Production Flexibility and Capacity Investment under Demand Uncertainty

Verena Hagspiel1, Kuno J.M. Huisman2,3, and Peter M. Kort2,4

1Department of Operations, Faculty of Business and Economics, UNIL
2Department of Econometrics and Operations Research and CentER, Tilburg University
3ASML Netherlands B.V., Veldhoven, The Netherlands
4Department of Economics, University of Antwerp
Motivation

- Many firms nowadays face high demand volatility:
 - influences desirability to invest in production capacity
 - influences choice of capacity level
 - raises the value of being able to adapt production decision

→ Capacity Size

→ Flexibility
Production Flexibility is crucial for Companies:

- **Car Industry**: Credit crunch recession \Rightarrow significant drop in demand \Rightarrow companies had to downscale production \Rightarrow low utilization rates

Figure 1: Articles, the Guardian, 2009

- **LCD industry**: During initial stage producing at full capacity. Later on competition on the supply side led to overcapacity.
Research Question

Optimal Investment Strategy of Firm

- Optimal investment timing
- Capacity size
- Optimal output rate

→ Production Flexibility

⇓

Impact on Investment decision
Outline

- Introduction
- Literature
- Model
- Solution
- Results
 - Utilization Rate
 - Capital vs. Labor
 - Value of Flexibility
- Summary/Conclusion
Model Setup

- Price setting monopolist
- Demand uncertainty
- Continuous time setting
- **Production Flexibility**:
 - production can fluctuate over time
 - between zero and capacity level
 - no adjustment costs
- One time investment \rightarrow capacity size
- Solution method:
 - Dynamic programming approach
Main Aspects

→ Optimize the

● Timing and
● Size of investment
● Output rate

for investment in flexible and inflexible capacity, respectively.

→ Analyze investment in flexible capacity:
 ○ Utilization rate
 ○ Capital vs. labor intensive industries

→ Compare the two investment strategies (flexible vs. inflexible) regarding timing and size.
Operations Strategy literature:

irreversible investment
uncertain future rewards
leeway about timing

⇒ Real Options theory

Assumed either flexibility in timing or flexible technology:
 - Different types of flexibility: He & Pindyck (1992), Chronopoulos et al. (2011)
 - Closest related: Dangl (1999)
Literature (2)

- **Production Economics:**
 - Bengtsson (2001): relates RO literature to manufacturing flexibility
Model - Production Quantity

- Inverse demand function (linear)
 \[p(q_t, t) = \theta_t - \gamma q_t \]

- \(\theta_t \) follows the geometric Brownian motion
 \[d\theta_t = \alpha \theta_t dt + \sigma \theta_t dW_t \]

- Production quantity at time \(t \), \(q_t \), price \(p \), \(\gamma > 0 \)
- Variable unit production cost \(c \)
- In case of unlimited capacity \(\Rightarrow \) optimal production quantity:
 \[q_t^* = \arg\max_{q(t)} [(p - c)q_t] = \max\left(0, \frac{\theta_t}{2\gamma} - \frac{c}{2\gamma}\right) \]
Model - Flexible Capacity

- Capacity \(K \)
- Production cannot exceed capacity: \(0 \leq q_t \leq K \)

 \[
 q_t' = \min(q_t^*, K)
 \]

 depending on \(\theta_t \).

- Capacity holding cost \(c_hK \)

- Profit flow at time \(t \) equals

\[
\pi(\theta_t, K) = \begin{cases}
-c_hK & \text{for } 0 \leq \theta_t < c \\
\frac{(\theta_t-c)^2}{4\gamma} - c_hK & \text{for } c \leq \theta_t < 2\gamma K + c \\
(\theta_t - \gamma K - c - c_h)K & \text{for } \theta_t \geq 2\gamma K + c
\end{cases}
\]

- Firm chooses capacity size \(K \) at moment of investment.
- Investment cost: \(I(K) = \delta K^\lambda, \lambda < 1 \) (robustness check: \(\lambda > 1 \))
Solution Method

- Project value $V(\theta, K)$ satisfies

\[
V(\theta_t, K) = \Pi(\theta_t, K)dt + E \left[V(\theta_t + d\theta_t, K)e^{-rdt} \right]
\]

with constant discount rate r.

