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Abstract

An accurate assessment of tail inequalities and tail asymmetries of financial returns is key

for risk management and portfolio allocation. We propose a new test procedure for detecting

the full extent of such structural differences in the dependence of bivariate extreme returns. The

test decomposes the testing problem into piecewise multiple comparisons of Cramer-von-Misés

distances of tail copulas. In this way, tail regions that drive differences in extreme dependence

can be located and consequently be targeted by financial strategies. We derive the asymptotic

properties of the test but also provide a multiplier bootstrap approximation for finite samples.

Moreover, we account for the multiplicity of the piecewise tail copula comparisons by adjusting

individual p-values according to multiple testing techniques. Extensive Monte Carlo simulations

demonstrate the test’s superior finite-sample properties for common financial tail risk models,

both in the i.i.d. and the sequentially dependent case. In a high-dimensional S&P500 industries

universe, we compare tail dependence of bivariate lower and upper tails of US Economic sector

returns in a rolling window scheme. For the last 90 years, up to 20% more instances of tail

asymmetries are detected due to the presence of tail dependence structures that competing

standard methods are unable to capture. We also find evidence for diminishing tail asymmetries

during every major financial crisis except for the 2007-09 crisis. Finally, for major foreign

exchange rates from 2001-2016, we identify EUR-CHF as as the most tail dependent pair in

both upper and lower tails, which prevails even after the Swiss National Bank unpegged the

Franc from the Euro.
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1 Introduction

Asymmetric dependence structures both within and between bivariate extreme returns under

different market conditions are a key criterion for asset and risk management but also a

main focus of market supervision. We provide a robust non-parametric statistical test for

tail dependence differences. The test accurately detects all and the full extent of deviations

between two tail dependence functions. Differences in tail dependence across different asset

pairs are denoted as tail inequality, while tail asymmetry refers to different upper and lower

tail dependence of a single asset pair. During financial crises, there is large empirical evidence

that financial markets exhibit pronounced cross-sectional comovements in the tails of return

distributions, thus the occurrence of joint extreme events vastly increases (see e.g. Longin and

Solnik (2001); Ang and Chen (2002); Li (2013)). For investment strategies, this should be

taken into account by timely and adequate re-allocations of assets e.g. profiting from arbitrage

trading opportunities and by appropriate adjustments of hedging decisions. On the other hand,

risk managers and market supervisors might need to set larger capital buffer requirements if

the tendency for a joint occurrence of extreme losses rises in times of market distress. Our test

procedure is based on multivariate extreme value techniques which remain valid during turbulent

market periods, e.g. Mikosch (2006). In particular, we use a flexible non-parametric approach

avoiding parametric misspecification risk. See e.g. Longin and Solnik (2001); Patton (2013);

Jondeau (2015) for parametric approaches. Note in particular, that standard linear dependence

measures are flawed under adverse market conditions which demands for alternative statistical

models. Most prominently, the Gaussian copula is a convenient tool to model dependence near

the mean of multivariate distributions. However, it is not capable of measuring dependence in

the far tails (Embrechts (2009)).

This paper provides a novel non-parametric test procedure against pairwise differences in tail

dependence structures which we measure with tail copulas (TCs) denoted by Λ(u1, u2), (u1, u2) ∈
R2

+. This is in sharp contrast to established approaches, which only estimate and compare

summary measures of extreme dependence, such as the tail dependence coefficient (Hartmann

et al. (2004), Straetmans et al. (2008)), or the tail index of aggregated tails (Ledford and Tawn

(1996)). Specifically, we compare tail copulas on their entire domain in a locally piecewise way.

Thus we study a multiple testing problem of tail copula equality. Piecewise testing allows to pin

down specific regions where tail dependence differences are most apparent indicating specific

types of extreme events that mainly induce the difference between both tail copulas. Moreover,

our test assesses all possible and the complete amount of deviations from tail symmetry/equality.

In particular, our test is still consistent if one (or both) of the two considered tail copulas is

non-exchangeable, i.e. Λ(u1, u2) 6= Λ(u2, u1). Existing procedures fail to address such intra-tail
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asymmetric (ITA) dependence structures. Therefore, for intra-tail asymmetric copulas, such

tests suffer from low power. Our test builds on the idea of a two-sample goodness-of-fit test for

tail copulas as in Bücher and Dette (2013). For increased sensitivity against violations of the

null, however, we compare both tail copulas in a piecewise way on disjoint subintervals of the

unit simplex hull. This piecewise testing amounts to a number of individual tests against tail

dependence equality in different regions of the sample. For an accurate overall assessment, we

use multiple testing principles such as the familywise error control and the False Discovery Rate

in order to control the error rate of all marginal tests. Asymptotic properties of the test are

provided. Moreover, a multiplier bootstrap procedure is suggested following the ideas of Bücher

and Dette (2013) but extending it to non-i.i.d. financial data.

In an extensive simulation study with common tail factor and Clayton copulas, we find

good finite sample properties of our test methodology both, for i.i.d. and sequentially dependent

time series data. In standard cases, our test is slightly superior to competing tests, while it is

much more powerful in case of intra-tail asymmetry. Simulation results strongly suggest that

accounting for time series dynamics is essential by either GARCH-pre-filtering or by directly

adjusting the bootstrap approximation employing ideas of Bücher and Ruppert (2013).

Finally, we establish tail asymmetry dynamics of 49 S&P500 industry portfolios for the last

90 years. We find empirical evidence that tail asymmetries substantially diminish in times

of financial distress with the only strong exception of the 2007-2009 financial crisis which

apparently was completely different in structure. Generally, our novel test detects up to 20%

more tail asymmetries than competing tests. The latter can specifically be attributed to tail

events not detected by standard tail dependence measures as the tail dependence coefficient

(TDC) (Hartmann et al. (2004); Jondeau (2015)), or the tail copula based test by Bücher and

Dette (2013). Thus, our test could serve as a more accurate tool for investors for assessing tail

asymmetry in the market and in this sense could yield opportunities for improved portfolio

strategies based on tail asymmetries. We also test pairs of six foreign exchange rates against

tail inequalities during 2000-2016. Generally for the entire time period, the Euro-Swiss Franc

pairs stands out with the strongest tail dependence. Interestingly, this strong tail dependence

even continues after the sudden unpegging of the Franc by the Swiss national Bank on January

2015.

The paper is structured as follows. Section 2 introduces theoretical results on tail dependence

necessary for the testing procedures. Section 3 introduces our testing technique. It also provides

asymptotic properties and respective finite sample versions of the test procedures. Section 4

studies the finite sample performance in a thorough simulation study, and Section 5 provides

detailed applications on subsectors indices of S&P500 and on data of the major foreign exchange
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rates. Finally, Section 6 concludes.

2 Basic notions and setup

We briefly introduce necessary fundamental definitions and results for tail dependence copulas

which are required for the test procedure.

A two-dimensional return vector is denoted by X = (X1, X2). For outlining the basic test

idea in this section, marginal returns X i, i = 1, 2, are assumed to be independent and identically

distributed (i.i.d.) with continuous distribution Fi(x), i = 1, 2, and quantile functions F−1
i . This

can be satisfied in practice with pre-whitening of observed returns and by taking the residuals

from an appropriate time series fit as X in the test. Formally, we can also relax the independence

assumption directly, as discussed in Section 3.2.

Our test is based on the full dependence distribution in the tails captured by a tail copula.

Note that standard dependence measures such as point correlations, quantify the likelihood

of aligned return movements of X1 and X2. However, if returns of both assets are extreme,

i.e. X i > F−1
i (1− t), or X i < F−1

i (t), i = 1, 2, for t→ 0, standard dependence measures are

insufficient, and thus measures that focus on the tails should be used, Embrechts (2009). For

example, the Gaussian copula, which is completely parametrized by the correlation coefficient,

is unable to model tail dependence at all. That is to say, dependence may vary over different

parts of the distribution, and correlations may be unable to measure dependence in between

tails.

If X is in the domain of attraction of a two-dimensional extreme value distribution, there

exists the so-called tail copula which measures the complete tail dependence between X1 and

X2. The upper and lower tail copula ΛU
X(u1, u2),ΛL

X(u1, u2),u := (u1, u2),u ∈ R2
+, are defined

by

ΛU
X(u1, u2) := lim

t→0
t−1P(X1 > F−1

1 (1− tu1), X2 > F−1
2 (1− tu2)), t ∈ R+

ΛL
X(u1, u2) := lim

t→0
t−1P(X1 < F−1

1 (tu1), X2 < F−1
2 (tu2)),

i.e. the tail copula measures the probability of a joint extreme given at least one component is

extreme. See, among others, de Haan and Ferreira (2006), Schmidt and Stadtmüller (2006), for

further details. If ΛU
X(u) > 0 (ΛL

X(u) > 0), gains (losses) of X are said to be tail dependent.

