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Introduction

In recent years, high-frequency jump estimation has attracted
increasing interest (e.g., Andersen, Bollerslev and Diebold 2007;
Barndorff-Nielsen and Shephard 2004, 2006; Corsi and Renó 2009;
Huang and Tauchen 2005)

Jumps appear to be frequent and account for a significant
proportion of total return variation (ranging about 5% – 15%).

Most studies use sparsely sampled data, for example 5-minute data.

We investigate the importance of the jump component with noise-
and outlier-robust estimators using ultra high-frequency data.

We find much less evidence of jumps, i.e. a substantially smaller
jump proportion and fewer significant jump days.
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Semimartingale framework

We assume that a log-price Xt at time t is, potentially, of the form

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs +

NJ
t

∑

i=1

Ji , t ≥ 0

where

X0 is the initial price, µ is a drift term, σ is a (stochastic) volatility
process, W is a Brownian motion, while NJ

t and (Ji)i≥0 represent
the total number and sizes of jumps up to time t .

X represents an underlying “efficient” price that would prevail in the
absence of microstructure noise and outliers.
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We normalize time to the unit interval, t ∈ [0,1].

The quadratic variation of X

[X ]1 =

∫ 1

0
σ2

sds +

NJ
1

∑

i=1

J2
i ≡ IV + JV.

The question we investigate is how important the jump variation
(JV) is relative to the integrated variance (IV).

Let the observation times of X be equidistant time points ti = i/N,
for i = 0,1, . . . ,N Then, we compute log-returns by

∆N
i X = X i

n
− X i−1

n
.
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Realised variance and bipower variation

The realised variance and bipower variation are defined by

RVN [X ] =

N
∑

i=1

|∆N
i X |2 BVN [X ] =

N
N − 1

π

2

N
∑

i=2

|∆N
i X ||∆N

i−1X |.

Moreover, it holds that

RVN [X ]
p→ [X ]1 BVN [X ]

p→ IV.

That is, bipower variation is a jump-robust estimator of the
integrated variance, and RVN [X ]− BVN [X ]

p→ JV.
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A high-frequency jump test

Assume there are no jumps in X , i.e. NJ
t ≡ 0. Then, the following

CLT holds
N1/2(RVN [X ]− BVN [X ])

√

0.609
∫ 1

0 σ
4
sds

d→ N(0,1).

Basis for performing non-parametric tests of the existence of jumps
in the absence of microstructure noise and outliers.

A feasible version is achieved by plugging in a consistent estimator
of the integrated quarticity,

∫ 1
0 σ

4
sds.

The t-statistic can be further transformed using the delta method to
improve finite sample properties.
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Microstructure noise and outliers

In practice, microstructure noise (e.g., bid-ask spreads and price
discreteness) cloaks the true log-price X .

Moreover, data are contaminated with outliers (e.g., due to
misplaced decimal points, errors in the data feeds etc.).

Outliers can be hard to filter out systematically.

We model the observed log-price Y as

Y i
N
= X i

N
+ u i

N
+ 1Ii∈AO

N
Oi

u is an i.i.d. microstructure noise process with E(u) = 0 and
var(u) = ω2. Moreover, u is independent of X , i.e. u ⊥⊥ X .
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(Oi)i≥0 are non-zero random variables, which generates the sizes
of the outliers.
AO

N is a random set, which holds the appearance times of outliers.
We assume AO

N is a.s. finite and model it by

AO
N =

{

[N × T O
i ]

N
: 0 ≤ T O

i ≤ 1, i ≥ 1

}

(T O
i )i≥0 are the jump times of another counting process NO

t , where
NO

t is independent of NJ
t .

The independence between NJ
t and NO

t implies that the processes
have no common jumps.
Thus, observing both a jump and an outlier in Y over a small time
interval is very unlikely.
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Case I: The noiseless case

Assume first that u ≡ 0, i.e. there is no noise, but there could be
outliers in the data, Y i

N
= X i

N
+ 1Ii∈AO

N
Oi , i = 0,1, . . . ,N.

