :=

n
j=1

b2njy
′ 2
j−1u

2
j .

We will show that qn,1 = op(H) and qn,2 = Op(H) which impliesσ 2
Ŷ û,t

−σ 2
Y ′u,t = op(H).

To bound qn,2, notice that y′
t is an AR(1) process (2.28) with no

intercept. Hence by (2.14), Ey′ 4
j ≤ C , and Ey′ 2

j−1u
2
j ≤ Ey′ 4

j−1 + Eu4
j ≤

C for all j. Thus, Eqn,2 ≤ C
n

j=1 b
2
nj ≤ CH by (A.1), which implies

qn,2 = Op(H).
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To bound qn,1, note that (ŷj−1ûj−y′

j−1uj)
2

≤ 2(ŷj−1−y′

j−1)
2u2

j +

2(ûj − uj)
2ŷ2j−1. Observe that |ûj − uj| = |(ŷj − ρ̂t ŷj−1) − (y′

j −

ρj−1y′

j−1)| ≤ |ŷj − y′

j| + |ρj−1||y′

j−1 − ŷj−1| + |ρ̂t − ρj−1||ŷj−1|.
Thus, (ŷj−1ûj − y′

j−1uj)
2

≤ C{(ŷj−1 − y′

j−1)
2

+ (ŷj − y′

j)
2
}{u2

j +

1 + ŷ2j−1} + (ρ̂t − ρj−1)
2ŷ4j−1. To bound the term u2

j + 1 + ŷ2j−1
note that by (2.13) and (2.12) one has |y′

j| ≤ ζj + |y′

0| where
ζj :=


∞

k=0 ρ
k
|uj−k| is a stationary process such that Eζ 2

1 < ∞.
Set uj,1 := |uj|I(|uj| ≥ L), ζj,1 := |ζj|I(|ζj| ≥ L) where L > 1.
Hence, u2

j ≤ L2 + u2
j,1 and ŷ2j = (y′

j − ȳt)2 ≤ 4(L2 + ζ 2
j,1 + y′ 2

0 + ȳ2t ).
Then (ŷj−1ûj − y′

j−1uj)
2

≤ C{(ŷj−1 − yj−1)
2
+ (ŷj − yj)2}{L2 + ȳ2t +

y′ 2
0 + u2

j,1 + ζ 2
j,1} + (ρ̂t − ρj−1)

2ŷ4j−1. Thus,

qn,1 ≤ C

rn,1 + (L2 + ȳ2t + y′ 2

0 )rn,2 + rn,3

,

rn,1 =

n
j=1

b2nj(ρ̂t − ρj−1)
2ŷ4j−1,

rn,2 =

n
j=1

b2nj{(ŷj−1 − yj−1)
2
+ (ŷj − yj)2}, rn,3 =

n
j=1

b2njξn,j,

where ξn,j := {(ŷj−1 − yj−1)
2

+ (ŷj − yj)2}{u2
j,1 + ζ 2

j,1}. Notice
that rn,1, rn,2 do not depend on L and rn,1 = op(H), rn,2 = op(H)
which follows using the same argument as in the proof of (A.10)
and (A.52), respectively. For a fixed L, (L2 + ȳ2t + y′ 2

0 ) = Op(1) be-
cause Eȳ2t = O(1) and Ey′ 2

0 < ∞. In addition we show that

H−1rn,3 →p 0, n → ∞, L → ∞, (A.56)

which, together with the above relations, implies qn,1 = op(H). To
bound rn,3, notice that Eŷ4j = E(µj + y′

j)
4

≤ 4(Eµ4
j + Ey′ 4

j ) ≤ C
by (2.14). Hence, by the Cauchy inequality and the stationarity of
uj and ζj, Eξn,j ≤ C{(Eu4

j,1)
1/2

+ (Eζ 4
j,1)

1/2
} = C((Eu4

1,1)
1/2

+

(Eζ 4
1,1)

1/2) =: εL → 0 as L → ∞. Hence, EH−1
|rn,3| ≤ εL(H−1n

j=1 b
2
nj) ≤ CεL → 0 as L → ∞by (A.1),which proves (A.56). �
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