For the sake of notational brevity we omit the superscripts U and L, unless it becomes

important. With u = (1, 1), the tail copula boils down to the tail dependence coefficient (TDC),

λ ≡ Λ(1, 1). The TDC is a standard tool in financial applications to measure tail dependence,

e.g. Frahm et al. (2005), Aloui, Aı̈ssa and Nguyen (2011), Garcia and Tsafack (2011). However,
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the TDC covers only a fragment of tail dependence, namely dependence between joint quantile

exceedances of marginals thresholds along the line (F−1
1 (1− t), F−1

2 (1− t)), t→ 0. In contrast,

the tail copula varies marginal thresholds as ui ∈ R+, i = 1, 2 and describes tail association

for every possible tail event. It can be shown that ΛX(u1, u2) ∈ [0,min(u1, u2)], and ΛX(au) =

aΛX(u), a ∈ R. Due to this homogeneity of the tail copula it is sufficient to analyze ΛX(u)

with u ∈ S, where S := {(u1, u2) : u1, u2 ≥ 0, ||u|| = c} is, e.g., the unit simplex hull with

|| · || = || · ||1 and c = 1, or the unit circle hull with || · || = || · ||2 and c = 1. Without loss of

generality we choose S to be the unit simplex hull. The homogeneity property prunes the

relevant domain of the tail copula (i.e. from R2
+ to S) and reduces computational efforts in

estimation. The homogeneity property will lay the basis for our test. We assume the tail copulas

exist and ΛX(u) > 0, i.e. we assume tail dependent pairs as otherwise it is known non-parametric

estimation of ΛX overestimates the degree of tail dependence, Schmidt and Stadtmüller (2006).

We are interested in comparing two tail copulas, i.e. in tail copula differences. To formalize

the discussion about tail copula differences and special cases such as tail asymmetry, and tail

inequality, we introduce the following definitions and some notation. We say two tail copulas

differ if

{ΛX(u1, u2) 6= ΛY(u1, u2)} or {ΛX(u1, u2) 6= ΛY(u2, u1)}, (u1, u2) ∈ R2
+. (1)

For the homogeneity of the tail copula, it is sufficient to consider (u1, u2) ∈ S. We write

shorthand ΛX 6= ΛY for Equation 1. Tail asymmetry is given if two tail copulas of the same

return vector differ. To detect tail asymmetry, one should compare ΛU
X(u1, u2) with ΛL

X(u1, u2)

and also with the ”flipped” version ΛL
X(u2, u1). Tail inequality occurs between two return vectors,

i.e. ΛU
X 6= ΛL

Y.

Definition 1 (Tail asymmetry (TA)) A return vector X is tail asymmetric if ΛL
X 6= ΛU

X.

Whenever the likelihood for comovements of extreme losses differs from that of extreme

gains, the return vector X exhibits tail asymmetry. For example, in terms of Value at Risk

(VaR) exceedances, ΛL
X > ΛU

X implies joint exceedances of loss VaRs are more likely to occur

than those of gain VaRs.

Definition 2 (Tail inequality (TI)) Return vectors X and Y exhibit tail inequality if ΛW
X 6=

ΛZ
Y,W, Z = U,L.

The concept of tail inequality can be used to compare competing portfolios with respect

to their sensitivity to extreme events. For example, ΛL
X > ΛL

Y implies joint exceedances of loss

VaRs for portfolio X are more likely to occur than those portfolio Y, i.e. X exhibits a stronger
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tail risk between joint losses. Similarly, if, ΛU
X < ΛL

Y, joint extreme losses in portfolio Y are

more intertwined than joint extreme gains in X.

One reason for tail copula differences may be non-exchangeability of at least one of the

tail copulas considered. We term non-exchangeability of a tail copula intra-tail asymmetry.

A return vector X is intra-tail asymmetric if ΛW
X (u1, u2) 6= ΛW

X (u2, u1), (u1, u2) ∈ S,W = U,L.

ITA refers to one joint tail of X and occurs whenever the tail copula of that specific tail is not

symmetric with respect to its arguments u = (u1, u2), i.e. if the tail copula is not exchangeable

with respect to X1 and X2. For example, let u1 = 0.2, u2 = 0.8 and t = 0.05. Then, ITA is at

hand if the tail event {X1 > V aR1(0.99)} ∩ {X2 > V aR2(0.96)} is differently likely from the

tail event {X1 > V aR1(0.96)} ∩ {X2 > V aR2(0.99)}. The following proposition illustrates the

importance of ITA for comparisons of tail dependence functions.

Proposition 1 If ΛW
X (u1, u2),W = U,L, is intra-tail asymmetric, then ΛW

X 6= ΛH
Z , for Z =

X, Y and H = U,L.1

Figure 2 illustrates this idea. If ΛW
X (u),W = U,L, is asymmetric with respect to u, any

comparison with that tail copula automatically amounts to tail asymmetry/inequality as there

is always some point on the unit simplex hull where both tail copulas differ. While parametric

models for intra-tail asymmetric tails exist, e.g. the asymmetric logistic copula in Tawn (1988),

and factor copulas Einmahl et al. (2012), ITA is implicitly assumed to hold in all standard tests

for tail dependence differences. However, we find this phenomenon should not be ruled out ex

ante.

As the tail copula is the main component for our test, we sketch relevant statistical results.

Non-parametric estimation of ΛX(u) approximates marginal quantile functions F−1
i,X, i = 1, 2,

non-parametrically by the empirical counterpart F−1
i,X,n, i = 1, 2. Further, the running variable

t is replaced by k
n

with the sample size n→∞, and the so-called effective sample size

k →∞, k ∈ o(n) which has to be determined manually. A consistent estimator for ΛU(u) is

Λ̂U
X(u1, u2) =

1

k

n∑
m=1

1
{
X1
m > F−1

1,X,n(1− (k/n)u1), X2
m > F−1

2,X,n(1− (k/n)u2)
}
, (u1, u2) ∈ S.

An asymptotically equivalent estimator is given by

Λ̂U
X(u1, u2) =

1

k

n∑
m=1

1
{
F1,X,n(X1

m) > 1− (k/n)u1, F2,X,n(X2
m) > 1− (k/n)u2

}
,

1Assume ΛW
X (u1, u2) = ΛH

Z (u1, u2). As ΛW
X (u1, u2) 6= ΛW

X (u2, u1), it holds ΛW
X (u2, u1) 6=

ΛH
Z (u1, u2), and Equation 1 applies.
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where Fi,X,n = 1
n+1

∑n
j=1 1{X i

j ≤ x}; dividing by (n+ 1) improves estimation in finite samples.

Estimators for ΛL
X(u) are defined analogously.

Concerning asymptotic results for the empirical tail copula we state both assumptions and

results as they are the backbone of the asymptotic distribution of our test statistic.

Assumptions 1 For a bivariate random vector X, assume

(A1) X ∼iid FX.

(A2) FX is in the max-domain of a bivariate extreme value distribution with tail copula Λ > 0.

(A3) k →∞ and k
n
→ 0 for n→∞.

(A4) It holds that |Λ(u1, u2)− tCX(u1/t, u2/t)| = O(A(t)), for t→∞, and some function A :

R+ 7→ R+ with limt→∞A(t) = 0 and
√
kA(n/k)→ 0 for n→∞, where CX(u1, u2) :=

P (F1(X1) ≤ u1, F2(X2) ≤ u2) denotes the copula of X.

(A5) The partial derivatives ∂iΛ = ∂Λ(x1,x2)
∂xi

, (x1, x2) ∈ R2
+ exist and are continuous.

