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Abstract

This paper considers identification of average treatment effects on con-
ditional transition probabilities is considered. We show that even under
random assignment only certain average treatment effects are point iden-
tified, because treated and control units drop out at different rates so that
the initial comparability of treatment and controls due to randomization
no longer holds. We derive sharp bounds on different average treatment
effects that cannot be point identified. The bounds do not impose para-
metric restrictions, as e.g. proportional hazards, that would narrow the
bounds or even allow for point identification. We also explore various
weaker assumptions such as monotone treatment response and monotone
exit rate. These weak assumptions tightens the bounds considerably.
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1 Introduction

We consider the effect of an intervention where the outcome is a transition from
an initial to a destination state. The population of interest is a cohort of units
that are in the initial state at the time origin. Treatment is assigned to a subset
of the population either at the time origin or at some later time. Initially we
assume that the treatment assignment is random. One main point of this paper
is that even if the treatment assignment is random, only certain average effects
of the treatment are point identified. This is because the random assignment
of treatment only ensures comparability of the treatment and control groups
at the time of randomization. At later times treated units with characteristics
that interact with the treatment to increase/decrease the transition probability
leave the initial state first/last, so that these characteristics are under/over
represented among the remaining treated relative to the remaining controls and
this confounds the effect of the treatment.

The confounding of the treatment effect by selective dropout is usually re-
ferred to as dynamic selection. Existing strategies that deal with dynamic se-
lection rely heavily on parametric and semi-parametric models. An example
is the approach of Abbring & van den Berg (2003) who use the Mixed Pro-
portional Hazard (MPH) model (their analysis is generalized to a multistate
model in Abbring, 2008) . In this model the instantaneous transition or hazard
rate is written as the product of a time effect, the baseline hazard, the effect
of the intervention and an unobservable individual effect. As shown by Elbers
& Ridder (1982) is the MPH model nonparametrically identified, so that if the
multiplicative structure is maintained, identification does not rely on arbitrary
functional form or distributional assumptions. A second example is the approach
of Heckman & Navarro (2007) who start from a threshold crossing model for
transition probabilities. Again they establish semi-parametric identification, al-
though their model requires the presence of additional covariates besides the
treatment indicator that are independent of unobservable errors and have large
support. The identified model is used to undo the confounding due to dynamic
selection.

In this paper we ask what can be identified if the identifying assumptions
of the semi-parametric models do not hold. We show that even under random
assignment we cannot point identify many average treatment effects of inter-
est, because of dynamic selection. However, we derive sharp bounds on various
treatment effects, and show when these bounds are informative. These bounds
apply e.g. if random assignment occurs at the time origin, but we want to learn
the effect of the treatment on the transition probability after a number of pe-
riods, i.e. we are interested in the treatment effect dynamics. Our bounds are
general, since beyond random assignment, we make no assumptions on func-
tional form and additional covariates, and we allow for arbitrary heterogenous
treatment effects as well as arbitrary unobserved heterogeneity. These bounds
could be extended to unconfounded treatment assignment by creating bounds
conditional on the covariates (or the propensity score) and then average over
the distribution of these covariates. Besides these general bounds we show that



additional weak assumptions like monotone treatment response and monotone
exit rate may tighten the bounds considerably.

There are many applications in which we are interested in the effect of an
intervention on transition probabilities/rates. The Cox (1972) partial likelihood
estimator is routinely used to estimate the effect of an intervention on the sur-
vival rate of subjects. Transition models are used in several fields. Van den
Berg (2001) surveys the models used and their applications. These models also
have been used to study the effect of interventions on transitions. Examples
are Ridder (1986), Card & Sullivan (1988), Bonnal, Fougere & Serandon (1997)
,Gritz (1993), Ham & LaLonde (1996), Abbring & van den Berg (2003), and
Heckman & Navarro (2007). A survey of models for dynamic treatment effects
can be found in Abbring & Heckman (2007).

An alternative to the effect of a treatment on the transition rate is to con-
sider its effect on the cdf of the time to transition or its inverse, the quantile
function. This avoids the problem of dynamic selection. Fredriksson & Jo-
hansson (2008) have shown how the effect on the cdf, that is the unconditional
survival probability, can be recovered even if the time-varying interventions can
start at any time. From the effect on the cdf we can recover the effect on the
average duration. From the effect on the cdf we cannot obtain the effect on
the conditional transitions probabilities, so that this effect is not informative on
the evolution of the treatment effect over time. There are good reasons why we
would be interested in the effect of an intervention on the conditional transition
probability or hazard rate. First, there is the close link between the hazard rate
and economic theory (Van den Berg, 2001). Economic theory often predicts
how the hazard rate changes over time. For example, in the application to a job
bonus experiment considered in this paper labor supply and search models pre-
dict that being eligible for a bonus if a job is found, increases the hazard rate
from unemployment to employment. According to these models the positive
effect only exists during the eligibility period, and the effect increases shortly
before the end of the eligibility period. The timing of this increase depends on
the arrival rate of job offers and is an indication of the control that the unem-
ployed has over his/her reemployment time. Any such control has important
policy implications. These hypotheses can only be tested by considering how
the effect on the hazard rate changes over time.