Theorem I

In the absence of microstructure noise but presence of outliers, the
following convergence in probability holds

RVN [Y ]
p→ [X ]1 + 2

NO
1

∑

i=1

O2
i

BVN [Y ]
p→ IV +

π

2

NO
1

∑

i=1

O2
i
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Thus, neither estimator is consistent for the object, they are
designed to estimate. Moreover, even in absence of jumps

RVN [Y ]− BVN [Y ]
p→ (2 − π/2)

NO
1

∑

i=1

O2
i > 0.

Thus, a jump test based RVN [Y ]− BVN [Y ] will reject the null with
probability converging to 1, also under the null of no jumps!

To estimate [X ]1 and the IV, we use a third estimator, the
(subsampled) QRV of Christensen, Oomen and Podolskij (2010):

QRVN [Y ] ≡ α′QRVN(m, λ)[Y ],
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Here, λ = (λ1, . . . , λk ) with λj ∈ [0,1) is a vector of quantiles,
α = (α1, . . . , αk ) are quantile weights with αj ≥ 0,

∑

αj = 1 and
QRVN(m, λ)[Y ] is a (k × 1) vector with j th entry equal to

QRVN(m, λj)[Y ] =
1

N − m

N−m
∑

i=1

qi(m, λj)

ν1(m, λj)
, and

qi(m, λ) = g2
λm

(√
N|Di ,mY |

)

,

and where Di ,mY =
(

∆N
k Y

)

(i−1)m+1≤k≤im for i = 1, . . . ,n.

Under the assumptions of Theorem I, it holds that

QRVN [Y ]
p→ IV . (1)
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We can further identify the jump and outlier variation by taking
appropriate linear combinations of RVN [Y ], BVN [Y ] and QRVN [Y ]

RVN [Y ]−
(

1 − 4
π

)

QRVN [Y ]− 4
π

BVN [Y ]
p→ JV

2
π
(BVN [Y ]− QRVN [Y ])

p→
NO

1
∑

i=1

O2
i

An application of the delta method to the joint CLT (under no noise)
of (RVN [Y ],BVN [Y ],QRVN [Y ]) can be used to test for jumps in the
presence of outliers (see paper for details).
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Case II: The noise case

We now add the noise back and consider the simultaneous impact
of noise and outliers, i.e.

Y i
N
= X i

N
+ u i

N
+ 1Ii∈AO

N
Oi , i = 0,1, . . . ,N.

Well-known that standard estimators based on Y , e.g., RVN [Y ],
BVN [Y ] or QRVN [Y ] are inconsistent under noise.

To infer the characteristics of the underlying semimartingale, we
apply the pre-averaging approach, see, e.g., Jacod, Li, Mykland,
Podolskij and Vetter (2009) or Podolskij and Vetter (2009a,b).

Kim Christensen, Roel Oomen, Mark Podolskij Jumps at ultra high frequency 15 of 55



Introduction
Theoretical setup
Simulation study

Empirical application
Conclusions

Semimartingale framework
Estimating quadratic variation
Microstructure noise and outliers
Estimating variance/covariance matrix

Two ingredients are needed. First, we choose a sequence of
integers

K = K (N) = θ
√

N + o(N−1/2), θ > 0.

In the paper, we use K = ⌈θ
√

N⌉.
The second ingredient is a pre-averaging function g, which has to
satisfy some technical conditions (see paper).

Throughout, we work with g(x) = min(x ,1 − x).

Associated with g are some normalizing constants:

ψK
1 = K

K
∑

j=1

(

h
( j

K

)

− h
( j − 1

K

)

)2

, ψK
2 =

1
K

K−1
∑

j=1

h2
( j

K

)
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We then pre-average noisy returns

Ȳ N
i =

K
∑

j=1

g
(

j
K

)

∆N
i+jY .

An equivalent representation

Ȳ N
i =

1
K

K−1
∑

j=K/2

Y i+j
N
− 1

K

K/2−1
∑

j=0

Y i+j
N
,

with K even and g(x) = min(x ,1 − x).