Assumption (A1) is standard, yet restrictive for financial time series. It can, however, be satisfied

by residuals from pre-filtering the dynamic structure of financial time series. We also show how

(A1) may be relaxed to stationarity with a specific mixing rate allowing for a direct application

of our testing procedure without pre-filtering, see Section 3.2. Assumption (A2) requires sample

tails can be modelled by bivariate extreme value distributions and are asymptotic dependent, see

de Haan and Ferreira (2006) for details. Standard distributions with actual tail dependence, such

as the bivariate t-distribution with dispersion parameter ρ 6= 0 meet this assumption. Notably,

the Gaussian copula violates (A2) due to tail independence (Λ = 0 for |ρ| < 1). Assumption (A3)

imposes that the effective sample size k increases slower than n for n→∞, which is trivially

fulfilled. Then the second-order condition (A4) (see Bücher and Dette (2013)) effectively requires

a tail approximation order A which is a regular variation restriction and in practice imposes

a corresponding slightly tighter condition on the expanding rate of k. For example, if A(t) is

asymptotically of order 1
tα

with α > 0, then k should be at most of order n
2α

1+2α < n in order to

satisfy the conditions. For completeness, we state assumption (A5); however, this smoothness

assumption may also be omitted resulting in a more complex limiting behavior of the empirical

tail copula, see Bücher et al. (2014). This permits consistent estimation of tail copulas of factor

models, see Section 4. Under Assumptions (A1)-(A5) the asymptotic distribution for the tail

copula can be derived as follows where
w→ denotes weak convergence:

√
k(Λ̂X(u1, u2)− ΛX(u1, u2))

w→ GΛ̂,X(u1, u2), (u1, u2) ∈ R2
+, (2)
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where GU
Λ̂,X

is a bivariate Gaussian field of the form GΛ̂,X(u1, u2) = GΛ̃,X(u1, u2)−∑2
i=1 ∂iΛ(u1, u2)GΛ̃,X(ui, u−i =∞),, where GΛ̃,X(u1, u2) is a centered Gaussian field with covari-

ance E[GΛ̃,X(u1, u2)GΛ̃,X(v1, v2)] = Λ(min(u1, v1),min(u2, v2)). These results were first estab-

lished in Schmidt and Stadtmüller (2006); Bücher and Dette (2013) and Bücher et al. (2014)

provide related results but without (A5), i.e. existence of partial derivatives of the tail copula

is generally not needed. This is important in practice, for covering many empirically occurring

cases of tail dependence.

3 A new testing methodology against tail asymmetry and inequality

3.1 Test idea and asymptotic properties

Generally, we test the global null hypothesis of equality between tail copulas by checking for local

violations of the null over many disjoint subsets of the relevant support (S) and in all possible

directions. This localization provides additional insights on specific quantile areas which might

be a valuable target for adequate risk or portfolio management strategies.

When testing against tail equality, our test takes into account that each of the return vectors

could be intra-tail asymmetric. In case of intra-tail asymmetry, tests are only consistent if all

possible permutations of arguments in the tail copulas (ΛZ(u1, u2), and also ΛZ(u2, u1),Z =

X,Y) are considered as only then null violations in all directions can be found. This contrasts

sharply with the TDC based test by Hartmann et al. (2004), abbreviated as TDC-test, which

only compares tail copulas at a single point of their domain, while we account for possible tail

differences along the entire domain of both tail copulas. Our test is closely related to the test

by Bücher and Dette (2013), abbreviated as BD13-test, which compares the tail copula of X

with the tail copula of Y = (Y 1, Y 2) along the unit circle. However, as tail copula differences

are only evaluated in one direction, their test statistic is not exchangeable, i.e. for the test

statistic S it holds that S(X, (Y 1, Y 2)) 6= S(X, (Y 2, Y 1)). To fix this, we propose to analyze

tail copula differences in ”both directions” of the unit simplex hull, and thereby we search for

differences between tail copulas over distinct, pre-determined subintervals of the unit simplex.

Testing against tail equality over many different subintervals amounts to an entire collection of

individual tests. If the null of equality of tails is rejected within a specific subset, this approach

locates those sample regions that induce the tail dependence differences. Test power strongly

benefits from intra-tail asymmetric tail copulas. Further, in standard, i.e. intra-tail symmetric

cases, it features similar test properties as competing tests.

Note, the notation corresponds to the test against tail inequality. Yet, the test also applies

for tail asymmetry by exchanging ΛX by ΛU
X and ΛY by ΛL

X.
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Due to the homogeneity property of the tail copula, it is sufficient to compare tail copulas

only over the unit simplex hull instead of R2
+ entirely. We denote the unit simplex hull by

S := {(u1, u2) : u1 + u2 = 1, ui ≥ 0, i = 1, 2}. We apply M Cramér-von-Mises (CvM) tests on

M/2 disjoint subinterval of S. The ”global” null hypothesis is

H0 : ΛX = ΛY over S,

consisting of M individual null hypothesis of the form

H0,m : ΛX(u1, 1− u1) =

 ΛY(u1, 1− u1), u1 ∈ Im, m = 1, . . .M/2

ΛY(1− u1, u1), u1 ∈ Im−M/2, m = (M/2) + 1 . . .M,

where I1, ..., IM/2 are disjoint, equally lengthy subintervals of [0, 1] whose endpoints are evenly

spaced in [0, 1]. Note that H0 :
⋂M
m=1H0,m, i.e. global tail equality naturally implies tail equality

over each subset. Marginal test statistics are given by

Sm(X,Y) =


kXkY
kX+kY

∫
Im(ΛX(φ, 1− φ)− ΛY(φ, 1− φ))2 dφ, j = 1, . . .M/2

kXkY
kX+kY

∫
Im−M/2

(ΛX(φ, 1− φ)− ΛY(1− φ, φ))2 dφ, j = (M/2) + 1 . . .M.

Each marginal test corresponds to a specific subset of S, which can be translated to a

subspace of the sample. The switch of arguments in ΛY at subset S(M/2)+1 guarantees that tail

copulas are compared over the entire unit simplex, e.g. in ”both directions”. For the ”switched”

version of the test statistic, we omit the point φ = 1− φ, to avoid comparing ΛX(0.5, 0.5) with

ΛY(0.5, 0.5) twice. If H0,m is true, Sm = 0, while Sm > 0 otherwise. Test statistics are estimated

by replacing Λ by Λ̂. Empirical test statistics will be denoted by Ŝm.

The following proposition provides the marginal test distributions in the i.i.d. case. Section

3.2 discusses extensions for time series data.

Proposition 3.1 Assume that assumptions (A1)-(A5) hold for X,Y. Then,

(a)

(Ŝ1, ..., ŜM)′
w→ (S1, ..., SM)′,

with

Sm =

∫
Im

(√
kX

kX + kY
GΛ̂,X(φ, 1− φ)−

√
kY

kX + kY
GΛ̂,Y(φ, 1− φ)

)2

dφ, φ ∈ Im,

m = 1, ...,M .
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(b) Under H0,

Sm
w→ 0, ∀m.

(c) Under H1,

∃i : Si
w→ c,

where c ∈
(

0,
∫
Ii min(φ, 1− φ)2dφ

]
drives local power.

Note, the process G(φ, 1− φ) corresponds to GΛ̂(u1, u2) from Equation (2). This guarantees

marginal test statistics asymptotically follow well-defined stochastic processes, i.e. this result

guarantees test consistency. Due to the complexity of these limiting stochastic processes, closed

forms of the asymptotic distributions do not exist and have to be simulated. We follow Bücher

and Dette (2013) and approximate the distribution of (S1, ..., SM)′ by a multiplier bootstrap.

Further notation is required to construct the bootstrap distribution. The bth bootstrap estimate

of Ŝm is

Ŝm,(b)(X,Y) =
kXkY
kX + kY

∫
Im

(
(Λ̂

(b)
X (φ, 1− φ)− Λ̂X(φ, 1− φ))−

(Λ̂
(b)
Y (φ, 1− φ)− Λ̂Y(φ, 1− φ))

)2
dφ,

where Λ̂
(b)
Z (u) is the multiplier bootstrap version of Λ̂Z(u),Z = X,Y,

Λ̂
(b)
Z (u1, u2) =

1

k

n∑
i=1

ξ̃Zi 1
{
Z1
i ≥ F̃−1

1,Z,n(ku1/n), Z2
i ≥ F̃−1

2,Z,n(ku2/n)
}
,

ξ̃Zi = ξZi /ξ
Z, i = 1, ..., n,

F̃j,Z,n(u) =
1

n

n∑
i=1

ξ̃Zi 1
{
Zj
i ≤ u

}
, j = 1, 2,

and ξi, i = 1, ..., n, are i.i.d. random variables, called multipliers, with E[ξi] = V[ξi] = 1. This

bootstrap technique guarantees weak convergence of Ŝm,(b) − Ŝm to Ŝm − Sm, conditional on the

bootstrap samples and conditional on observed sample of X and Y. This means the asymptotic

distributions of the bootstrap statistics converge to the asymptotic distributions of the empirical

test statistics, and can be used to mimic the marginal null distributions in Proposition 3.1.

Proposition 3.2 Let (A1)-(A5) hold. Further, chose the multiplier variables ξ = (ξ1, ..., ξn) as

follows:

(A6) ξi, i ∈ Z+, are i.i.d. random variables, ξi are independent of X,Y, E[ξi] = V[ξi] = 1.
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Then

(Ŝ1,(b) − Ŝ1, ..., ŜM,(b) − ŜM)′
w→ (S1 − Ŝ1, ..., SM − ŜM)′.

