Fact or friction: Jumps at ultra high frequency

Kim Christensen[★] Roel Oomen[†] Mark Podolskij^{‡,★}

[⋆]CREATES †Deutsche Bank ‡University of Heidelberg

January 24, 2011

Outline I

1 [Introduction](#page-3-0)

2 [Theoretical setup](#page-4-0)

- **[Semimartingale framework](#page-4-0)**
- [Estimating quadratic variation](#page-6-0)
- [Microstructure noise and outliers](#page-8-0)
- **•** [Estimating variance/covariance matrix](#page-23-0)

3 [Simulation study](#page-28-0)

- **•** [Simulation details](#page-28-0)
- [Results: Part I](#page-29-0)
- **•** [Threshold estimation](#page-30-0)
- **[Results: Part II](#page-36-0)**

Outline II

4 [Empirical application](#page-43-0)

- [Data description](#page-43-0)
- **•** [Empirical results](#page-44-0)
- [Practical example](#page-49-0)

5 [Conclusions](#page-53-0)

- **[Conclusions](#page-53-0)**
- **•** [Future work](#page-54-0)

Introduction

- In recent years, high-frequency jump estimation has attracted increasing interest (e.g., Andersen, Bollerslev and Diebold 2007; Barndorff-Nielsen and Shephard 2004, 2006; Corsi and Renó 2009; Huang and Tauchen 2005)
- Jumps appear to be frequent and account for a significant proportion of total return variation (ranging about 5% – 15%).
- Most studies use sparsely sampled data, for example 5-minute data.
- We investigate the importance of the jump component with noiseand outlier-robust estimators using ultra high-frequency data.
- We find much less evidence of jumps, i.e. a substantially smaller jump proportion and fewer significant jump days.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Semimartingale framework

• We assume that a log-price X_t at time t is, potentially, of the form

$$
X_t=X_0+\int_0^t\mu_sds+\int_0^t\sigma_s dW_s+\sum_{i=1}^{N_t^J}J_i,\quad t\geq 0
$$

where

- \bullet X₀ is the initial price, μ is a drift term, σ is a (stochastic) volatility process, W is a Brownian motion, while N_t^J and $(J_i)_{i\geq 0}$ represent the total number and sizes of jumps up to time t .
- X represents an underlying "efficient" price that would prevail in the absence of microstructure noise and outliers.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

- We normalize time to the unit interval, $t \in [0, 1]$.
- The quadratic variation of X

$$
[X]_1 = \int_0^1 \sigma_s^2 ds + \sum_{i=1}^{N_1^J} J_i^2 \equiv IV + JV.
$$

- **•** The question we investigate is how important the jump variation (JV) is relative to the integrated variance (IV).
- Let the observation times of X be equidistant time points $t_i = i/N$, for $i = 0, 1, \ldots, N$ Then, we compute log-returns by

$$
\Delta_i^N X = X_{\frac{i}{n}} - X_{\frac{i-1}{n}}.
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Realised variance and bipower variation

• The realised variance and bipower variation are defined by

$$
RV_N[X] = \sum_{i=1}^N |\Delta_i^N X|^2 \qquad BV_N[X] = \frac{N}{N-1} \frac{\pi}{2} \sum_{i=2}^N |\Delta_i^N X| |\Delta_{i-1}^N X|.
$$

• Moreover, it holds that

$$
RV_N[X] \stackrel{p}{\rightarrow} [X]_1 \qquad BV_N[X] \stackrel{p}{\rightarrow} IV.
$$

That is, bipower variation is a jump-robust estimator of the integrated variance, and $RV_{N}[X] - BV_{N}[X] \stackrel{P}{\to} \mathsf{JV}.$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

A high-frequency jump test

Assume there are no jumps in X, i.e. $N_t^J\equiv 0.$ Then, the following CLT holds

$$
\frac{N^{1/2}(RV_{N}[X] - BV_{N}[X])}{\sqrt{0.609 \int_0^1 \sigma_s^4 ds}} \overset{d}{\rightarrow} N(0, 1).
$$