Hence, the term “pre-averaging”.
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Pre-averaged RV, BV and QRV

We define noise-robust estimators:

RV ∗
N [Y ] =

[

N
N − K + 2

1
KψK

2

N−K+1
∑

i=0

|Ȳ N
i |2

]

− ψK
1

θ2ψK
2

ω̂2,

BV ∗
N [Y ] =

[

N
N − 2K + 2

1
KψK

2 µ
2
1

N−2K+1
∑

i=0

|Ȳ N
i ||Ȳ N

i+K |
]

− ψK
1

θ2ψK
2

ω̂2,

where ω̂2 is a consistent estimator of ω2.

In the paper, ω2 is estimated following Oomen (2006)

ω̂2
AC = − 1

N − 1

N
∑

i=2

∆N
i Y∆N

i−1Y
p→ ω2.
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Construction of QRV ∗
N [Y ] is slightly more involved.

QRV ∗
N [Y ] ≡ α′QRV ∗

N(m, λ)[Y ],

where λ and α are as above, and the j th element of QRV ∗
N(m, λ)[Y ]

is given by:

QRV ∗
N(m, λj)[Y ] =

1
θψ2(N − m(K − 1) + 1)

N−m(K−1)
∑

i=0

q∗
i (m, λj)

ν1(m, λj)
.

(2)
where

q∗
i (m, λ) = g2

λm

(

N1/4|DN
i Y |

)

,

and

D
N
i Y = {Y

N
i+(j−1)(K−1)}m

j=1, for i = 0,1, . . . ,N − m(K − 1)
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Theorem II

Assume that the observed log-price Y obeys

Y i
N
= X i

N
+ u i

N
+ 1Ii∈AO

N
Oi , i = 0,1, . . . ,N.

and E(u4) <∞. Then, it holds that

RV ∗
N [Y ]

p→ [X ]1

BV ∗
N [Y ]

p→ IV

QRV ∗
N [Y ]

p→ IV
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Remarks

In contrast to the previous results, all noise-corrected estimators are
also robust to outliers!

Intuition: With a probability ”close to” one, there is at most a single
outlier in the window [i/N, (i + K )/N].

The outlier influences exactly two consecutive returns with opposite
sign and therefore appears with a factor O(|g(j/K )− g((j − 1)/K )|)
in the construction of Ȳ N

i .

But |g(j/K )− g((j − 1)/K )| = O(1/K ), so outliers therefore have no
impact on Ȳ N

i asymptotically.
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Theorem III

Assume that NJ
t ≡ 0, i.e. the observed log-price Y is a continuous

semimartingale with noise and outliers. Furthermore, we assume that
E(u8) <∞. As N → ∞, it holds that

N1/4











RV ∗
N [Y ]− IV

BV ∗
N [Y ]− IV

QRV ∗
N [Y ]− IV











ds→ MN(0,Σ∗).

where ds→ denotes stable convergence in law and Σ∗ is the (unknown)
conditional covariance matrix.
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Noise- and outlier-robust test for jumps

Theorem III forms the basis for a nonparametric noise- and
outlier-robust test for jumps.

Use suitably scaled measure of jumps by comparing RV ∗
N [Y ] with

either BV ∗
N [Y ] or QRV ∗

N [Y ], e.g.

N1/4(RV ∗
N [Y ]− BV ∗

N [Y ])
√

Σ∗
11 +Σ∗

22 − 2Σ∗
12

d→ N(0,1).

In practice, a transformation (using the delta method) can improve
finite sample properties of the test, e.g., a ratio- or log-based
version. We found that the log-based test performs well.

Infeasible result, as Σ∗ is unknown!