This result provides a feasible bootstrap approximation of the the test distribution. For the

i.i.d case, we set ξi ∼ Exp(1).2 Finally, a consistent Monte Carlo P-value for hypothesis H0,m is

given by

p̂m =
1 +

∑B
b=1 1{Ŝm,(b) ≥ Ŝm}

B + 1
.

Joint testing of M hypothesis requires an adjustment of the individual test level α to control

the error rate of the global hypothesis, α∗, say. Common error rates are the familywise error

rate (FWER) and the false discovery rate (FDR). We prefer to control the FDR.

In general, for a family of M individual hypotheses H0,1, H0,2, ..., H0,M , FDR controls for

the expected number of falsely rejected marginal null hypotheses among all rejections, i.e.

E
(∑M

m=1 1{pm ≤ αm|H0,i}∑M
m=1 1{pm ≤ αm}

)
≤ α∗.

The Benjamini-Hochberg algorithm (Benjamini and Hochberg (1995)) sorts all P-values

p(1), ..., p(M), starting with the smallest one, and compares p(i) with i
M
α where i denotes the

rank of P-value p(i). If p(i) < i
M
α, marginal hypotheses corresponding to P-values p(1), ..., p(i)

are rejected. Adjusted P-values are p̃(i) = p(i)M
i

and compared with α∗.

The FWER controls for the probability of at least false rejection at a prefixed threshold α,

say α∗ = 5%, i.e.

P(∪Mm=1{pm ≤ αm|H0,m}) ≤ α∗,

where pm denotes the marginal P-value and αm is determined by the multiple testing method

such that the inequality holds. For the well-known Bonferroni control, αm = α/M . Equivalently,

individual P-values are adjusted as p̃m = pmM and marginal hypotheses are rejected if p̃m < α∗.

In general, controlling the BH-FDR control is not as conservative as the Bonferroni

correction. Also, BH-FDR is better suited for (positively) dependent P-values, which is a natural

assumption for our setting. However, we find in our simulations test performance is only slightly

affected by the choice of error rate, and thus we choose BH-FDR with α∗ = 0.05. See Romano

and Wolf (2005) for an overview of multiple testing methods with applications to financial data.

The practical implementation of the basic test works as follows.

Test algorithm 1

2 Note, whenever X and Y are dependent, one has to use the same multiplier series for both
X and Y.
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1. Determine kX, kY, and estimate both tail copulas, i.e. calculate Λ̂X(φ, 1− φ), Λ̂Y(φ, 1−
φ), φ ∈ [0, 1].

2. Set M . Decompose [0, 1] into M/2 disjoint, equally sized subintervals, i.e. I1 =

[a1, b1], ..., IM/2 = [aM/2, bM/2], ai < bi+1.

3. Calculate Ŝm,m = 1, ...,M .

4. Determine B. Calculate Ŝm,(b),m = 1, ...,M, for b = 1, ..., B.

5. Calculate p̂m,m = 1, ...,M .

6. Fix an error rate α. Apply a multiple testing routine on p̂1, ..., p̂M and decide on the global

null hypothesis.

This test is, independent of the multiple testing method, asymptotically valid. E.g. for the

FDR it holds that FDR ≤ α, and in case of FWER the test has asymptotic correct size, i.e.

limn,B→∞ P
(
∪Mm=1 { ˆ̃pm ≤ α∗|H0,m}

)
= α∗, where ˆ̃pm denotes the estimated adjusted marginal

P-value. We use B = 1499 bootstrap repetitions; note the necessary correction of B (1499

instead of 1500) which ensures consistency of the P-value. Unless otherwise stated, we discretize

[0, 1] as In = {0.01j}99
j=1. We typically apply test algorithm 1 with at most M = 26 marginal

hypotheses, which discretizes [0, 1] into 13 (preferably) equally sized subintervals.3 The choice

of M is subject to a trade-off between test power and precision of localization of tail differences

(see Section ??). A larger M amounts lower power as less data fall into finer subintervals, and

the multiplicity penalty of the individual P-values increases in M making rejections less likely.

A larger M also means, the tests very precisely pins down in subinterval of [0, 1] significant tail

dependence differences are at hand. In the extreme case whereM →∞ the test algorithm carries

out an infinite number of TDC-type tests. While this is a theoretically valid test, test power

would decrease as the harsh P-value adjustment would almost never suggest a test rejection

due to the strong multiplicity penalty. Simulations suggest a choice of M = 26 is reasonable

as this also keeps computational effort manageable. However, we do not strive to determine

an ”optimal” number of subsets but suggest to apply the test for a reasonable grid of M , say,

M = 2, 4, 6, ..., 26. Note, if M = 1, we arrive at a generalized BD13-test that compares both

TCs along both directions of S. It will turn out to be fruitful to combine P-values of different

grids to one embracing test as follows.

Test algorithm 2

1. Execute test algorithm 1 for J grids which increase in grid fineness, i.e. M = 2, 4, ..., 2(J +

1).

3 For M = 26, I1 = {0.01, 0.02, ..., 0.09}, I2 = {0.10, 0.11, ..., 0.17}, ..., I13 = {0.93, ..., 0.99}.
Note, subsets may consist of a varying number of points.
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2. For each grid adjust the P-values for multiplicity: (p̃2
1, p̃

2
2), ..., (p̃

2(J+1)
1 , ..., p̃

2(J+1)
J ).

3. For each grid pick the minimal adjusted P-value: (p∗2 = min(p̃2
1, p̃

2
2), ..., p∗2(J+1) =

min(p̃
2(J+1)
1 , ..., p̃

2(J+1)
J )).

4. Reject the global H0 if ∪Jj=1{p∗j ≤ α}.

Note, this aggregating test does not adjust the grid-specific P-values a second time. This

approach controls for the error rate α, if p̃∗2, ..., p̃
∗
2(J+1) are tail comonotonic. All P-values stem

from the identical bootstrap sample, and correspond to identical nulls which naturally implies

very strong dependence. However, reconstructing the joint distribution of the minimal P-values

is hardly possible. Imposing a parametric model for the joint distribution of P-values is a

standard procedure in multiple testing theory, see Dickhaus (2014); to ensure test 2 obeys the

desired error rate we have to assume a certain degree of dependence in the lower part of the joint

null distribution. With increasing dependence, test algorithm 2 asymptotically approaches the

nominal error rate while being systematically biased if dependence is too weak. More formally,

we write δ for the difference between the lower-tail copula of the P-values and the upper (Fréchet-

Hoeffing) copula bound in case of comonotonicity, i.e. δ =: P (p̃∗2 ≤ x2, ..., p̃
∗
2(J+1) ≤ x2(J+1)|xi ≤

α, i = 2, 4, ..., 2(J + 1))−min(x2, ..., x2(J+1)). It holds that

lim
δ↘0

P
( 2(J+1)⋃

i=2

{p̃∗i ≤ α|H0,i}
)

= α.

The simulation study confirms test algorithm 2 abides the imposed error rate in finite samples

implying the assumption of tail monotonicity is reasonable.

3.2 Inference for serially dependent data

The i.i.d. assumption is unreasonable for financial time series as financial data typically exhibit

serial dependence. However, standard extreme value theory and the multiplier bootstrap rely on

the independence assumption. We know of two approaches to address the problem of dependent

data.

The standard approach is to fit financial returns to an appropriate time series model, such

as a ARMA-GARCH model, to compute standardized residuals. The latter should roughly

resemble an i.i.d. series, and can be used for further inference. See McNeil and Frey (2000)

who proposed this method in a univariate setting. However, we do not know of any results that

provide rigorous proof for convergence when using estimated residuals.

For empirical copulas of dependent data another remedy is to assume stationarity coupled

with some mixing conditions which consequently allows to use unfiltered returns for estimation.

Valid statistical inference is ensured by adjusting the bootstrap: For strongly mixing time series,
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convergence of the block bootstrap and the so-called tapered block multiplier bootstrap has been

shown for the empirical copula process (Bücher and Ruppert (2013)). Necessary assumptions

are met for a wide class of time series models, such as AR and GARCH models. We suggest

to use the dependent data bootstrap methodology also for empirical tail copulas. Yet, we do

not prove the validity of this approach as this a difficult task is beyond the scope of this paper.

However, assumption (A3) puts the tail copula process close to the scaled copula process in the

respective tail – in finite samples, where the running variable t has to be replaced by k
n
, and both

k, n > 0 are fixed, differences between Λ(u1, u2) and tC(u1/t, u2/t) might be neglectable. This

suggests that results of the empirical copula process (CX,n(u1, u2)) carry over to the empirical

tail copula process (Λ̂(u1, u2)). We employ the tapered block multiplier and the block bootstrap

for tail copula estimation. For completeness results of the previous section are adopted for the

tapered block multiplier bootstrap. The i.i.d. assumption (A1) is replaced by

(A1*) X,Y are realizations of a strictly stationary process that is strongly mixing with rate

αZ = O(r−a), a > 1,Z = X,Y,4

Consequently, under (A1*,A2-A5), the empirical tail copula should converge to some centered

Gaussian process Gα(u1, u2) that is governed by the mixing rate α, i.e.