Other examples of when the evolution of the treatment effect over time is
of key interest arise in different fields. For instance, two medical treatments
can have the same effect on the average survival time. However, for one treat-
ment the effect does not change over time while for the other the survival rate
is initially low, e.g. due to side effects of the treatment, while after that ini-
tial period the survival rate is much higher. Research on the effects off active
labor market policies (ALMP), often documents a large negative lock-in effect
and a later positive effect once the program has been completed, see e.g. the
survey by Kluve, Card, Fertig, Gra, Jacobi, Jensen, Leetma, Nima, Patacchini,
Schmidt, van der Klauww & Weber (2007). In other cases a treatment consist
of a sequence of sub-treatments assigned at pre-specified points in time to the
survivors in the state. If one is interested in disentangling the sub-treatment



effects, the treatment effect over the spell has to be investigated.

In section 2 we define the treatment effects that are relevant if the outcome is
a transition. Section 3 discusses their point or set identification in the case that
the treatment is randomly assigned. This requires us to be precise on what we
mean by random assignment in this setting. In section 4 we explore additional
assumptions that tighten the bounds. Section 5 illustrates the bounds for a job
bonus experiment data set. Section 6 concludes.

2 Treatment effects if the outcome is a transi-
tion

2.1 Parametric outcome models

To set the stage for the definition of a treatment effect for an outcome that is a
transition, we consider the effect of an intervention in the Mixed Proportional
Hazards (MPH) model. The MPH model specifies the individual hazard or
transition rate 0(t,d(t), V)

0(t,d(t),V) = At)y(t — 7, 7)* OV

with ¢ as the time spent in the destination state, A(¢), the baseline hazard,
d(t), the treatment indicator function in period ¢, and V, a scalar nonnegative
unobservable that captures population heterogeneity in the hazard/transition
rate and has a population distribution with mean 1. If treatment starts at time
7 then d(t) = I(t > 7), i.e. we assume that treatment is an absorbing state. The
nonnegative function v(t — 7, 7) captures the effect of the intervention, an effect
that depends on the time until the treatment starts 7 and the time treated t — .
Finally, although v is common to all units, the effect of the intervention differs
between the units, because it is proportional to the individual V. The ratio of
the treated and non-treated transition rates for a unit with unobservable V' is
~(t —7,7) for t > 7, so that in the MPH model (¢ — 7,7) is the effect of the
intervention on the individual transition rate.

Let d(t) = {d(s),0 < s < t} be the treatment status up to time t. The MPH
model implies that the population distribution of the time to transition 74™)
has density

f(td(t)) = Ey [V/\(t)v(t —7,7)4 e fo A(S)’Y(S—T,T)d“)\/ds}
and distribution function
F(t‘a(t)) =1- ]EV |:67 jot )‘(S)W(S*TyT)d(s)Vds}
The hazard/transition rate given the treatment history is

0(t|d(t)) = At)y(t — 7,7) DR, [V|T3<T> > t] .



To define treatment effects in the MPH model we can compare units with
different treatment histories d(¢). Let do(t) and d;(t) be two such histories.
Then we can compare either the time-to-transition distribution functions in ¢,
i.e. F(t|dy(t)) and F(t|d;(t)), or the transition rates in ¢, i.e. 6(t|do(t)) and
6(t|d1(t)). The comparison of the transition rates is conditional on survival in
the initial state up to time ¢ and the comparison of the distribution functions
is not conditional on survival. As a consequence if we compare distribution
functions we average over the population distribution of V', but if we compare
transition rates we average over the distribution of V' for the subpopulation of
survivors up to time t.

Let us take do(t) = 0, i.e. the unit is in the control group during [0,#], and
dy(t) arbitrary, then F(t|d;(t)) > F(t|do(t)) if and only if

ft/\(s)ds/T As)y(s—7,7)ds > 1 (1)

holds, i.e. if a A weighted average of the effect on the individual transition rate
is greater than 1. Note that the comparison of the distribution functions is not
confounded by the unobservable V. However, if we compare the transition rates
int>rT _

0(t|do(t)) = A(t)Ey [V|Tdo<T> > t}

and
0(t[d) (1)) = A(t)y(t — 7, )y [VITD D) > 4]

then because B B
Ey [V\TdO(T) > t] > Ey [V|Td1(T) > t]

if and only if (1) holds, we have that under that condition

Lt@l (t)) <y(t—m,7).