Kim Christensen, Roel Oomen, Mark Podolskij Jumps at ultra high frequency 23 of 55



Introduction
Theoretical setup
Simulation study

Empirical application
Conclusions

Semimartingale framework
Estimating quadratic variation
Microstructure noise and outliers
Estimating variance/covariance matrix

Estimating Σ∗

In order to construct a feasible jump test, we need to estimate the
conditional covariance matrix Σ∗.
We can construct estimators of the individual entries of Σ∗, for
example

Σ̂∗
11 =

N−1/2

θ2ψ2
2

N−2K+1
∑

i=K

|Ȳ N
i |2





K−1
∑

l=−K+1

(

|Ȳ N
i+l |2 − |Ȳ N

i+K |2
)





p→ Σ∗
11

Problem: The full estimated covariance matrix Σ̂∗ often not positive
semi-definite.
We propose a positive semi-definite block subsample estimator of
Σ∗, which has an intuitive form.
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We restrict attention to the 2 × 2 submatrix of Σ∗ holding the
covariance structure of (RV ∗

N [Y ],BV ∗
N [Y ])

We choose two frequencies d and L, such that L >> K and
dL = o(N). Here d = number of subsamples, L = block length.

Let

RV ∗
N,m[Y ] =

1
KψK

2

∑

i∈Jm

|Ȳ N
i |2 − ψK

1

θ2ψK
2

ω̂2
AC, m = 1, . . . ,d

where

Jm = {i : 0 ≤ i ≤N − K + 1 and

(m − 1 + jd)L ≤ i < (m + jd)L for some j}.
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Illustration of subsampler

1 L 2L ... (d−1)L dL (d+1)L (d+2)L ... N
∆N

i Y

RV ∗

N,1[Y ] RV ∗

N,2[Y ] . . . RV ∗

N,d[Y ]

. . . . . .

...
...

...
...

...
...

...
...Ȳ N

i Ȳ N
i Ȳ N

i Ȳ N
i Ȳ N

i
. . . . . .
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Note that, asymptotically, RV ∗
N,m[Y ] are mutually independent,

because they are based on non-overlapping increments.

Moreover, they satisfy the same CLT as RV ∗
N [Y ], but with

convergence rate N1/4/
√

d .

It is intuitive that a good proxy for Σ∗
11 is given by

Σ̂∗
11 =

1
d

d
∑

m=1

(N1/4
√

d
(RV ∗

N,m[Y ]− IV )
)2

As the IV is unknown, we replace it with RV ∗
N [Y ].

We then construct BV ∗
N,m[Y ] in a similar fashion.
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Finally, we set

TN,m =
N1/4
√

d

(

RV ∗
N,m[Y ]− RV ∗

N [Y ],BV ∗
N,m[Y ]− BV ∗

N [Y ]
)′

,

and compute

(Σ̂∗
ij)1≤i ,j≤2 =

1
d

d
∑

m=1

TN,mT ′
N,m

p→ (Σ∗
ij)1≤i ,j≤2,

The estimator is positive semi-definite by construction.

Unreported simulations show that (Σ̂∗
ij)1≤i ,j≤2 is largely unbiased if L

is not too small. Also, it improves in an MSE sense by choosing
larger values of d .
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Simulation study

We simulate from a number of models, including models with
stochastic volatility (1- or 2- factors), leverage, jumps and outliers.

We use N = 10,000 and pollute X using a noise ratio of γ = 0.25
(see, e.g., Oomen, 2006).

Noise-robust pre-averaging estimators are computed using
θ = {0.10;0.25;0.50}.

We base the QRV on absolute returns using m = 3 and λ = 2/3.

This calibration is known as the MedRV (see, e.g., Andersen,
Dobrev and Schaumburg, 2008).
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Relative bias

Table: Relative bias of pre-averaging estimators.

RV∗
N [Y ] BV∗

N [Y ] BV∗
N [Y ](τ) MedRV∗

N [Y ](τ)

model (down) // θ (right) 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50 0.10 0.25 0.50
BM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SV-LEV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SEV-ND 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
SV2F-LEV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
BMJ(nJ = 1, vJ = 1

4 ) 1.25 1.25 1.25 1.03 1.04 1.05 1.00 1.00 1.00 1.00 1.00 1.00
BMJ(nJ = 5, vJ = 1

4 ) 1.25 1.25 1.25 1.05 1.08 1.10 1.00 1.01 1.03 1.00 1.01 1.02
BMJ(nJ = 10, vJ = 1

4 ) 1.25 1.25 1.25 1.07 1.10 1.13 1.01 1.03 1.06 1.01 1.02 1.05
BMJ(nJ = 5, vJ = 1