√
k(Λ̂X(u1, u2)− ΛX(u1, u2))

w→ Gα(u1, u2), (u1, u2) ∈ R2
+.

Bücher and Ruppert (2013) provide detailed advise on implementation strategies for

empirical copula processes.5 The functional delta theorem ensures convergence of Λ̂Z,Z = X,Y

carry over to the test statistics (Ŝ1, ..., ŜM)′. To approximate the limiting behavior of the

test statistics, now the tapered block multiplier bootstrap has to be applied. The tapered

block multiplier bootstrap generates series of block-dependent multipliers instead of using i.i.d.

multipliers. The following conditions have to be met for the consistency of the tapered block

multiplier bootstrap in case of the empirical copula process, see Theorem 3 in Bücher and

Ruppert (2013).

(A7) The underlying stochastic process of Z is strongly mixing with
∑∞

r=1(r + 1)c
√
αZ(r) <

∞, c = max(8d+ 12, b2/εc+ 1).

4The mixing coefficient is defined as αZ(r) = αZ(Fs,Fs+r) = supA∈Fs,B∈Fs+r |P (A ∩B)−
P (A)P (B)|, where Ft denotes the filtration of the underlying stochastic process up to time
point t, and Z is strongly mixing if αZ(r)→ 0 for r →∞.
5The authors suggest to fix a block length of l(n) = 1.25n1/3 for the block bootstrap. Moreover,
for the tapered block multiplier bootstrap, we employ their uniform kernel κ1, and use Γ(q, q)
distributed base multipliers, with q = 1/(2l(n)− 1), where l(n) is the multiplier block length,
which can be automatically determined using the R-package npcp, Kojadinovic (2015).
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(A8) The tapered block multiplier process (ξj,n)j=1,...,n is strictly stationary, has bounded

moments, is independent of Z, and positively cl(n)-near epoch dependent6, where c is

some constant and l(n)→n→∞ ∞, l(n) = o(n), and for all j, h ∈ Z, assume E[ξj,n] = µ >

0,V[ξj,n, ξj+h,n] = µ2v(h/l(n)) and v is a bounded function symmetric around zero, and

w.l.o.g. µ = 1, v(0) = 1.

(A9) For the tapered block length l(n)→∞, where l(n) = O(n1/2−ε), 0 < ε < 0.5.

Now, under (A1*,A2-A9), the tapered block multiplier bootstrap version of the test statistics,

Ŝi,(b),tap, converge weakly to the counterpart of the original sample, i.e.

(Ŝ1,(b),tap − Ŝ1, ..., ŜM,(b),tap − ŜM)′
w→ (S1 − Ŝ1, ..., SM − ŜM)′.

The simulation study underlines the validity of the tapered multiplier bootstrap for the empirical

tail copula. An advantage of this approach is the tail dependence structure is not polluted due

to model misspecification which may be a problem for large, high-dimensional data sets where

automatic GARCH fitting is challenging and computationally expensive.

3.3 Local tail asymmetry

One main feature of our test is we can localize tail dependence differences. This enriches the

binary test decision on tail asymmetry/inequality as we can find subspaces in R2
+ where tail

asymmetry/inequality can be expected. If the global null is rejected, significant individual P-

values trace the subsets of the unit simplex hull where both tail copulas differ. The boundary

points of the significant subsets amount to empirical quantile threshold vectors which span a

tail asymmetric subspace in the sample space, i.e.

QX =
(
F−1

1,X,n(1− k/nu1), F−1
1,X,n(1− k/nu2)

)
×
(
F−1

2,X,n(1− k/nu1)), F−1
2,X,n(1− k/nu2)

)
,

QY =
(
F−1

1,Y,n(1− k/nu1), F−1
1,Y,n(1− k/nu2)

)
×
(
F−1

2,Y,n(1− k/nu1)), F−1
2,Y,n(1− k/nu2)

)
.

Due to the homogeneity of the tail copulas, these extreme sets can be extrapolated arbitrarily

far into the tail, given the extreme value conditions hold. In particular, Figure 1 illustrates how

to trace tail asymmetry.

Thus, when comparing tail dependencies of return vectors, our test provides precise

information on which specific tail events, or Value-at-Risk events, induce tail dependence

differences. Conditional on realized returns of X falling into QX, tail dependence of X and

Y differ; conditional on X /∈ QX, ΛX and ΛY do not differ significantly.

6I.e. for fixed j, ξj,n is independent of ξj+h,n for all |h| ≥ cl(n)
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Figure 1: Top: Upper-right quadrants of scatterplots for X,Y, both equipped with
an asymmetric logistic copula and marginal distributions Xi ∼ t(df = 3), Yi ∼ t(df =
10), i = 1, 2. The corresponding tail copula is Λ(u1, u2) = u1 + u2 −

[
(1− ψ1)u1 + (1−

ψ2)u2 + ((ψ1u1)−θ1 + (ψ2u2)−θ2)θ
]

(see Tawn (1988)), with parameters (ψX,1, ψX,2, θX) =
(0.1, 0.6, 0.1), (ψY,1, ψY,2, θY) = (0.1, 0.5, 0.4). Bottom, center: Estimated tail copulas for u1 ∈
{0.01, 0.02, ..., 0.99}, k = 500, n = 10.000,M = 8. The blue shaded area indicates over which
subset both tail copulas significantly differ. Bottom left and right: The blue rectangles show
the tail-asymmetric tail regions; the homogeneity of the tail copula allows to extrapolate this
region far into the sample tail.

This additional information might improve tail risk anticipation for regulators, or tail risk

based hedge and trading strategies for investors.

4 Monte Carlo simulation

We compare finite sample performance of our test with the TDC-test, and the BD13-test.7

For this we study two types of dependence models that are frequently used in finance. First,

we employ the (implicit) copula of factor models. See Fama and French (1992), Einmahl et al.

(2012), and Oh and Patton (2015) for factor models in finance, tail dependence of factor models,

and tail dependence of factor copulas in finance, respectively. Secondly, representing the broad

7We focus on non-parametric tests only as in practice parametric specifications often suffer
from a substantial model bias. Only if the chosen model class is appropriate, parametric tests
might provide performance improvements. But even then, common parametric tests would fail
to detect tail dependence differences in case of intra-tail asymmetry which, however, could be
uncovered by our test procedure.
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class of Archimedean copulas, we employ the Clayton copula, which models solely lower tail

dependence. Its lean parametric form makes the Clayton copula a popular building block of

more complex copula models, such as mixtures of copulas, Rodriguez (2007), Patton (2006).

For each copula, we impose one parametrization that fulfils the null, and one that violates the

null, leaving us with four DGPs.

DGPs 1 and 2 are based on the tail factor model for X = (X1, X2) with r factors

Zj, j = 1, ..., r, and loadings aij, i = 1, 2, j = 1, ..., r given by

X i =
r∑
j=1

aijZ
j + εi, i = 1, 2. (3)

where factors are i.i.d. Frèchet with ν = 1 independent of the error term εi with less fat tails

than Zj; we set εi as Frèchet with νε = 2. In this way, the matrix of factor loadings A = (aij)

directly determines the degree of tail dependence of X on the factors and the corresponding tail

dependence function can be easily derived. In particular, the (upper) tail copula of (X1, X2) is

equivalent to the tail copula of the max-factor model X̄ i = maxj=1,...,r(aijZ
j) which is

ΛU(u1, u2) = u1 + u2 −
r∑
j=1

max

(
a1j∑r
j=1 a1j

u1,
a2j∑r
j=1 a2j

u2

)
,

see Einmahl et al. (2012) for further details. DGP 1 consists of X,Y both resulting from a

factor model (3) with loading matrix

A1 =
[

2 0
1 1
0 2

]
Here, the first factor only influences X1 (Y 1), the second factor influences both X1 (Y 1) and

X2 (Y 2), and the third factor only influences X2 (Y 2). That is, A1 amounts to intra-tail

symmetry and to tail equality between X and Y, and thus the null is true. See Figure 2,

first from the left, for Λ(u1, 1− u1), u1 ∈ [0, 1]. For DGP 2, both X and Y stem from a factor

model (3) with

A2 = [ 1 1
0 2 ] ,

where the second factor only influences X2 (Y 2), causing the TC to become intra-tail

asymmetric, Λ(u1, u2) 6= Λ(u2, u1), and consequently TCs of X and Y differ on some parts of

S, see Figure 2, second from the left. DGP 2 thus represents the class of intra-tail asymmetric

copulas which violate the null according to Proposition 1.
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Figure 2: Tail copulas of DGPs 1 to 4 from left to right. Note, for DGP 2, the solid lines
represents Λ(u1, 1− u1), whereas the dashed line shows Λ(1− u1, u1). For DGP 4, two different
specifications of the Clayton copula are used for X and Y .