0(tldo(2))
Therefore if the intervention increases the transition rate on average (as in (1),
then the ratio of the population treated and control transition rates is strictly
smaller than that of the individual treated and control transition rates. If
the intervention decreases the transition rate on average, then the population
transition rate is strictly larger than the individual rate. Hence, the effect of the
intervention on the transition rate is confounded by its differential effect on the
distribution of the unobservable among the treated and controls. The intuition
behind this result is that the difference of the treated and control transition
rates is monotonic in V, so that if (1) holds, treated units with a large value of
V are under-represented among the survivors in the initial state, while control
units with a small value of V' are over-represented among these survivors. This
dynamic selection or survivor bias is not just a feature of the MPH model. It is
present in any population where the treatment and the individual characteristics
interact to increase or decrease the transition probability.



Parametric and semi-parametric models for the transition rate indicate how
to correct for the survivor bias in the average treatment effect. If we choose a
distribution for V' or estimate the distribution as in Heckman & Singer (1984),

we can estimate Ey [V|TE°(T) > t} and Ey {V|Tal (T) > t| to obtain the cor-

rection factor. Because the MPH model is nonparametrically identified this
does not depend on untestable distributional assumptions. Of course it requires
that the assumption that the hazard is multiplicative in the baseline hazard, the
homogenous treatment effect and the spell constant unobserved effect V' is main-
tained. Without these assumptions the correction factor cannot be estimated
without additional distributional assumptions.

2.2 Average treatment effects on transitions

In any definition of the causal effect of the treatment on the transition rate we
must account for the dynamic selection or survivor bias. If we do not specify a
model for the transition rate we need to find another way to make this adjust-
ment. The approach that we take in this paper is to consider average transition
rates where the average is taken in the same population for different treatment
arms. The MPH model is most often normalized so that the mean of V' equals
1. When considering average transition rates one usually average over this pop-
ulation where the mean of V' is 1 even in later periods where due to dynamic
selection the mean of V' is no longer 1 and depends on the treatment arm. The
treatment effect identified by the MPH model therefore takes an average over a
hypothetical population that at times later than the time origin partly consists
of individuals who already left the state of interest and that hypothetical pop-
ulation is the same for every treatment arm. The latter is key in interpreting
the effect as causal: by averaging over the same (hypothetical) population we
have removed the survivor bias.

In this paper we do not average over the population at the time 0. Instead
to define the average effect of the treatment on the transition rate at time ¢
we average over the (hypothetical) population of individuals who would have
survived until time ¢ under both treatment arms. The individuals in this popula-
tion have the same survival experience and any difference between the transition
rates must be due to the effect of the treatment. The average is taken over a
population that remains in the state of interest. Although we could discuss the
definition and identification of treatment effects on transition rates in continu-
ous time the case that time is discrete is conceptually simpler and from now on
we assume that transitions occur at times ¢t =1,2,....

As before we denote the treatment indicator in period t by d; and the treat-
ment history up to and including period t by d;. Let the potential outcome Ytd"
be an indicator of a transition in period t if the treatment history up to and
including ¢ is d;. If treatment is an absorbing state, d; is a sequence of 0-s until
treatment starts in period 7 and the remaining values are 1. It is possible that
T = 00, the unit is never treated, or 7 = 1, the unit is always in the treated
state.



As emphasized we are interested in conditional treatment effects, i.e. treat-
ment effects defined for the survivors in ¢. Let do: and dqi; be two specific
treatment histories. If we average over the hypothetical subpopulation of indi-
viduals who would have survived until ¢ under both do; and di;, then we define
the causal effect of the intervention on the conditional transition rate as

ATEStElt 7E0t —

E {thau‘y;djiil = 07 R Ylg11 = Oa }/570171 = 07 ceey Yla(Jl = 0} -

E [V =0y = 0,71 =0, v = 0]

We call this treatment effect the Average Treatment Effect on the Survivors in
t (ATES;). Obvious choices for di; and do; are di; = (0,...,0,1,...,1) with
the first 1 at position 7, and do; = (0, ...,0). If we make the usual assumption
that there is no effect of the treatment before it starts', then ATES, = 0,t =
1,...,7 — 1. The differential selection only starts after the treatment begins,
so that this property of the ATES; is consistent with that fact. After the
treatment starts there will be dynamic selection and the ATES; controls for that
by comparing the transition rates for individuals with a common (hypothetical)
survival experience. Because individuals cannot be observed in both treatment
arms, we cannot hope that this treatment effect can be identified using available
data.

3 Identification of treatment effects on transi-
tions under random assignment

We now consider identification of the ATES; under random treatment assign-
ment. Random assignment of treatment is the most favorable assignment mech-
anism. However, we need to define what we mean by random assignment in this
case. Let D; be the indicator that treatment is assigned in period t, i.e. the
unit is not treated in periods 1, ..., —1, selected for treatment in period ¢ and,
because treatments is assumed to be an absorbing state, remains in the treated
state in the subsequent periods. We assume that the treatment is assigned at the
beginning of the period, so that the treated responses are observed in periods
t,t+1,.... We distinguish between three types of randomized assignment

Assumption 1 (Random assignment of the time of treatment) For all t and
ds,s=1,2,... B
DylYd  s=1,2,...