- **Basis for performing non-parametric tests of the existence of jumps** in the absence of microstructure noise and outliers.
- A feasible version is achieved by plugging in a consistent estimator of the integrated quarticity, $\int_0^1 \sigma_s^4 \mathsf{d}s$.
- The t-statistic can be further transformed using the delta method to improve finite sample properties.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Microstructure noise and outliers

- **In practice, microstructure noise (e.g., bid-ask spreads and price** discreteness) cloaks the true log-price X.
- Moreover, data are contaminated with outliers (e.g., due to misplaced decimal points, errors in the data feeds etc.).
- Outliers can be hard to filter out systematically.
- We model the observed log-price Y as

$$
Y_{\frac{i}{N}} = X_{\frac{i}{N}} + u_{\frac{i}{N}} + 1\!I_{i \in A_N^O} Q_i
$$

 \bullet u is an i.i.d. microstructure noise process with $E(u) = 0$ and var $(u)=\omega^2.$ Moreover, u is independent of X , i.e. $u\perp\!\!\!\perp X.$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

- \bullet (O_i)_{i>0} are non-zero random variables, which generates the sizes of the outliers.
- A_N^O is a random set, which holds the appearance times of outliers. We assume A_N^O is a.s. finite and model it by

$$
A_N^O = \left\{ \frac{[N \times T_i^O]}{N} : 0 \le T_i^O \le 1, i \ge 1 \right\}
$$

- $(\,T^{O}_{\dot{\ell}})_{\dot{\ell}\geq 0}$ are the jump times of another counting process $N^O_{\ell},$ where N_t^O is independent of N_t^J .
- The independence between N_t^J and N_t^O implies that the processes have no common jumps.
- Thus, observing both a jump and an outlier in Y over a small time interval is very unlikely.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Case I: The noiseless case

Assume first that $u \equiv 0$, i.e. there is no noise, but there could be outliers in the data, $\mathsf{Y}_{\frac{j}{N}}=\mathsf{X}_{\frac{j}{N}}+\mathsf{1}\!\mathsf{1}_{j\in\mathsf{A}_N^{\mathsf{O}}}\mathsf{O}_j$ $i = 0, 1, \ldots, N$.

Theorem I

In the absence of microstructure noise but presence of outliers, the following convergence in probability holds

$$
RV_N[Y] \stackrel{p}{\rightarrow} [X]_1 + 2 \sum_{i=1}^{N_1^O} O_i^2
$$

$$
BV_N[Y] \stackrel{p}{\rightarrow} IV + \frac{\pi}{2} \sum_{i=1}^{N_1^O} O_i^2
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Thus, neither estimator is consistent for the object, they are designed to estimate. Moreover, even in absence of jumps

$$
RV_N[Y] - BV_N[Y] \stackrel{p}{\rightarrow} (2-\pi/2) \sum_{i=1}^{N_i^Q} O_i^2 > 0.
$$

- Thus, a jump test based $RV_N[Y] BV_N[Y]$ will reject the null with probability converging to 1, also under the null of no jumps!
- \bullet To estimate $[X]_1$ and the IV, we use a third estimator, the (subsampled) QRV of Christensen, Oomen and Podolskij (2010):

$$
QRV_N[Y] \equiv \alpha' QRV_N(m, \overline{\lambda})[Y],
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

• Here, $\overline{\lambda} = (\lambda_1, \ldots, \lambda_k)$ with $\lambda_i \in [0, 1)$ is a vector of quantiles, $\alpha = (\alpha_1, \ldots, \alpha_k)$ are quantile weights with $\alpha_i \geq 0$, $\sum \alpha_i = 1$ and $QRV_N(m, \overline{\lambda})[Y]$ is a $(k \times 1)$ vector with *i*th entry equal to

$$
QRV_N(m, \lambda_j)[Y] = \frac{1}{N-m} \sum_{i=1}^{N-m} \frac{q_i(m, \lambda_j)}{\nu_1(m, \lambda_j)}, \text{ and}
$$

$$
q_i(m, \lambda) = g_{\lambda m}^2 \left(\sqrt{N} |D_{i,m}Y| \right),
$$

and where $D_{i,m} \mathsf{Y} = \bigl(\Delta^N_k \mathsf{Y} \bigr)_{(i-1)m+1 \leq k \leq im}$ for $i=1,\ldots,n.$