For the Clayton copula, only the lower TC features tail dependence,

ΛL(u1, u2; θ) = (u−θ1 + u−θ2 )−1/θ,

ΛU(u1, u2; θ) = 0,

where (lower) tail dependence increases in the parameter θ ∈ [0,∞). DGP 3 is given by

X,Y ∼ Clayton(·; θ = 0.5); this specific choice of θ implies a TDC of λ = 0.25, which roughly

corresponds to a TDC of a bivariate t-distribution with correlation 0.5 and 4 degrees of freedom

(McNeil et al. (2005), p.211). For DGP 3, the null is true. See Figure 2, second from the right.

For DGP 4, X ∼ Clayton(·; θ = 0.5), and Y ∼ Clayton(·; θ = 1). Thus, tail equality is violated

as the TDC of Y is λ = 0.5. See Figure 2, first from the right.

To check whether the test also works for financial time series data, we combine all DGPs with

i.i.d. as well as GARCH marginals. For the latter case, apply the test to ”raw” GARCH returns,

and to standardized GARCH residuals as it is important to analyze whether using estimated

residuals affect test performance. Moreover, we study the test performance for unfiltered

returns using the block bootstrap and the tapered block multiplier bootstrap. In particular,

we employ GARCH(1,1) dynamics for any marginal return process. For both bivariate return

series r = (r1, r2) it holds

ri,t = σi,tεi,t,

σ2
i,t = ω + α1σ

2
i,t−1 + β1ε

2
i,t−1,

εi,t|Ft−1 ∼ (0, σ2
i,ε), i = 1, 2, t = 1, ..., n,

where we set ω = 0.01, α1 = 0.15 and β = 0.8 such that ω + α1 + β is close to one to mimic

parameter values often found in financial returns, see for example Engle and Sheppard (2001).

Imposing the tail structures of DGPs 1 to 4 on the time series, we use DGPs 1 to 4 to
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generate εZ,t = (εZ1,t, εZ2,t)
′: In a first step, we simulate observations (ε̃X,t, ε̃Y,t)

n
t=1 according

to DGPs 1 to 4. Consequently, we transform the errors to pseudo-observations by means of the

marginal empirical cumulative distribution, (Fnε̃Z1(ε̃Z1,t), Fnε̃Z2(ε̃Z2,t))
n
t=1,Z = X,Y. Finally, we

apply the quantile function of the t-distribution function with 10 degrees of freedom to the

pseudo-observations. Thus, the final errors are linked by the copulas of DGPs 1 to 4 with fat-

tailed t-marginals.8 Those are used to generate the GARCH series for X and Y. We obtain

standardized residuals from estimation by quasi maximum likelihood.

For sample sizes n = 750, 1500, varying values of the effective sample size k, and a nominal

test level α = 0.05, we compare empirical rejection frequencies. Also, for test algorithm 1, we

employ two subset discretizations (M = 6, 18) to evaluate the sensitivity of the test performance

with regard to the user-dependent test calibration. Further, we employ test algorithm 2 which

merges 14 different grids. The TDC-test is carried out using the multiplier bootstrap at points

u1 = u2 = 0.5, i.e. for a given value of k estimates correspond to standard TDC estimates at

point u1 = u2 = 1 with k∗ = k/2. The number of simulations is S = 500 for each setting.

Table 1 reports empirical rejection frequencies for i.i.d. marginals and GARCH fil-

tered marginals and sample size n = 1500. Also, we study the effect of varying k =

b0.1nc, b0.2nc, b0.3nc. Note, Λ̂(u1, u2; k = k∗) = Λ̂(au1, au2; k = ak∗). Hence, these values for k

correspond to b0.05nc, b0.1nc, b0.15nc in the standard case of TDC estimation with u1 = u2 = 1.

Table 2 contains empirical rejection frequencies s n = 750. As non-parametric methods for tail

dependence are often criticized for unsatisfactory small sample performance, it is worth studying

test behavior for small and moderate sample sizes.

In general, our test appears to be asymptotically consistent. For i.i.d. marginals our test

obeys the nominal test size of α = 0.05 (DGP 1 and 3), irrespective of the choice of k. While

empirical test size remains untouched by k, the choice of effective sample size notably affects

empirical power; for example, for DGP 4, power increases by up to 25% both for M = 6, 18.

Hence, this suggests a larger choice of k is favorable. As noted in Bücher and Dette (2013), for

a large k, bias terms in Λ̂X and Λ̂Y cancel out. This suggests the choice of k, which in essence

is a bias-variance problem for Λ̂, is slightly facilitated compared to other extreme value based

peaks-over-threshold problems. Thus, k ≈ 0.1n seems a reasonable rule of thumb.

While single-grid tests show larger power than the TDC-test, the BD13-test is more powerful

in standard cases whenever our test is based on a single discretization. However, combining a

multiple of single-grid tests, e.g. test algorithm 2, makes our test consistently more powerful

than BD13.

8Note that monotone transformations, such as the quantile transformation, do not alter the
dependence structure but the transformed error distributions are closer to empirical residual
distributions found in real data.
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k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA2 18 6 TA2 18 6 TA2 18 6 TA2

iid 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5% 4.0 3.2 3.2 2.4 4.8 3.2 4.2 100 100 100 5.0 4.8 3.2 4.2 6.8 73.8 86.2 78.2 82.2 88.2
10% 2.0 3.8 2.0 2.4 5.4 4.0 4.4 100 100 100 2.2 3.6 3.4 2.8 4.8 91.8 97.6 94.8 95.8 98.2
15% 4.4 3.2 2.8 2.6 6.0 5.2 5.8 100 100 100 3.0 3.0 3.0 2.4 7.0 96.6 99.8 98.4 98.6 100

fil.
5% 3.4 4.4 2.8 3.4 5.8 5.4 7.6 100 100 100 3.6 4.0 3.0 2.8 5.8 73.8 86.2 78.2 82.2 87.2
10% 4.0 4.4 2.4 3.8 5.8 5.0 7.6 100 100 100 4.4 3.8 3.4 2.6 6.6 92.6 97.4 95.6 96.0 97.8
15% 5.2 4.0 3.0 3.0 5.4 9.2 8.8 100 100 100 3.0 3.0 3.0 2.4 7.0 97.2 98.8 97.6 98.4 98.8

unfil.
5% 6.0 6.6 4.2 4.6 8.0 8.6 12.6 83.2 52.0 86.8 9.6 12.4 8.6 9.8 14.2 17.8 21.2 18.0 19.2 24.6
10% 4.6 5.8 4.0 4.6 7.4 6.6 8.8 100 100 100 7.0 11.4 9.0 9.8 14.8 22.0 31.0 25.4 26.2 34.6
15% 4.8 4.2 3.0 4.2 6.4 5.6 7.8 100 100 100 6.8 7.4 6.4 6.0 10.2 33.2 44.2 35.8 39.8 48.0

blo.
5% 6.6 5.0 3.6 3.4 6.6 8.0 8.0 73.4 40.2 81.4 7.4 11.0 8.8 9.4 14.6 37.0 44.6 39.0 42.6 49.0
10% 6.0 4.8 3.4 4.0 5.4 6.6 6.6 100 99.8 100 5.6 8.0 8.4 7.8 13.0 70.4 80.0 70.2 76.0 82.8
15% 6.0 5.0 3.2 3.4 5.8 5.6 6.4 100 100 100 4.0 7.2 8.0 6.6 12.8 88.0 94.0 90.8 92.2 95.0

tap.
5% 3.8 4.8 2.6 3.8 6.0 5.4 6.8 100 100 100 3.8 4.2 2.6 2.2 6.0 75.8 85.6 77.8 82.6 87.8
10% 3.8 4.6 2.6 3.2 5.6 5.4 7.4 100 100 100 4.2 3.4 4.0 2.6 6.4 92.8 97.6 95.2 96.8 97.8
15% 5.2 4.0 2.8 3.0 4.8 4.4 4.6 100 100 100 4.4 5.0 3.8 3.4 6.8 97.0 99.0 97.4 98.4 99.0