Assumption 2 (Sequential randomization) For allt and ds,s =t,t+1,... with
the first t — 1 components equal to 0

DilY®  s=tt+1,...|Dis1 =0

L Abbring & van den Berg (2003) call this the no-anticipation assumption.



Assumption 3 (Sequential randomization among survivors) Forallt andds,s =
t,t+1,... with the first t — 1 components equal to 0

DilY®  s=tt+1,...|Disi =02, = =Y =0.

Under assumption 1, the period in which the unit enters the treated state
is randomly assigned. Under assumption 2, treatment is assigned randomly in
period t to units that have not been treated before, and under assumption, 3 the
randomization is among the non-treated survivors. Random assignment of the
time of treatment implies sequential randomization, which implies sequential
randomization among survivors. In this paper, we focus on identification of
average treatment effects under assumption 3.

In the remainder of this paper, we consider the two period case where the
transition occurs in period 1, period 2 or after period 2. The reason for this
is that all the main points of this paper can be illustrated in that simplified
setting. For every member of the population we have a vector of potential
outcomes Y1, Y2, Yo Y1 Y20 and vector of treatment indicators Dy, Do. Let
Y; be the observed indicator of a transition in period t. These observed outcomes
Y1,Y; are related to the potential outcomes by the observation rules

Y: = DY + (1 — Dy)Y? (2)

and
Yy = D1V 4 (1 — D) Do Y + (1 — D) (1 — Do) Y30, (3)

Because treatment is an absorbing state
Di=1=Dy=1.
Assumption 3 is in this case
Dy LYV, v yor y o
and
Dy LYYV YDy =0,V = 0.

Hence, under assumption 3 and using the observation rules we can identify from
the observed transitions rates the following potential transition probabilities

E(Yl‘Dl = 1) = IE(Y11|D1 = 1) = ]E(Y11) ( )

E(Y1|D1 = 0) = E(Y{'|D1 = 0) = E(YY) (5)

E(Y2|Y1 =0,D; =1) =EY Y} =0,D; =1) =B Y} =0)  (6)

E(Y2|Y1 =0,D; =0,Dy =0) = E(Y°|Y? =0,D; =0,D; =0) = (7)
E(Y;°[Yy =0)

E(Y2|Y1 =0,D; =0,D;=1) =EY Y2 =0,D, =0,Dy=1)= (8)
E(Y;HYY = 0).



3.1 Identification of instantaneous treatment effects

The ATES; defines a number of interesting treatment effects that could be
divided into two groups: instantaneous treatment effects and dynamic treatment
effects. In the two period setting the two instantaneous treatment effects are

ATES;? = E(Y}) — E(YY)

and
ATESH = B!y = 0) - B[V = 0).

That is the average instantaneous treatment effect from treatment in the first
period, and the average instantaneous treatment effect from treatment in the
second period for those who survives the first period. Note that for ATESgl’00
the treatment in the first period is no treatment in both treatment arms, so that
we only need to condition on surviving the first period under no treatment.

From equations (4) and (5) it follow that under assumption 3 we can point
identify the instantaneous treatment effect

ATES? = ATE” = E(Y}') - E(YY) = E(Y1|Dy = 1) — E(Y1|D; = 0), (9)
and from equations (7) and (8) we have
ATESQH — E(v2'[¥? = 0) — B(Y|Y? = 0) = (10)

E(Y|Y1 = 0,D; = 0,Dy = 1) — E(Y1[V; = 0, D; = 0, Dy = 0).

3.2 Bounds on dynamic treatment effects on transitions

In the two period setting the dynamic treatment effect of interest is
ATES;"™ = E(¥y'Y{ = 0,Y) = 0) - E(¥°|¥} =0,Y = 0),

that is the average treatment effect in the second period from treatment in the
first period for those who survive under both treatment and no treatment in
the first period. It follows directly from equations (4)-(8), which hold under
assumption 3, that ATES%L00 in general is not point identified. This is because
the random assignment of treatment only ensures comparability of the treat-
ment and control groups at the time of randomization. At later times treated
units with characteristics that interact with the treatment to increase/decrease
the transition probability leave the initial state first/last, so that these char-
acteristics are under/over represented among the remaining treated relative to
the remaining controls and this confounds the effect of the treatment. Without
out any further assumption we cannot uncover this dynamic selection and point
identify the average dynamic treatment effect.