Under the assumptions of Theorem I, it holds that

$$
QRV_N[Y] \stackrel{p}{\rightarrow} IV. \tag{1}
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

• We can further identify the jump and outlier variation by taking appropriate linear combinations of $RV_{N}[Y]$, $BV_{N}[Y]$ and $QRV_{N}[Y]$

$$
RV_N[Y] - \left(1-\frac{4}{\pi}\right) QRV_N[Y] - \frac{4}{\pi} BV_N[Y] \stackrel{P}{\rightarrow} JV
$$

$$
\frac{2}{\pi}\left(BV_N[Y] - QRV_N[Y]\right) \stackrel{p}{\rightarrow} \sum_{i=1}^{N_i^Q} O_i^2
$$

An application of the delta method to the joint CLT (under no noise) of $(RV_N[Y], BV_N[Y], QRV_N[Y])$ can be used to test for jumps in the presence of outliers (see paper for details).

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Case II: The noise case

We now add the noise back and consider the simultaneous impact of noise and outliers, i.e.

$$
Y_{\frac{i}{N}} = X_{\frac{i}{N}} + u_{\frac{i}{N}} + 1_{i \in A_N^0} O_i, \qquad i = 0, 1, ..., N.
$$

- Well-known that standard estimators based on Y, e.g., $RV_N[Y]$, $BV_N[Y]$ or $QRV_N[Y]$ are inconsistent under noise.
- To infer the characteristics of the underlying semimartingale, we apply the pre-averaging approach, see, e.g., Jacod, Li, Mykland, Podolskij and Vetter (2009) or Podolskij and Vetter (2009a,b).

[Introduction](#page-3-0) [Theoretical setup](#page-4-0) [Simulation study](#page-28-0) [Empirical application](#page-43-0) [Conclusions](#page-53-0) [Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Two ingredients are needed. First, we choose a sequence of integers

$$
K=K(N)=\theta\sqrt{N}+o(N^{-1/2}),\quad \theta>0.
$$

- In the paper, we use $\mathcal{K} = \lceil \theta \sqrt{N} \rceil$.
- \bullet The second ingredient is a pre-averaging function q , which has to satisfy some technical conditions (see paper).
- Throughout, we work with $q(x) = min(x, 1 x)$.
- \bullet Associated with g are some normalizing constants:

$$
\psi_1^K = K \sum_{j=1}^K \left(h\left(\frac{j}{K}\right) - h\left(\frac{j-1}{K}\right) \right)^2 , \qquad \psi_2^K = \frac{1}{K} \sum_{j=1}^{K-1} h^2\left(\frac{j}{K}\right)
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

• We then pre-average noisy returns

$$
\bar{Y}_{i}^{N} = \sum_{j=1}^{K} g\left(\frac{j}{K}\right) \Delta_{i+j}^{N} Y.
$$

• An equivalent representation

$$
\bar{Y}_{i}^{N} = \frac{1}{K} \sum_{j=K/2}^{K-1} Y_{\frac{i+j}{N}} - \frac{1}{K} \sum_{j=0}^{K/2-1} Y_{\frac{j+j}{N}},
$$

with K even and $g(x) = min(x, 1 - x)$.

• Hence, the term "pre-averaging".

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Pre-averaged RV, BV and QRV

● We define noise-robust estimators:

$$
RV_N^*[Y] = \left[\frac{N}{N-K+2} \frac{1}{K\psi_2^K} \sum_{i=0}^{N-K+1} |\bar{Y}_i^N|^2 \right] - \frac{\psi_1^K}{\theta^2 \psi_2^K} \hat{\omega}^2,
$$

$$
BV_N^*[Y] = \left[\frac{N}{N-2K+2} \frac{1}{K\psi_2^K \mu_1^2} \sum_{i=0}^{N-2K+1} |\bar{Y}_i^N| |\bar{Y}_{i+K}^N| \right] - \frac{\psi_1^K}{\theta^2 \psi_2^K} \hat{\omega}^2,
$$

where $\hat{\omega}^2$ is a consistent estimator of $\omega^2.$

In the paper, ω^2 is estimated following Oomen (2006)

$$
\hat{\omega}_{AC}^2 = -\frac{1}{N-1} \sum_{i=2}^N \Delta_i^N Y \Delta_{i-1}^N Y \stackrel{P}{\rightarrow} \omega^2.
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Construction of $\mathsf{QRV}_\mathsf{N}^*[\mathsf{Y}]$ is slightly more involved.