$$\Rightarrow$$

\[
V_{\text{flex}}(\theta, K) = \begin{cases}
L_1(K) \theta^{\beta_1} - \frac{c_h K}{r} & \text{for } 0 \leq \theta < c \\
M_1(K) \theta^{\beta_1} + M_2 \theta^{\beta_2} \quad & \\
\frac{1}{4\gamma} \left[\frac{\theta^2}{r-2\alpha-\sigma^2} - \frac{2c\theta}{r-\alpha} + \frac{c^2}{r} \right] - \frac{c_h K}{r} & \text{for } c \leq \theta < 2\gamma K + c \\
N_2(K) \theta^{\beta_2} + \frac{K}{r-\alpha} \theta - \frac{K(K\gamma+c+c_h)}{r} & \text{for } \theta \geq 2\gamma K + c
\end{cases}
\]

β_1 (β_2) is the positive (negative) root of the quadratic polynomial

\[
\frac{1}{2}\sigma^2 \beta^2 + \left(\alpha - \frac{1}{2}\sigma^2 \right) \beta - r = 0.
\]
Solution Method (2)

(1) Optimal capacity choice $K^*(\theta)$:
$$\max_{K(\theta)} V(\theta, K(\theta)) - cK(\theta) \text{ for every } \theta$$

(2) Optimal investment threshold θ^*
Value of Waiting $F(\theta) = \text{Value of Investing } V(\theta) - cK(\theta)$
- waiting region $\theta < \theta^*$
- stopping region $\theta > \theta^*$
Results (Optimal Investment in Region II)

Figure 2: Investment Strategy (Optimal Capacity $K^*(\theta)$ and Production Quantity $q^*(\theta)$). Parameter values: $\sigma = 0.15$, $\alpha = 0.02$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$, $\delta = 1000$ and $\lambda = 0.7$.
Results (Optimal Investment in Region II)

Figure 2: Investment Strategy (Optimal Capacity $K^*($θ$)$ and Production Quantity $q^*($θ$)$). Parameter values: $\sigma = 0.15$, $\alpha = 0.02$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$, $\delta = 1000$ and $\lambda = 0.7$.
Results (Optimal Investment in Region III)

Figure 3: Investment Strategy (Optimal Capacity $K^*(\theta)$ and Production Quantity $q^*(\theta)$). Parameter values: $\sigma = 0.05$, $\alpha = 0.002$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$, $\delta = 1000$ and $\lambda = 0.7$.
Results (Optimal Investment in Region III)

Figure 3: Investment Strategy (Optimal Capacity $K^*(\theta)$ and Production Quantity $q^*(\theta)$). Parameter values: $\sigma = 0.05$, $\alpha = 0.002$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$, $\delta = 1000$ and $\lambda = 0.7$.
Results (Capacity Utilization)

Effect of increasing uncertainty on the utilization at moment of investment:

\[u := \frac{q^*(\theta^*)}{K^*(\theta^*)} \]

Table 1: Investment strategy with the occupation rate (Parameter values: \(\alpha = 0.02, r = 0.1, \gamma = 1, c = 100, c_h = 100, \delta = 1000\) and \(\lambda = 0.7\))

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(\theta^*)</th>
<th>(K^(\theta^))</th>
<th>(q^(\theta^))</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>489.78</td>
<td>223.66</td>
<td>194.89</td>
<td>87.14%</td>
</tr>
<tr>
<td>0.15</td>
<td>857.15</td>
<td>747.19</td>
<td>378.57</td>
<td>50.67%</td>
</tr>
<tr>
<td>0.2</td>
<td>3726.02</td>
<td>16175.4</td>
<td>1813.01</td>
<td>11.21%</td>
</tr>
</tbody>
</table>
Robustness (Convex Investment Cost)

Table 2: Comparing Investment Strategies with Concave ($\lambda < 1$) and Convex ($\lambda > 1$) Investment Cost Structure (Parameter values: $\alpha = 0.02$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$ and $\delta = 1000$)