It is, however, clear that the observed transitions rates place restrictions on
the potential transition probabilities. We therefore turn to the second main
point of this paper and derive sharp bounds on ATES;’OO. Sharp bounds in
the sense that there exists a feasible joint distribution of the potential outcomes



which is consistent with both the upper bound and the lower bound. The sharp
bounds are derived by considering the joint distribution of the potential out-
comes. The upper (lower) bound is found by constructing a joint distribution
of the potential outcomes which, given the restrictions from the observed quan-
o . R 11,00
tities, maximize (minimize) ATES; .
In order to simplify the derivations define

P(y1ay1) Pr(Yll = %7Y10 = y?)

p(yé’l,yzoll 0) (Y31 =99, Y30 = 9301y = 1,YP = 0)
p(y5'0,1) = Pr(Yy' =gV} = 07Y1° =1)

p(yéﬂygl’ySOIO,O) = Pr(Yy!' =yt Y9 =980, V90 = 30V = 0,YP =0)

We consider an absorbing state, so that Y3° is not defined. In addition as
discussed above if Y! = 1 Y3'! is not defined, and if Y = 1, neither Y3?
nor Y30 is defined. The parameters of the joint distribution of the potential
outcomes are then

|
-
—

p(yi,y?) wi,uf =0,1
(y817y20|170) yglayQ _Oal
p(yil0,1) yit =0,1
p(yQ ayQ 7y20|0 O) y%17y817y80 = 071

We consider bounds on

ATES;Y ™ = > 3 p(L,y85,98°0,00 = > > pys', 8", 100,0)

y99=0,1 y91=0,1 y3'=0,1y3"=0,1
(11)
and
[Y11|Y1 =0, Yl 70 Z Z Yo 7y80|070) (12)
99=0,1y91=0,1
and
[Y200|Y1 =0, Y1 =0] = Z Z y2 71/2 ,1|0 0). (13)
1=0,1y9'=0,1

The observed fractions, in the first period, with Dy, Y7 give

Pr(Yi=un|Di=1)= > plyi,u1) (14)
y9=0,1
and
Pr(Yy =u1|D1=0)= Y pyi,m) (15)
y%:O,l

, and the observed fractions, in the second period, with D, Y5 give
Pr(Yo =y|D; =1,Y; =0) = (16)

> ygi—0.1 2oyo—0,1 P(y2: 43", 95°10,0)p(0, 0) + p(y2|0, 1)p(0, 1)
Zy“ 0, 1 p(0,97)

10



and
PI‘(YQ = y2|D1 == O,Dg = O,Yl == O) = (17)

Zyglzo,l Zyglz(),l p(y3',y3",210,0)p(0,0) + Zyglzm p(y3", 4210, 1)p(1,0)
Zy%:O,l p(y%a O)

and
PI‘(YQ = y2|D1 = O,Dg = 1,Y1 = 0) = (18)

>0 2oy0—0,1 P(Y3",y2.98°10,0)p(0,0) + 3= 00 _o 1 P(y2, 95°10, 1)p(1,0)
Ey%zoJ p(y%,O) .

The bounds are obtained by minimizing and maximizing (11)-(13) under
the restrictions (14)-(18), and obviously with the additional restriction that
all probabilities by definition lie between zero and one. Both the outcomes in
equations (11)-(13) and the restrictions are linear, so that the bounds are the
solution to a LP problem.

Our main results are

Proposition 1 (Bounds on conditional transition probabilities) Suppose that
assumption 3 holds. Then
Pr(Y =1|D; =1,Y1 =0)Pr(Y1 =0|D, = 1)

0 .
maa (0, Pr(Vi = 0D = 1) + Pr(¥s = 0]D1 = 0) — 1,0)

PI‘(Y1 = 0|D1 = 1) — max(Pr(Yl = O|D1 = 1) =+ PI‘(Yl = O‘Dl = O) — 1,0)
maz(Pr(Yr =0/Dy =1) 4+ Pr(Y1 = 0/D1 =0) — 1,0)
<EN'Y] =0,YY =0] <

PI‘(YQ = 1|D1 = 1,Y1 = O) PI‘(Yl = 0|D1 = 1)

"max(Pr(Y1 =0|/D1 = 1) +Pr(Y: = 0|D; =0) — 1,0)

)

)

min(1

and maz(0 Pr(Y2 =1|D1 =0,D2 =0,Y1 = 0)Pr(Y1 =0|D1 =0)
" maz(Pr(Yr = 0|D; = 1) + Pr(Y1 = 0|D; = 0) — 1,0)
Pr(Y1 = 0|D1 = 0) — maz(Pr(Y1 =0|D1y = 1) + Pr(Y1 =0|D1 =0) — 1,0)
maz(Pr(Yr =0|D; = 1)+ Pr(Y1 =0/D1, =0) — 1,0)
<EN Y =0,YY =0] <
PI"(YVQ = 1|D1 = O,Dz = O,Yl = 0) Pr(Y1 = O‘Dl = 0)
maz(Pr(Ys = 0|Dy = 1) + Pr(Y; = 0|D; = 0) — 1,0)

)

min(1,

),

and maz(0 Pr(Y =1|D1 =1,Y1 =0)Pr(Y1 =0[D: =1)
"maz(Pr(Y1 =0|D1 =1) + Pr(Y1 =0|D1 = 0) — 1,0)
Pr(¥i = 0]Ds = 1) — maz(Pr(+i =0[D1 = 1) + Pr(¥i =0|D1 =0) = 1,0), _

max(Pr(Yy =0|D; = 1) + Pr(Y1 = 0|D1 =0) — 1,0)