2 ) 1.50 1.50 1.50 1.08 1.12 1.16 1.00 1.01 1.02 1.00 1.01 1.02
BM-outlier 1.00 1.00 1.00 0.99 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00

Note. This table reports the relative bias for the pre-averaging estimators RV∗
N [Y ], BV∗

N [Y ] and
MedRV∗

N [Y ]. In the simulations, we set N = 10, 000 and γ = 0.25. The MedRV∗
N [Y ] is a special

case of the QRV estimator based on absolute returns, using m = 3 and λ = 2/3. The bias measure
is equal to 1 for an unbiased IV estimator. Pre-averaging estimators based on a threshold to pre-trim
(Ȳ N

i ) are denoted with (τ).
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Threshold estimation under pre-averaging

As seen in Table 1, BV ∗
N [Y ] is upward biased in the presence of

jumps. This type of effect is also known from BVN [X ].

The bias is also present in the jump-robust QRV ∗
N [Y ], although to a

slightly lesser extent (not reported).

In finite samples, this induces a downward bias in the estimated
jump proportion and reduces the power of the jump test.

To alleviate the bias, we experiment with a threshold in the
pre-averaged return series Ȳ N

i .

The idea is related to the work of Aı̈t-Sahalia and Jacod (2009),
Corsi, Pirino and Renò (2010) or Mancini (2006), but there are
some deviations in the workings of the threshold.
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Setting the threshold

Note that under a Brownian motion with i.i.d. noise, the asymptotic
distribution (as N → ∞) of Ȳ N

i is given by

N1/4Ȳ N
i

a∼ N
(

0, ψ2θσ
2 + ψ1

1
θ
ω2

)

where ψ1 = limK→∞ ψK
1 and ψ2 = limK→∞ ψK

2

Thus, we can set a threshold by computing

τ = q1−α ×
√

ψK
2 θσ

2 + ψK
1

1
θ
ω2 × N−̟,

where q1−α is an appropriate high quantile from the N(0,1)
distribution and ̟ ∈ (0,0.25).
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Throughout, we work with α = 0.001 and ̟ = 0.20, which produces
good results in our simulations.

In practice, we also use plug-in estimators of unknown quantities,
i.e. we make the replacements σ2 → ˆIV , ω2 → ω̂2

AC.

This amounts to a two-stage procedure, where IV and ω2 are
pre-estimated in order to set the threshold.

After filtering the data, we then re-compute the estimator.

As the original jump-robust estimator used to pre-estimate IV is
slightly upward biased in the presence of jumps, the suggested
procedure should also lead to conservative levels of τ .
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Procedure for discarding data

A naive threshold simply throws away all extreme observations, i.e.
pre-averaged returns which satisfy

|Ȳ N
i | > τ.

However, this tends to unnecessarily discard large amounts of data.

Intuition: With a single “large” jump, the pre-averaging function
g(x) = min(x ,1 − x) creates “humps” in (Ȳ N

i ).

As K increases, this induces long sequences of breaches of the
threshold.
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Nonetheless, the connection between (∆N
i Y ) and (Ȳ N

i ) can be
exploited by searching and selectively discarding noisy returns.

Simple rule: If a breach of τ is observed, we extract the raw noisy
returns that are used to construct the pre-averaged returns in that
sequence.

Then we discard the largest noisy return.

The procedure can probably be improved, but our simulations
suggest that it does a reasonable job (see Table 1).

Kim Christensen, Roel Oomen, Mark Podolskij Jumps at ultra high frequency 35 of 55



Illustration of threshold procedure

We illustrate the mechanics below.
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Note. To the left is the noisy return series, (∆N
i Y ), while the pre-averaged return

series, (Ȳ N
i ), is to the right. The threshold τ is the plotted with red lines. The

orange area shows the part of (∆N
i Y ) taken out for inspection, while the black circle

highlights the discarded return.
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Size: model BM

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 5.76

pct. > 2.326 : 1.27

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.00

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.14

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 5.61

pct. > 2.326 : 1.26

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.01

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.22

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 5.01

pct. > 2.326 : 0.92

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.00

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.30

Note. We report the simulated size of the feasible log-based jump test under model
BM for θ = {0.10; 0.25;0.50}.