<table>
<thead>
<tr>
<th>λ</th>
<th>σ</th>
<th>θ^*</th>
<th>$K^(\theta^)$</th>
<th>$q^(\theta^)$</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>0.1</td>
<td>489.78</td>
<td>223.66</td>
<td>194.89</td>
<td>87.14%</td>
</tr>
<tr>
<td>0.7</td>
<td>0.15</td>
<td>857.15</td>
<td>747.19</td>
<td>378.57</td>
<td>50.67%</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2</td>
<td>3726.02</td>
<td>16175.4</td>
<td>1813.01</td>
<td>11.21%</td>
</tr>
<tr>
<td>1.1</td>
<td>0.1</td>
<td>763.308</td>
<td>287.631</td>
<td>331.654</td>
<td>100%</td>
</tr>
<tr>
<td>1.1</td>
<td>0.15</td>
<td>1401.02</td>
<td>866.889</td>
<td>650.508</td>
<td>75.04%</td>
</tr>
<tr>
<td>1.1</td>
<td>0.2</td>
<td>7502.41</td>
<td>19461.3</td>
<td>3701.21</td>
<td>19.02%</td>
</tr>
</tbody>
</table>
Capital vs. Labor intensive

<table>
<thead>
<tr>
<th></th>
<th>Flexible</th>
<th>Numerical example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor intensive</td>
<td>Capacity Utilization</td>
<td>low</td>
</tr>
<tr>
<td>$(c_h < c)$</td>
<td></td>
<td>$c_h = 0, c = 100$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta^* = 274.7$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K^(\theta^) = 263.0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$q^(\theta^) = 87.4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$ur = 33%$</td>
</tr>
<tr>
<td>Capital intensive</td>
<td></td>
<td>high</td>
</tr>
<tr>
<td>$(c_h > c)$</td>
<td></td>
<td>$c_h = 100, c = 0$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\theta^* = 279.5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K^(\theta^) = 118.3$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$q^(\theta^) = 139.8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$ur = 100%$</td>
</tr>
</tbody>
</table>

Figure 4: Capacity utilization
Results (Impact of Capacity Holding Cost)

Figure 5: Effect of increasing capacity holding cost c_h on optimal capacity size $K^*(\theta^*)$ and investment threshold θ^*. ($c = 100$)
Results (Impact of Capacity Holding Cost) (2)

Figure 6: Effect of increasing capacity holding cost c_h and capacity size K on the investment threshold θ^* when capacity size is a constant parameter. ($c = 100$)
Results (Impact of Production Flexibility)

Figure 7: Impact of Flexibility and Uncertainty on the Investment Strategy.
Parameter values: $\alpha = 0.02$, $r = 0.1$, $\gamma = 1$, $c = 100$, $c_h = 100$, $\delta = 1000$ and $\lambda = 0.7$.
Results (Impact of Production Flexibility) (2)

Figure 8: Impact of Flexibility and Uncertainty on the Investment Strategy. Parameter values: $\alpha = 0.02$, $r = 0.1$, $\gamma = 1$, $c = 200$, $c_h = 0$, $\delta = 1000$ and $\lambda = 0.7$.
Robustness (Impact of Production Flexibility)

Investment cost structure $I(K) = \delta K^\lambda$ with

$\lambda < 1 \Rightarrow$ concave or

$\lambda > 1 \Rightarrow$ convex

Figure 9: Impact of Flexibility and Uncertainty on the Investment Strategy for Convex Investment Cost.
Conclusions

- Our paper extends Real Option theory by considering, besides timing decision, flexibility in production and capacity choice.

- In contrast to earlier literature we show that two investment cases need to be taken into account.

- Main Results:
 - Utilization is decreasing strikingly in demand uncertainty.
 - Capital vs. labor intensive industry
 - Impact of capacity holding cost on investment strategy.
 - Comparison of investment strategy for flexible and inflexible firm.
 - Two contrary effects as to the timing of the investment.
 - Flexible firm invests in higher capacity. Capacity difference (flexible vs. inflexible firm) increases in uncertainty.
Extensions

- Competitive setting
- Different sources of uncertainty
- Case Study
- ...