Table 1: Empirical rejection probabilities for α = 5%, S = 500 repetitions and sample size
n = 1500. Effective sample fraction k/n is evaluated at (u1, u2) = (1, 1). DGP 1: H0 factor
model, DGP 2: H1 factor model, DGP 3: H0 Clayton copula, DGP 4: H1 Clayton copula.
Rejection frequencies are shown for a varying effective sample size, i.i.d. marginals and GARCH
marginals for which the tests are applied to raw observations (”unfiltered”) and also to
standardized residuals (”filtered”). For the latter, estimation was carried out by quasi maximum
likelihood.

k/n DGP1 DGP2 DGP3 DGP4

TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16 TDC BD13 BS16
18 6 TA2 18 6 TA2 18 6 TA2 18 6 TA2

iid 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5% 4.6 4.8 3.6 3.8 5.6 2.6 4.4 97.8 100 99.8 3.4 4.0 3.6 3.2 6.2 43.2 57.8 44.6 52.2 60.8
10% 3.2 2.8 2.6 2.2 5.0 5.4 5.8 100 100 100 3.4 3.6 2.8 3.2 6.0 65.2 79.6 69.6 75.8 82.4
15% 4.0 4.2 3.2 2.8 7.2 4.2 5.6 100 100 100 4.0 5.8 2.8 3.4 8.0 76.4 86.2 81.0 83.6 88.6

tap. 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
5% 5.0 6.2 4.2 4.6 6.8 4.4 3.8 98.0 78.6 99.8 11.6 15.2 13.8 13.8 20.4 26.6 39.4 33.4 37.0 44.8
10% 4.4 5.4 3.0 4.4 7.2 4.8 6.2 100 100 100 8.0 12.6 12.4 12.2 19.4 48.2 61.4 55.8 57.8 66.2
15% 2.4 4.2 3.2 3.6 5.6 6.2 6.4 100 100 100 8.2 9.8 7.6 8.0 13.8 62.0 75.4 69.6 73.2 79.6

Table 2: Empirical rejection probabilities as in Table 1, but with a sample size of n = 750.

Importantly, our test successfully detects intra-tail asymmetries, as shown by the empirical

rejection frequencies for DGP 2. Both the TDC-test and BD13-test fail to reject the null in this

case and treat intra-tail asymmetries as tail symmetric. If the tail copula is intra-asymmetric,

it is beneficial to apply our test with more subsets. If the tail copula is symmetric, however,

power decreases in the number of subsets. It is thus advisable to apply the test for a variety of

M , say M ∈ {2, 4, 6, ..., 26}, to compare both TCs over many different subset specifications.
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Also, test results for GARCH filtered returns are in line with i.i.d. series. Thus, the

estimation step of the GARCH residuals does not downgrade test power nor size. However,

unfiltered GARCH returns should not be used as in the case of DGP 4, test power implodes by

roughly 50-75% for all three tests, whereas empirical sizes for DGP 1 are still fine, empirical size

of DGP 3 generally is too large. As the tapered block multiplier bootstrap produces comparable

results as the multiplier bootstrap based on i.i.d. and GARCH filtered marginals, we prefer this

adjusted bootstrap for empirical applications work as it can handle non-i.i.d. data and it does

not require pre-estimation of a parametric model. However, as Table 2 suggests, the tapered

block bootstrap should only be applied for generous sample sizes as for n = 750 and GARCH

marginals the tapered multiplier block bootstrap appears to be oversized and standardized

GARCH residuals as approximation of i.i.d. observations should be used instead.

Finally, we find our aggregating test (test algorithm 2) is throughout most powerful, while

the test with fixed grids (test algorithm 1) is consistently more powerful than the TDC-test,

slightly less powerful than the BD13-test, and more powerful than the latter in case of intra-tail

asymmetry.

5 Empirical application

5.1 Tail asymmetries within S&P500 industry portfolios

We study possible tail asymmetries between daily returns 49 S&P500 industry portfolios.

The data set, publicly available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html,9 contains nearly 90 years of weighted returns of CRSP SIC codes

based industries. For detailed information on industry composition we refer to the website just

mentioned.

With this exhaustive data set we aim to detect tail asymmetry dynamics of the complete

S&P500 universe. Applying a rolling window analysis with window length of n = 1500, i.e.

nearly 6 years, and a step size of 300 trading days, i.e., roughly 14 months, we arrive at 74

(overlapping) time periods. In each period, we build all possible bivariate combinations and

test the nulls H0 : ΛU
X = ΛL

X. Discarding pairs with missing data, in each period there are at

most 1176 pairs to test against tail asymmetry. To avoid possible model risk by pre-filtering the

returns we throughout analyze raw returns using the tapered block multiplier bootstrap; Section

3.2 and the results of the simulation study justify this approach.10 Also, we fix the effective

sample size to k = 0.1n (evaluated at (u1, u2) = (1, 1),Λ(u1, u2)) which as well is inspired from

9Accessed 1 March 2016.
10For simplicity, we fix the window parameter of the tapered block multiplier bootstrap as l = 8.
Yet, we find no change of results worth mentioning when altering l.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the simulation study. We are not interested in particular industry pairs but our focus is on tail

asymmetry of the general market. Hence, a fixed k for all pairs is an operable solution to the

choice of number of extremes as over- and underestimation might eventually balance out when

counting the number of test rejections over all 1176 pairs.

To grasp the general evolution of lower and upper bivariate tails, we introduce a descriptive

measure for market tail dependence. In period t, for each pair i, we integrate the TC over [0, 1]

and provide empirical location statistics of all pairs, e.g. for the mean,

Λt :=
1(
nt
2

) (nt2 )∑
i=1

∫ 1

0

Λ̂i(u, 1− u) du,

where nt is the number of sectors in period t. We also consider empirical quantiles for integrated

TCs. It is easy to see that Λi ∈ [0, 0.25]: For pair i there is no (perfect) bivariate tail dependence

if Λt = 0 (0.25). Figure 3 shows the trajectory of the mean and q-quantiles, q = 0.01, ..., 0.99,

for both upper and lower tails covering 1931-2015.

The null is tested by the TDC-test, the BD13-test and test 2, aggregation over 14 grids in

the spirit of the simulation study. Figure 4 displays trajectories of the share of tail asymmetric

pairs according to each test. Figures 3 and 5 are supplementary.

All tests indicate, most of the time, substantial amount of tail asymmetries in the market. On

average our test finds 64% (sd=0.25) of all pairs exhibit TA. We can identify an enduring phase

of pronounced share of tail asymmetries between 1940-1970 where on average 80% (sd=0.10)

of all pairs are tail asymmetric. Collapses of the number of tail asymmetries fall strikingly into

times of financial crises, such as the beginning of the Great Depression (1932-1937), the Oil

Crisis (1968-74 until 1972-1978), Black Monday (1987) and the Asian and millennium crisis

accumulating into the Dot-Com crisis (1995-2003). In contrast, the recent financial crisis 2007-

2009 is characterized by a temporary bump which opposes a phase of steady decline of tail

asymmetries since the the mid 1990s. One might argue that in contrast to former financial

crises only dependence between extreme losses was affected while tail dependence between gains

did not experience such change. However, Figure 3 refutes this hypothesis as apparently tail

dependence across losses and gains co-moved nearly in a parallel way as in previous crises. While

the summary measures for market tail dependence suggest left and right tails are connected

equally strongly during the 2000s, all three tests report otherwise and reveal a pattern not

captured by descriptive statistics.

In comparison to the two competing tests our tests consistently detects more asymmetries,

see Figure 5 (left), which we attribute to the fact that competing tests overlook non-central tail

dependence structures (TDC-test) or intra-tail asymmetry (TDC-test, BD13-test). Hence, our
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Figure 3:
∫ 1

0
Λ̂(u, 1− u)du for all possible pairs (up to 1176) in each period; dark line: empirical

mean; gray lines: empirical quantiles: 0.01i, i = 1, ..., 99. Left: losses. Right: gains.

test provides a more accurate assessment of extreme risk within the market; our test suggests the

phenomenon of tail asymmetry is more common. With respect to the TDC-test (BD13-test),

we find 2.5%-27% (0%-12%) more tail asymmetric pairs. We also plot the trajectory of the

percentage of rejections where the adjusted P-value of the central subinterval does not suggest

a rejection, while at least one non-central P-value does (solid line). This line runs nearly parallel

to the graph of the differential in found tail asymmetries between the TDC-test and our test.

Furthermore, the difference in found asymmetries between our test and BD13 suggests some

degree of intra-tail asymmetry among all pairs as the simulation study demonstrated both tests’

power mainly differ only in intra-tail asymmetric case. With our test we can also quantify the

number of tail asymmetric pairs that such approaches would miss due to ”off-diagonal” tail

asymmetries. Figure 5 (right) compares the number of rejections of ”non-central” subintervals

with the number of rejections found in the central subinterval. We find that our test, when

restricted to non-diagonal subintervals, finds up to 20% more asymmetries than a TDC-based

analysis that solely focusses on the central subinterval. Throughout the sample, there exists

at least one non-central subinterval with more test rejections than the central subinterval.