Pr(Ys = 1|Ds = 0, D2 = 0,¥i = 0) Pr(¥i = 0|Dy = 0),

max(Pr(Yr =0|D; =1) + Pr(Y1 =0|D1 =0) — 1,0)
< ATES,V <

Pr(Ya = 1|D; = 1,Y; = 0) Pr(Y; = 0|D; = 1)
"max(Pr(Y1 =0|D1 = 1) + Pr(Y; = 0|Dy = 0) — 1,0)

min(1,

)_

min(1

11



mam(() PI‘(YQ = 1‘D1 = O,D2 = 0,)/1 = 0) PI’(Y1 = O‘D1 = O)_
" maz(Pr(Y1 =0|D1 = 1) + Pr(Y: =0|D1 = 0) — 1,0)
Pr(Y1 = O‘Dl = 0) — ma:r(Pr(Yl = 0|D1 = 1) + Pr(Y1 = 0|D1 = 0) — 1,0)
maz(Pr(Yy =0/Dy =1) 4+ Pr(Y1 = 0|D; =0) — 1,0)

Proof see Appendix A. O
Proposition 1 provides a closed form solution for the sharp bounds on ATES;LOO.

These bounds impose no assumptions beyond sequential random assignment
among survivors. In fact, we make no assumptions on functional form and ad-
ditional covariates, and we allow for arbitrary heterogeneous treatment effects

as well as arbitrary unobserved heterogeneity. From these general results follow
two important results on point identification and on the informativeness of the
bounds

).

Corollary 1 (Point identification) 1. Suppose that assumption 3 and Pr(Y, =

0|D1 = 0) = 1 hold. Then E[Y2'|Y}! = 0,Y = 0] is point identified and equal
to PI‘(Y2 = 1‘Y1 = O,Dl = 1).

2. Suppose that assumption 3 and Pr(Y: = 0|D1 = 1) = 1 hold. Then E[YZ°|Y{ =
0,Y = 0] is point identified and equal to Pr(Yz = 1|Y; = 0, Dy = 0, D; = 0).

3. Suppose that assumption 3, Pr(Y1 =0|D1 =1) =1 and Pr(Y1 =0|D; =0) =1
hold. Then ATESQM’O0 is point identified and equal to Pr(Y2 = 1|Y1 = 0,D; =
1) — PI“(YQ = 1‘Y1 = O,Dl = O,DQ = 0)

Proof see Appendix A. [J

Corollary 2 (Informative bounds) Define A = max(Pr(Y:1 = 0|D1 = 1)+Pr(Y1 =
0|D1 = 0) — 1,0). Suppose that assumption 3 hold. In addition if either

PI‘(YQ = 1|D1 = 1,Y1 = 0) PI‘(Y1 = 0|D1 = 1)

1
A <
or
[1 - PI‘()/Q = 1|D1 = 07D2 = O,Yl = O)] PI‘(Yl = O|D1 = O)
1-— >0
A
or
[1—Pr(Ya=1|Dy = 1,¥; = 0)] Pr(Y; = 0|Dy = 1)
1-— >0
A
or
PI"(YQ = 1|D1 = O,DQ = O,Yl = 0) Pr(Y1 = O‘Dl = 0) < 1

A

hold. Then the bounds in proposition 1 are informative on ATET;I‘OO.

Proof see Appendix A. O

Corollary 1 shows that if there is no dynamic selection, i.e. if Pr(Y; =
0Dy = 1) = 1 and Pr(Y; = 0|D; = 1) = 1, the dynamic treatment effect
ATES;I’OO is point identified. If everyone survive the first period we have
under random treatment two directly comparable groups even in the second
period. The corollary also includes two results which may seem counterintuitive:
E[Y3H Y = 0,Y? = 0] is point identified if Pr(Y; = 0|D; = 0) = 1, and
E[Y20)Yt = 0,Y? = 0] is point identified if Pr(Y; = 0|D; = 1) = 1. That is the
counterfactual outcome under treatment (no treatment) is point identified if no
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one exits in the control (treatment) group. The intuition behind these results
are that we consider the average treatment effect for those who survive the first
period under both treatment and control. If Y{' = 0 for everyone and under
random assignment we have

E[Yy0Y! =0,Y = 0] = E[YS Y = 0] = E[Y3|Y; = 0, D1 = 0, D5 = 0].

Together with similar reasoning for E[Y3'!|Y! = 0,Y = 0] give the results in
the corollary.

Corollary 2 tells us that the bounds are informative as long as Pr(Y; =
0/lD; = 1) =1 and Pr(Y; = 0|D; = 1) = 1 are not too small. Even though
the bounds often are informative they can be quite wide in many situations. If
Pr(Yy =0|D; = 1) + Pr(Yy; = 0/D; = 0) > 1 it follows from proposition 1 that
the width of the bounds on ATES;" " are

2 — PI‘(Y1 = 0|D1 = 1) - PI‘(Y1 = 0|D1 = O)
PI‘(Yl = O‘Dl = 1) + PI’(Yl = O‘Dl = 0) - 1

In other words, the width of the general bounds is directly related to the size of
Pr(Yy = 0|D; = 1) and Pr(Y; = 0|D; = 0), i.e. how large fraction that leaves
the state of interest in the first period.