$$
QRV_N^*[Y] \equiv \alpha' QRV_N^*(m, \overline{\lambda})[Y],
$$

where $\overline{\lambda}$ and α are as above, and the *j*th element of QRV $_{N}^{*}(m,\overline{\lambda})$ [Y] is given by:

$$
QRV_N^*(m, \lambda_j)[Y] = \frac{1}{\theta \psi_2(N - m(K-1) + 1)} \sum_{i=0}^{N-m(K-1)} \frac{q_i^*(m, \lambda_j)}{\nu_1(m, \lambda_j)}.
$$
\n(2)

where

$$
q_i^*(m,\lambda)=g_{\lambda m}^2\left(N^{1/4}|\overline{D}_i^N Y|\right),
$$

and

$$
\overline{D}_{i}^{N} Y = \{ \overline{Y}_{i+(j-1)(K-1)}^{N} \}_{j=1}^{m}, \quad \text{for} \quad i = 0, 1, ..., N - m(K-1)
$$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Theorem II

Assume that the observed log-price Y obeys

$$
Y_{\frac{i}{N}} = X_{\frac{i}{N}} + u_{\frac{i}{N}} + 1\!\!1_{i \in A_N^{\mathsf{O}}} Q_i, \qquad i = 0, 1, \ldots, N.
$$

and $E(u^4)<\infty.$ Then, it holds that

 $RV_N^*[Y] \stackrel{p}{\rightarrow} [X]_1$ $BV_N^*[Y] \stackrel{p}{\rightarrow} IV$ $\mathsf{QRV}_\mathsf{N}^*[\mathsf{Y}] \stackrel{p}{\to} \mathsf{IV}$

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Remarks

- **In contrast to the previous results, all noise-corrected estimators are** also robust to outliers!
- Intuition: With a probability "close to" one, there is at most a single outlier in the window $[i/N, (i + K)/N]$.
- The outlier influences exactly two consecutive returns with opposite sign and therefore appears with a factor $O(|g(j/K) - g((j-1)/K)|)$ in the construction of \bar{Y}^N_i .
- But $|g(j/K) g((j-1)/K)| = O(1/K)$, so outliers therefore have no impact on \bar{Y}^N_i asymptotically.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Theorem III

Assume that $N_t^J \equiv 0$, i.e. the observed log-price Y is a continuous semimartingale with noise and outliers. Furthermore, we assume that $E(u^8)<\infty$. As $N\to\infty$, it holds that

$$
N^{1/4}\left(\begin{array}{c} RV_N^*[Y]-IV\\ BV_N^*[Y]-IV\\ QRV_N^*[Y]-IV\end{array}\right)\stackrel{d_S}{\rightarrow} MN(0,\Sigma^*).
$$

where $\stackrel{d_8}{\rightarrow}$ denotes stable convergence in law and Σ^* is the (unknown) conditional covariance matrix.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Noise- and outlier-robust test for jumps

- Theorem III forms the basis for a nonparametric noise- and outlier-robust test for jumps.
- Use suitably scaled measure of jumps by comparing $RV_{N}^{*}[Y]$ with either $BV^*_N[Y]$ or $\mathsf{QRV}^*_N[Y]$, e.g.

$$
\frac{N^{1/4}(RV_N^*[Y] - BV_N^*[Y])}{\sqrt{\Sigma_{11}^* + \Sigma_{22}^* - 2\Sigma_{12}^*}} \stackrel{d}{\to} N(0, 1).
$$

- In practice, a transformation (using the delta method) can improve finite sample properties of the test, e.g., a ratio- or log-based version. We found that the log-based test performs well.
- Infeasible result, as Σ^* is unknown!