Furthermore, there are periods of time, which match the major financial crises, when not

considering off-diagonal parts of the TC is especially serious. Yet, in the finance literature, it is

common practice to analyze tail dependence solely by the tail dependence coefficient Λ(u, u),

i.e. the tail copula along the diagonal u1 = u2 = u ∈ R+. We show that this approach might

overlook non-standard types of tail dependence leading to a substantial misconception of tail

asymmetry.
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Figure 4: Dynamics of the percentage of detected tail asymmetries among all pairs using a
rolling window of size n = 1500, and a step size of 300 trading days for the TDC-test (dashed),
BD13-test (dotted) and our test (solid), respectively.
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Figure 5: (Left) Difference of detected asymmetries in percentage points with respect to the
TDC-test (dashed) and BD13-test (dotted), and percentage of our test’s rejections that are
induced by subintervals off the diagonal, based on a grid with M = 14. (Right) Number of
rejections in subsets Ii, i = 1, 2, 3, 5, 6, 7, i.e. off-diagonally, compared to number of rejections
in subsets I4, i.e. around (0.5,0.5), based on a grid with M = 14.

5.2 Tail inequalities of foreign exchange rates

We now analyze tail equality in pairs of six main foreign exchange rates, namely Euro (EUR),

British Pound (GBP), Canadian Dollar (CAD), Japanese Yen (JPY), New Zealand Dollar
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(NZD) and Swiss Franc (CHF), all nominated in USD.11 The sample consists of returns of daily

closing prices ranging from 01/05/2001 to 02/01/2016. As foreign exchange rates are the most

frequently traded financial security with an average daily trading volume of more than 5 trillion

in April 2013,12, investors and regulators have a natural interest in a comparison of extreme

foreign exchange rates co-movements. We again apply a rolling window analysis, now with a

window size of n = 1000 and step size of 50 days to draw a finer picture of the tail (in)equality

dynamics. For any pair comparison trading days with missing data or zero returns are discarded.

The effective sample size is set to k = 0.2n at Λ(1, 1); we analyze unfiltered data and use the

tapered block multiplier bootstrap. We conduct the following pair tail comparisons

H
(L−L)
0 : ΛL

X = ΛL
Y, H

(L−U)
0 : ΛL

X = ΛU
Y, H

(U−U)
0 : ΛU

X = ΛU
Y,

for all 15 bivariate pairs, amounting to 420 tests in each period. Figure 8 shows the share of

tail inequalities among all possible comparisons.

The fraction of rejected tail equalities, ranging from 45% to 75%, suggests bivariate tails

of foreign exchange rates systematically differ. We observe a steady increase of tail inequalities

from 2006 to 2008 which coincides with the depreciation of the USD with respect to the Euro.

This evolution is reversed when the USD appreciates during European Sovereign Crisis (2013

onwards). Thus, in the last decade, a strong (weak) USD (Euro) came along with more (less)

tail equality within the foreign exchange rates market.

Figure 7 displays a time-varying tail dependence ranking for all 15 pairs based on the TDC

and the summary statistic
∫ 1

0
Λ(u, 1− u)du which was introduced in the last subsection. A

careful inspection of all four plots shows there is only little difference between the TDC based

and the TC based ranking. Tail dependence of appreciations and depreciations of EUR and

CHF with respect to the USD tends to be the strongest throughout the sample. While the

pair GBP-EUR exhibits strong tail dependence for joint upper tails (depreciations), the lower

tail shows a strong tail link only in the last five years (as well as until 2007). Also, JPY-CAD

(upper tail) and CAD-NZD (both tails) feature comparably strongly connected tails. The pairs

JPY-NZD, JPY-CAD and GBP-JPY feature the weakest tail dependence in both tails.

The pair EUR-CHF dominates tail comparisons throughout which is due to the fixed

exchange rate until 01/2015 with a Euro minimum rate of 1.20 CHF. Also, the tight economic

linkage between both parties may attribute to the relatively strong tail dependence. On 15

Jan 2015 the Swiss Central Bank unpegged its currency from the Euro intending to avoid a

11 Time series data are standard exchange rates from Bloomberg.
12 See Rime and Schrimpf (2013)
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k/n : 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

L-L 4.4 10.6 37.2 30.8 17.9 19.9 22.4 35.6 52.0 61.5 46.2 33.6 46.0 56.1 63.7
U-U 99.2 7.4 98.0 87.2 99.9 87.8 44.7 80.2 98.6 99.6 95.7 96.1 99.8 99.6 96.6

Table 3: P-values corresponding to the null hypothesis of constant tail dependence between
EUR and CHF (see Equation 4) for varying effective sample sizes.
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Figure 6: Foreign exchange rates nominated in US Dollars. The time span is 01/2001 to 02/2016.

continued depreciation of the Swiss currency as the Euro devaluated since 2008/2009. This

policy change caused the CHF to appreciate by 20% with regards to the Euro within a single

day. We now test whether the break of the CHF-EUR currency peg had a significant impact

on the tail dependence between both currencies. This would be the case if the TC had changed

after 15/01/2015. Unfortunately, the sample contains only 273 observations after the policy

change and we thus compare TCs for overlapping time periods, that is 01/01/2006-14/01/2015

(ΛT1) and 01/01/2006-16/01/2016 (ΛT1,T2). The null is

H0 : ΛW,T1
CHF−EUR = ΛW,T1+T2

CHF−EUR,W = U,L (4)

However, the tapered block multiplier bootstrap has to be adjusted to account for the

dependence of both samples. For the TC of the entire period (T1 + T2) we use the multiplier

vector ξT1+T2 = (ξ1, ..., ξT1, ξT1+1, ..., ξT1+T2); for the TC of the first subperiod, we only use the

first T1 entries of ξT1+T2. We execute the test for 15 different values of the effective sample size,

namely kT = 0.02nT , 0.04nT , ..., 0.3nT , where nT denotes the sample size of the first subperiod

or the entire period, respectively. Table 3 contains p-values of test 2. To this date, there is no

evidence for a structural change both in the left and right tail.
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Figure 8: Dynamics of the percentage of detected tail inequalities among all pairs, comparing
the following tails: Upper-upper, upper-lower, lower-lower. The window size is n = 1000 with
a step size of 50 trading days, and rejections based on the TDC-test (BD13-test, our test)
correspond to the dashed (dotted, solid) line.

6 Conclusion

We propose a novel test against asymmetries/inequalities between tail dependence functions.

The test is based on the empirical tail copula and conducts piecewise comparisons between tail

copulas. Importantly, our test considers intra-tail asymmetries and achieves higher power in

intra-tail asymmetric cases, and comparable power else. The test idea might also be applied

for general copula comparisons, and also for tail copula comparisons in higher dimensions.

An empirical study of S&P500 and foreign exchange rates shows our test typically finds more

asymmetries/inequalities than competing tests; we find time periods when our test clearly

benefits from respecting non-diagonal TC differences and meaning our test detects substantially

more opportunities to hedge tail risks.
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7 Appendix

7.1 Proofs

.

Proof [Proposition 3.1] Equation 2 guarantees convergence of the empirical TC
√
kZΛ̂Z(u1, u2),Z = X,Y, for (u1, u2), (v1, v2) ∈ R2

+. Define

∆̂(u1, u2, v1, v2) =:
√
kY/(kX + kY)Λ̂X(u1, u2)−

√
kX/(kX + kY)Λ̂Y(v1, v2),

which is a sum of rescaled tail copula processes with GΛ̂,Z,Z = X,Y is bivariate Gaussian

process. It directly follows from Equation 2 that

∆̂(u1, u2, v1, v2)
w→ ∆(u1, u2, v1, v2) :=

√
kY/(kX + kY)GΛ̂,X(u1, u2)−

√
kX/(kX + kY)GΛ̂,Y(v1, v2).

Only under the null and |u| = |v|, E[∆(u1, u2, v1, v2)] = 0. By the continuous mapping theorem

∆̂2(u1, u2)
w→ ∆2(u1, u2). For a fixed grid I(i), and some subinterval [a, b] ⊂ I(i), 0 < a < b <∞,

consider the test statistic corresponding to the ith null H0,i that integrates over [a, b], i.e.

Ŝi,[a,b]. Then it directly follows ∆̂2
i (u1, 1− u1)

w→ ∆2
i (u1, 1− u1), u1 ∈ [a, b]. Under the null of

H0 : ΛX = ΛY, for all i, ∆̂2
i
w→ 0 as ∆2

i = 0. Under the alternative, there naturally is at least

one subinterval where the test statistic does not converge to zero.
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