4 Identification of treatment effects on condi-
tional transitions under additional weak as-
sumptions

The sharp bounds in the previous section did not impose any assumptions be-
yond random assignment. In this section, we explore the identifying power of
additional weak assumptions. To try to make the intuition behind the assump-
tions clear, we discuss our assumptions in the context of a medical example and
relate them to the assumptions made in the popular MPH model. Again, the
MPH model specifies the individual hazard rate for individual i as

O(t,d(t), V) = At)y(t — 7, 7) "D (19)

or, in a regression-type expression, the integrated hazard function for individual
1 as

t
log/ At) = —logy(t —7,7)) —logwv; + &, (20)

0
where € is FV 1 extreme value type 1 distributed. The time to a transition Tid(T)
for individual ¢ is fully determined by: the baseline hazard A(t), the treatment
path d(T) , the homogenous? treatment effect v, the nonnegative spell constant

2By homogenous we mean that given the time of treatment and the time elapsed since
treatment there is one homogenous treatment effect for all individuals.
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unobservable heterogeneity for individual ¢ v;, and the specific draw of ;. The
MPH model builds on several assumptions, most notably: proportionality of
the hazard function, homogenous treatment effect, spell constant unobserved
individual heterogeneity, and a single one dimensional shock which given the
hazard function determines the realized time to a transition. In some applica-
tions, these assumptions are harmless and in other applications they are very
restrictive. Obviously, our general bounds are sometimes wide as we impose
neither one of these assumptions.

In many applications one weak assumption is monotone treatment response
(MTR). The assumption has been explored by e.g. Manski (1997) and Manski
& Pepper (2000). In a transition framework the assumption has to be modified.
Most often, there will not be a single MTR assumption in a transition frame-
work. For instance, one may assume positive treatment effect for all individuals
in some time period and negative treatment effect for all individuals in another
time period. Let Y% be the indicator of a transition in period ¢ for individual
i if the treatment history up to and including ¢ is d;. In our two period exam-
ple, we define three MTR assumptions appropriate for that setting: MTR with
observed sign in the first period, and either negative or positive MTR, in period
2 from treatment given in time period 1, as®

3 Another more subtle difference compared to Manski & Pepper (2000) is that we phrase the
assumptions in terms of something that is most accurately described as the average individual
treatment effect. Manski & Pepper (2000) states their assumption in the form Yzi > Yl(g with
one single individual treatment effect. In a transition framework Y—z}ﬁ — Yl(g could either be -1,0,
or 1. It is thus reasonable to focus on the average individual treatment effect, for instance
(Y1) - E(YQ).
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Assumption 4 (Monotone treatment response in period 1) For t=1 and all i
Pr(Yy =1) > Pr(Y{ = 1) = Pr(Yi1 = 1) > Pr(Yi] = 1)

and
Pr(Yy =1) <Pr(Yy =1) = Pr(Ya = 1) <Pr(Y = 1)

Assumption 5 (Positive MTR in period 2 from treatment in period 1) For
t=2 and all ¢

Pr(Vy' = 1|V =0,Y] = 0) > Pr(Y;3" = 1|Y}] = 0,Y;} =0)

Assumption 6 (Negative MTR in period 2 from treatment in period 1) For
t=2 and all i

Pr(Yyp' =1]Y;i =0, = 0) > Pr(Ys' = 1|¥;1 = 0,Y;; = 0)

For intuition behind these assumptions let us consider a medical example.
The set up is as follows: time of origin is the date when the patient is diagnosed
with cancer. The treatment is chemotherapy, which can start directly after the
patient has been diagnosed with cancer, i.e. in time period 1, or at some later
time period ¢t. The transition state is death. In this context, assumption 4
means that if we observe a positive (negative) effect on average from being in-
stantly treated with chemotherapy we conclude that all patients benefit (suffer)
from being instantly treated with chemotherapy. Assumption 5 (assumption 6)
implies that we assume that all patients who survive the first period benefit
(suffer) in the second period from chemotherapy started in the first period.

Another source of heterogeneity in our general setting is that we have not
placed any restrictions on the unobserved heterogeneity in the model. In the
MPH model unobserved heterogeneity is introduced by wv;, the spell constant
unobserved heterogeneity in the transition rate and by ¢;, the one dimensional
idiosyncratic shock which given the transition rate determines if a transition is
realized or not. Needless to say, this places restrictions on the types of unob-
served heterogeneity that is plausible. One could, for instance, imagine that the
shocks are multidimensional, with one shock under treatment and one shock
under no treatment. As an illustration, return to the medical example, and
assume that we know that chemotherapy on average is beneficial for a certain
patient and that this patient receives chemotherapy and dies in time period one.
One question then is what can be inferred about what would have happened to
this patient if the patient would not have received chemotherapy, i.e. what can
we say about Pr(Y = 1|Y;} = 1). In the MPH model the answer is straightfor-
ward: as the effect of the treatment is positive on average (y(t — 7,7)?® > 1)
and we have the single shock ¢, it implies that we know that the patient would
have died also under no treatment.