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

Estimating Σ ∗

- In order to construct a feasible jump test, we need to estimate the conditional covariance matrix Σ^* .
- We can construct estimators of the individual entries of Σ^* , for example

$$
\hat{\Sigma}_{11}^* = \frac{N^{-1/2}}{\theta^2 \psi_2^2} \sum_{i=K}^{N-2K+1} |\bar{Y}_i^N|^2 \left(\sum_{l=-K+1}^{K-1} \left(|\bar{Y}_{i+l}^N|^2 - |\bar{Y}_{i+K}^N|^2 \right) \right) \xrightarrow{p} \Sigma_{11}^*
$$

- Problem: The full estimated covariance matrix $\hat{\Sigma}^*$ often not positive semi-definite.
- We propose a positive semi-definite block subsample estimator of Σ^* , which has an intuitive form.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

- We restrict attention to the 2 \times 2 submatrix of Σ^* holding the covariance structure of $(RV_N^*[Y],BV_N^*[Y])$
- We choose two frequencies d and L, such that $L >> K$ and $dL = o(N)$. Here $d =$ number of subsamples, $L =$ block length.

Let

$$
RV_{N,m}^*[Y] = \frac{1}{K\psi_2^K} \sum_{i\in J_m} |\bar{Y}_i^N|^2 - \frac{\psi_1^K}{\theta^2\psi_2^K}\hat{\omega}_{AC}^2, \quad m = 1,\ldots,d
$$

where

$$
J_m = \{i : 0 \le i \le N - K + 1 \text{ and}
$$

$$
(m-1+jd)L \le i < (m+jd)L \text{ for some } j\}.
$$

Illustration of subsampler

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

- Note that, asymptotically, $RV_{N,m}^{\ast }{\left[Y\right] }$ are mutually independent, because they are based on non-overlapping increments.
- Moreover, they satisfy the same CLT as $RV_N^*[Y]$, but with convergence rate $N^{1/4}/\sqrt{d}$.
- It is intuitive that a good proxy for Σ_{11}^* is given by

$$
\hat{\Sigma}_{11}^* = \frac{1}{d} \sum_{m=1}^d \left(\frac{N^{1/4}}{\sqrt{d}} (RV_{N,m}^*[Y] - IV) \right)^2
$$

- As the IV is unknown, we replace it with $RV_N^*[Y].$
- We then construct $BV_{N,m}^{\ast }[\boldsymbol{Y}]$ in a similar fashion.

[Semimartingale framework](#page-4-0) [Estimating quadratic variation](#page-6-0) [Microstructure noise and outliers](#page-8-0) [Estimating variance/covariance matrix](#page-23-0)

• Finally, we set

$$
T_{N,m} = \frac{N^{1/4}}{\sqrt{d}} \Big(RV_{N,m}^*[Y] - RV_N^*[Y], BV_{N,m}^*[Y] - BV_N^*[Y] \Big)',
$$

and compute

$$
(\hat{\Sigma}_{ij}^*)_{1\leq i,j\leq 2}=\frac{1}{d}\sum_{m=1}^d T_{N,m}T'_{N,m}\stackrel{p}{\rightarrow} (\Sigma_{ij}^*)_{1\leq i,j\leq 2},
$$

- The estimator is positive semi-definite by construction.
- Unreported simulations show that $(\hat{\Sigma}_{ij}^*)_{1\leq i,j\leq 2}$ is largely unbiased if L is not too small. Also, it improves in an MSE sense by choosing larger values of d.

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Simulation study

- We simulate from a number of models, including models with stochastic volatility (1- or 2- factors), leverage, jumps and outliers.
- We use $N = 10,000$ and pollute X using a noise ratio of $\gamma = 0.25$ (see, e.g., Oomen, 2006).
- Noise-robust pre-averaging estimators are computed using $\theta = \{0.10, 0.25, 0.50\}.$
- We base the QRV on absolute returns using $m = 3$ and $\lambda = 2/3$.
- **•** This calibration is known as the MedRV (see, e.g., Andersen, Dobrev and Schaumburg, 2008).