Kim Christensen, Roel Oomen, Mark Podolskij Jumps at ultra high frequency 37 of 55



Introduction
Theoretical setup
Simulation study

Empirical application
Conclusions

Simulation details
Results: Part I
Threshold estimation
Results: Part II

Size: model SV2F-LEV

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 9.71

pct. > 2.326 : 3.16

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.03

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.16

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 6.36

pct. > 2.326 : 1.50

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.02

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.24

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 6.20

pct. > 2.326 : 1.30

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 0.03

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.34

Note. We report the simulated size of the feasible log-based jump test under model
SV2F-LEV for θ = {0.10; 0.25;0.50}.
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Power: model BMJ(nJ = 1, vJ = 1
4)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 77.49

pct. > 2.326 : 73.25

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 1.95

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.14

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 71.00

pct. > 2.326 : 65.64

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 1.95

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.22

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 65.18

pct. > 2.326 : 60.13

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 1.93

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.30

Note. We report the simulated size-adjusted power of the feasible log-based jump
test under model BMJ(nJ = 1, vJ = 1

4 ) for θ = {0.10;0.25;0.50}.
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Power: model BMJ(nJ = 5, vJ = 1
4)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 98.41

pct. > 2.326 : 97.45

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 2.15

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.14

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 93.84

pct. > 2.326 : 90.79

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 2.07

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.22

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 85.23

pct. > 2.326 : 79.69

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ](τ )) = 1.92

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ](τ) = 0.32

Note. We report the simulated size-adjusted power of the feasible log-based jump
test under model BMJ(nJ = 5, vJ = 1

4 ) for θ = {0.10;0.25;0.50}.
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Size without threshold: model SV2F-LEV

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 5.42

pct. > 2.326 : 0.97

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 0.00

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 0.16

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 4.94

pct. > 2.326 : 0.94

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 0.01

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 0.24

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 5.52

pct. > 2.326 : 0.88

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 0.02

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 0.34

Note. We report the simulated size-adjusted power of the feasible log-based jump
test under model BMJ(nJ = 5, vJ = 1

4 ) for θ = {0.10;0.25;0.50}.
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Power without threshold: model BMJ(nJ = 1, vJ = 1
4)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.10

pct. > 1.645 : 15.18

pct. > 2.326 : 11.76

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 1.70

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 1.68

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.25

pct. > 1.645 : 15.23

pct. > 2.326 : 10.68

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 1.58

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 1.57

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

θ = 0.50

pct. > 1.645 : 14.48

pct. > 2.326 : 9.68

N1/4(RV ∗

N [Y ] −BV ∗

N [Y ]) = 1.45

σ̂RV ∗

N
[Y ]−BV ∗

N
[Y ] = 1.53

Note. We report the simulated size-adjusted power of the feasible log-based jump
test under model BMJ(nJ = 5, vJ = 1

4 ) for θ = {0.10;0.25;0.50}.
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Some remarks

The test has good size and power under model BM, but it is
over-sized under stochastic volatility. The problem gets smaller,
when the pre-averaging parameter θ is increased.

Increasing θ, however, causes a slight drop in simulated power.
Trade-off is in part influenced by setting a constant threshold.

Nominal size is restored if we drop the threshold, but then the
power of the test is eroded → Because upward bias in BV ∗

N [Y ] and
estimated standard errors deflates t-statistic.

Practical compromise: Choose θ larger than theoretical minimum
MSE choice would imply, but avoid excessive pre-averaging.
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Data description

We apply the pre-averaging technology to draw inference about
jumps using a unique, extensive set of ultra high-frequency data.

We extracted data from the NYSE TAQ database for the most
recent configuration of DOW Jones (October, 2010), plus the two
ETFs SPY and QQQQ.

The data is recorded at milli-second precision and covers the
sample period January, 2007 – June, 2010.

We analyze both transaction and quotation data (only results from
transaction data are reported here).