		$RV_N^*[Y]$ $BV_N^*[Y]$ $BV_N^*[Y](\tau)$ $MedRV_N^*[Y](\tau)$
model (down) // θ (right) 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50		
BM		
SV		
SV-LEV		
SEV-ND		
SV _{2F-LEV}		
BMJ $(n_J = 1, v_J = \frac{1}{4})$	1.25 1.25 1.25 1.03 1.04 1.05 1.00 1.00 1.00 1.00 1.00 1.00	
BMJ $(n_J = 5, v_J = \frac{1}{4})$	1.25 1.25 1.25 1.05 1.08 1.10 1.00 1.01 1.03 1.00 1.01 1.02	
BMJ $(n_J = 10, v_J = \frac{1}{4})$	1.25 1.25 1.25 1.07 1.10 1.13 1.01 1.03 1.06 1.01 1.02 1.05	
BMJ $(n_J = 5, v_J = \frac{1}{2})$	1.50 1.50 1.50 1.08 1.12 1.16 1.00 1.01 1.02 1.00 1.01 1.02	
BM-outlier		

Table: Relative bias of pre-averaging estimators.

Note. This table reports the relative bias for the pre-averaging estimators $RV_N^*[Y]$, $BV_N^*[Y]$ and MedRV $_N^*[Y]$. In the simulations, we set $N=$ 10,000 and $\gamma=$ 0.25. The MedRV $_N^*[Y]$ is a special case of the QRV estimator based on absolute returns, using $m = 3$ and $\lambda = 2/3$. The bias measure is equal to 1 for an unbiased IV estimator. Pre-averaging estimators based on a threshold to pre-trim (\bar{Y}_i^N) are denoted with (τ) .

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Threshold estimation under pre-averaging

- As seen in Table 1, $BV_{N}^{*}[Y]$ is upward biased in the presence of jumps. This type of effect is also known from $BV_N[X]$.
- The bias is also present in the jump-robust $\mathsf{QRV}_\mathsf{N}^*_\mathsf{N}[Y]$, although to a slightly lesser extent (not reported).
- In finite samples, this induces a downward bias in the estimated jump proportion and reduces the power of the jump test.
- To alleviate the bias, we experiment with a threshold in the pre-averaged return series $\bar Y^{\mathsf N}_i.$
- The idea is related to the work of Aït-Sahalia and Jacod (2009), Corsi, Pirino and Renò (2010) or Mancini (2006), but there are some deviations in the workings of the threshold.

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Setting the threshold

Note that under a Brownian motion with i.i.d. noise, the asymptotic distribution (as $N\rightarrow\infty$) of \bar{Y}^N_j is given by

$$
N^{1/4}\bar{Y}_i^N \stackrel{a}{\sim} N\left(0,\psi_2\theta\sigma^2 + \psi_1\frac{1}{\theta}\omega^2\right)
$$

where $\psi_1 = \lim_{\mathsf{K} \to \infty} \psi_1^{\mathsf{K}}$ and $\psi_2 = \lim_{\mathsf{K} \to \infty} \psi_2^{\mathsf{K}}$

• Thus, we can set a threshold by computing

$$
\tau = q_{1-\alpha} \times \sqrt{\psi_2^K \theta \sigma^2 + \psi_1^K \frac{1}{\theta} \omega^2} \times N^{-\varpi},
$$

where $q_{1-\alpha}$ is an appropriate high quantile from the $N(0, 1)$ distribution and $\varpi \in (0, 0.25)$.

- Throughout, we work with $\alpha = 0.001$ and $\varpi = 0.20$, which produces good results in our simulations.
- **In practice, we also use plug-in estimators of unknown quantities,** i.e. we make the replacements $\sigma^2 \to \hat{\mathcal{W}}, \, \omega^2 \to \hat{\omega}_{\mathsf{AC}}^2.$
- This amounts to a two-stage procedure, where *IV* and ω^2 are pre-estimated in order to set the threshold.
- After filtering the data, we then re-compute the estimator.
- As the original jump-robust estimator used to pre-estimate IV is slightly upward biased in the presence of jumps, the suggested procedure should also lead to conservative levels of τ .

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Procedure for discarding data

A naive threshold simply throws away all extreme observations, i.e. pre-averaged returns which satisfy

 $|\bar{Y}_i^N| > \tau.$

- However, this tends to unnecessarily discard large amounts of data.
- **•** Intuition: With a single "large" jump, the pre-averaging function $g(x) = min(x, 1 - x)$ creates "humps" in (\bar{Y}_i^N) .
- As K increases, this induces long sequences of breaches of the threshold.

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

- Nonetheless, the connection between $(\Delta_{i}^{N}Y)$ and (\bar{Y}_{i}^{N}) can be exploited by searching and selectively discarding noisy returns.
- **•** Simple rule: If a breach of τ is observed, we extract the raw noisy returns that are used to construct the pre-averaged returns in that sequence.
- Then we discard the largest noisy return.
- The procedure can probably be improved, but our simulations suggest that it does a reasonable job (see Table 1).

Illustration of threshold procedure

• We illustrate the mechanics below.

Note. To the left is the noisy return series, $(\Delta_i^N Y)$, while the pre-averaged return series, (\bar{Y}_i^N) , is to the right. The threshold τ is the plotted with red lines. The orange area shows the part of $(\Delta_i^N \, Y)$ taken out for inspection, while the black circle highlights the discarded return.

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Size: model BM

Note. We report the simulated size of the feasible log-based jump test under model BM for $\theta = \{0.10; 0.25; 0.50\}.$

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Size: model SV2F-LEV

Note. We report the simulated size of the feasible log-based jump test under model SV2F-LEV for $\theta = \{0.10; 0.25; 0.50\}$.

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Power: model BMJ $(\eta_J=1, \nu_J=\frac{1}{4})$ $\frac{1}{4}$

Note. We report the simulated size-adjusted power of the feasible log-based jump test under model BMJ($n_J = 1, v_J = \frac{1}{4}$) for $\theta = \{0.10, 0.25, 0.50\}.$

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Power: model BMJ $(\eta_J=5, \nu_J=\frac{1}{4})$ $\frac{1}{4}$

Note. We report the simulated size-adjusted power of the feasible log-based jump test under model BMJ($n_J = 5$, $v_J = \frac{1}{4}$) for $\theta = \{0.10; 0.25; 0.50\}.$

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Size without threshold: model SV2F-LEV

Note. We report the simulated size-adjusted power of the feasible log-based jump test under model BMJ($n_J = 5$, $v_J = \frac{1}{4}$) for $\theta = \{0.10; 0.25; 0.50\}.$

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Power without threshold: model BMJ($n_J=1$, $v_J=\frac{1}{4}$ $\frac{1}{4}$

Note. We report the simulated size-adjusted power of the feasible log-based jump test under model BMJ($n_J = 5$, $v_J = \frac{1}{4}$) for $\theta = \{0.10; 0.25; 0.50\}.$

[Simulation details](#page-28-0) [Results: Part I](#page-29-0) [Threshold estimation](#page-30-0) [Results: Part II](#page-36-0)

Some remarks

- The test has good size and power under model BM, but it is over-sized under stochastic volatility. The problem gets smaller, when the pre-averaging parameter θ is increased.
- **Increasing** θ **, however, causes a slight drop in simulated power.** Trade-off is in part influenced by setting a constant threshold.
- Nominal size is restored if we drop the threshold, but then the power of the test is eroded \rightarrow Because upward bias in $BV^*_N\![\mathsf{Y}]$ and estimated standard errors deflates t-statistic.
- **Practical compromise: Choose** θ **larger than theoretical minimum** MSE choice would imply, but avoid excessive pre-averaging.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Data description

- We apply the pre-averaging technology to draw inference about jumps using a unique, extensive set of ultra high-frequency data.
- We extracted data from the NYSE TAQ database for the most recent configuration of DOW Jones (October, 2010), plus the two ETFs SPY and QQQQ.
- The data is recorded at milli-second precision and covers the sample period January, 2007 – June, 2010.
- We analyze both transaction and quotation data (only results from transaction data are reported here).
- After "light" cleaning and aggregation, we are left with a total sample size of about 4.3 billion tick-by-tick observations.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

[Conclusions](#page-53-0)

θ -signature plot - Cross-sectional average

Note. We plot the average annualized volatility of the noise- and outlier-robust estimators, averaged across the cross-section of stocks included in our empirical application, as a function of θ . RV_{5m} and BV_{5m} are shown as a comparison.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

[Conclusions](#page-53-0)

Estimated jump proportion as a function of θ

Note. We plot the average estimated jump proportion, averaged across the cross-section of stocks included in our empirical application, as a function of θ . The jump proportion estimated by using RV_{5m} and BV_{5m} is shown as a comparison.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Regression analysis

Note. The figure shows pairwise values of the average realised variance and bipower variation for each company in our selection of stocks (reported as a blue circle). We fit a regression line and test the hypothesis $b_0 = 0$ and $b_1 = 1$.