After “light” cleaning and aggregation, we are left with a total
sample size of about 4.3 billion tick-by-tick observations.
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θ-signature plot - Cross-sectional average
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Note. We plot the average annualized volatility of the noise- and outlier-robust estimators,
averaged across the cross-section of stocks included in our empirical application, as a function
of θ. RV5m and BV5m are shown as a comparison.
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Estimated jump proportion as a function of θ
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Note. We plot the average estimated jump proportion, averaged across the cross-section of
stocks included in our empirical application, as a function of θ. The jump proportion estimated
by using RV5m and BV5m is shown as a comparison.
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Regression analysis
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BV ∗

N [Y ](τ ) = −0.075 + 0.996 ∗ RV ∗

N [Y ]
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Transaction data

BV5m[Y ] = 0.026 + 0.925 ∗ RV5m[Y ]

tb0=0 = 0.831, tb1=1 = −13.231

Note. The figure shows pairwise values of the average realised variance and bipower variation
for each company in our selection of stocks (reported as a blue circle). We fit a regression line
and test the hypothesis b0 = 0 and b1 = 1.
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Jump test: Alcoa [AA]
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Note. On the left is the noise- and outlier-robust jump test, while to the right is the low-
frequency jump test based on 5-minute sampling. We also report the actual number of rejec-
tions based on the 5- and 1-% significance level.
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Real and simulated sample path
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Note. We plot an example of a real and simulated sample path, where a large intraday move
in the price is observed over a short period of time. We then zoom into ultra high-frequency
view of the sample path around the move.
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Option trading with rehedging

Our results point towards a less important role for jumps than
reported in previous papers. Finding could, in part, be driven by
infrequent sampling, microstructure noise and data resolution.

To illustrate the economic importance of distinguishing between a
burst in volatility versus real economic jumps in financial markets,
we consider an example from option trading.

We suppose an option trader sells a short-term at-the-money call
option and hedges his position in the underlying (covered call
strategy) → Initially, trader is delta neutral but short gamma.

Due to transaction costs, the trader only rehedges his delta position
after every 1% move in the underlying.
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Simulation details

We simulate from a scaled Brownian motion with no drift: Xt = σWt .
We assume the annualized volatility is 40%.

We price the option with the Black-Scholes model. We assume the
option has 1 day left to maturity and that the risk-free rate is zero.

The initial stock price is 100 and the option is at-the-money, so
strike is also 100.

At a random position in the sample path, we place either a 2% jump
in price or a 2% “burst in volatility” (cf. the simulated example path
in previous figure).
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As one would expect, the trader faced with jump risk has larger
losses than the trader, which faces burst risk.

Short gamma traders face losses that are proportional to the square
of the move in the underlying.

Thus, in contrast to a jump, a burst in volatility allows the trader the
valuable opportunity of rehedging his position, as the underlying
moves.
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Distribution of profit and loss (P&L)

−80% −60% −40% −20% 0% 20%

jump trader →

burst trader →

-29.04 -12.40

Note. The plot shows the distribution of the P&L for the option trader exercising the covered
call strategy with rehedging. Also reported in the figure is the average loss to the trader
expressed in percent of the premium.
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Conclusion

We formulate a model, where the “efficient” price is contaminated
with noise and outliers. We show that pre-averaging alleviates both
sources of bias.

We also suggest a threshold elimination procedure and propose a
positive semi-definite estimator of the asymptotic covariance matrix
appearing in the CLT.

A simulation study shows these estimators are good also in finite
samples.

Using an extensive set of ultra high-frequency data, we find a much
lower jump proportion and much less jumps than previously
reported.
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Ideas for future work / improvements

At current, we are using a fixed value of θ, it is probably better to
work with a data-driven choice. Not a simple problem! See, e.g.,
Hautsch and Podolskij (2010) for an MSE-based suggestion.

Further refinement of the procedure suggested to do threshold
estimation, e.g. to allow for time-varying threshold.

Application to an OTC market, where there is no limit order book.

Study the properties of pre-averaging, when there are potentially an
infinite number of (small) jumps in the price process.
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