Kim Christensen, Roel Oomen, Mark Podolskij [Jumps at ultra high frequency 47 of 55](#page-0-0)

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Jump test: Alcoa [AA]

Note. On the left is the noise- and outlier-robust jump test, while to the right is the lowfrequency jump test based on 5-minute sampling. We also report the actual number of rejections based on the 5- and 1-% significance level.

Kim Christensen, Roel Oomen, Mark Podolskij [Jumps at ultra high frequency 48 of 55](#page-0-0)

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Real and simulated sample path

Note. We plot an example of a real and simulated sample path, where a large intraday move in the price is observed over a short period of time. We then zoom into ultra high-frequency view of the sample path around the move.

Kim Christensen, Roel Oomen, Mark Podolskij [Jumps at ultra high frequency 49 of 55](#page-0-0)

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Option trading with rehedging

- Our results point towards a less important role for jumps than reported in previous papers. Finding could, in part, be driven by infrequent sampling, microstructure noise and data resolution.
- To illustrate the economic importance of distinguishing between a burst in volatility versus real economic jumps in financial markets, we consider an example from option trading.
- We suppose an option trader sells a short-term at-the-money call option and hedges his position in the underlying (covered call strategy) \rightarrow Initially, trader is delta neutral but short gamma.
- Due to transaction costs, the trader only rehedges his delta position after every 1% move in the underlying.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

Simulation details

- We simulate from a scaled Brownian motion with no drift: $X_t = \sigma \textit{W}_t.$ We assume the annualized volatility is 40%.
- We price the option with the Black-Scholes model. We assume the option has 1 day left to maturity and that the risk-free rate is zero.
- The initial stock price is 100 and the option is at-the-money, so strike is also 100.
- At a random position in the sample path, we place either a 2% jump in price or a 2% "burst in volatility" (cf. the simulated example path in previous figure).

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

- As one would expect, the trader faced with jump risk has larger losses than the trader, which faces burst risk.
- Short gamma traders face losses that are proportional to the square of the move in the underlying.
- Thus, in contrast to a jump, a burst in volatility allows the trader the valuable opportunity of rehedging his position, as the underlying moves.

[Data description](#page-43-0) [Empirical results](#page-44-0) [Practical example](#page-49-0)

[Conclusions](#page-53-0)

Distribution of profit and loss (P&L)

Note. The plot shows the distribution of the P&L for the option trader exercising the covered call strategy with rehedging. Also reported in the figure is the average loss to the trader expressed in percent of the premium.

[Conclusions](#page-53-0) [Future work](#page-54-0)

Conclusion

- We formulate a model, where the "efficient" price is contaminated with noise and outliers. We show that pre-averaging alleviates both sources of bias.
- We also suggest a threshold elimination procedure and propose a positive semi-definite estimator of the asymptotic covariance matrix appearing in the CLT.
- A simulation study shows these estimators are good also in finite samples.
- Using an extensive set of ultra high-frequency data, we find a much lower jump proportion and much less jumps than previously reported.

[Conclusions](#page-53-0) [Future work](#page-54-0)

Ideas for future work / improvements

- \bullet At current, we are using a fixed value of θ , it is probably better to work with a data-driven choice. Not a simple problem! See, e.g., Hautsch and Podolskij (2010) for an MSE-based suggestion.
- Further refinement of the procedure suggested to do threshold estimation, e.g. to allow for time-varying threshold.
- Application to an OTC market, where there is no limit order book.
- Study the properties of pre-averaging, when there are potentially an infinite number of (small) jumps in the price process.