The problem with identification without the MPH model assumptions can
be seen by noticing that

Pr(Y; =1) <Pr(Y =1)

(3
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implies that
Pr(Y; = 1Y) = ) Pr(Y]] = 1) + Pr(Y;; = 1|Y;] = 0) Pr(Y} = 0) <

Pr(Yj] = 1Y = ) Pr(Y;; = 1) + Pr(Y;] = 1|Y;; = 0) Pr(Y;; = 0).

As easily seen, without any further assumptions, one cannot say much about
these conditional probabilities using only information on the marginal probabil-

ities Pr(Y;} = 1) and Pr(Y§ = 1). If one nevertheless infer information from the

marginal probabilities one have placed restrictions on the types of unobserved
heterogeneity that is possible in the model. In fact, it may be the case that
Pr(Yi =1Y? =1) =0 and Pr(Y9 = 1|Y;} = 1) = 0 even if Pr(Y}l = 1) #0
and Pr(Y2? =1) # 0.

In this paper we explore the identifying power of the one shock assumption
made in the MPH model and weaker versions of it. For presentation reasons
define for two treatment histories dg; and dy

A0) = 1YV =0, Y =0,y =0, Y = 0)

as an indicator function taking the value one if the expression in the parenthesis
is true. We explore the two assumptions

Assumption 7 (Positively correlated shocks) For all t and i and each pair of
treatment histories, denoted by ds; and di:. If

Pr(Y;{ = 1JA(0) = 1) > Pr(Y,i* = 1]A(0) = 1)
holds then
Pr(Y,i* = 1[Y;{* =1, A(0) = 1) > Pr(Y{"* = 0|Y;{* =1,4(0) = 1)

ds,t

Pr(Yjk = 0]Y;{" = 0,A(0) = 1) = Pr(Y;{* = 1]Y;{* =0, 4(0) = 1),

, and if B
Pr(Y* = 1]A(0) = 1) < Pr(Y* = 1]A(0) = 1)
holds then

Pr(Yjkt = 1|Y{"" = 1,A(0) = 1) = Pr(Y;{* = 0]Y;{*" = 1, A(0) = 1)
Pr(Yii*t = 0]Y;i¥ = 0,A(0) = 1) > Pr(¥;{* = 1]Y;{* =0, 4(0) = 1).

Assumption 8 (Single dimensional shock) For allt and i and each pair of treat-
ment histories, denoted by ds: and dj:

Pr(Y 2t = 1]A(0) = 0) > Pr(Y.?* = 1]A(0) = 0) =

(Yt > Y| A(0) = 0)

and _
Pr(Y2st = 1]A(0) = 0) < Pr(Y;?** = 1|A(0) = 0) =

(Vi < v A(0) = 0).
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For intuition behind these assumptions consider the medical example. As-
sumption 7 allows for different shocks under treatment and no treatment, but
it assumes that these shocks are positively correlated. More precisely, if a ran-
domly induced flu causes the patient to die in the first period we expect the
same patient to also be exposed to the flu under no treatment. There is, how-
ever, some randomness involved, so that it may not be an exactly equally severe
flu. Assumption 8 implies that all random events like exposure to a flu are the
same no matter if the patient receives the treatment or not.

Combining assumption 4 with assumption 7 give

Proposition 2 (Bounds under MTR and positively correlated shocks) Define
A = maz(—L + Pr(Y1 = 0[D1 = 0) + L Pr(Yy = 0|D; = 1), ZOA=0R=0)) g4
B = maz(—L1 + Pr(Y1 = 0|D1 = 1) + L Pr(V1 = 0|D; = 0), ZCA=UP1=0) - Guppose
assumption 3, 4, and 7 hold. Then if Pr(Y1 = 1|D1 = 1) < Pr(Y1 = 1|D; =0)

A — [1 — Pr(YQ = 1|D1 = 1,Y1 = 0)] Pr(Y1 = 0|D1 = 1))7
A

PI‘(}/Q = 1|D1 = O,DQ = 0, Y1 = 0) PI‘(Y1 = 0|D1 = 0))

A

< ATES}V <

PI‘(YQ = 1|D1 = 1,Y1 = O) PI‘(Y1 = 0|D1 = 1))_

A
A— [1 — PI‘()/Q = 1|D1 =0,D:=0,Y1 = O)]PI‘(YI = O‘Dl = O))

A

and Zf Pr(Y1 = l‘Dl = ].) > PI"(Yl = 1|D1 = 0)

mazx(0,

min(1,

min(1,

mazx(0,

B — [1 — PI‘(YQ = 1|D1 = 1,Y1 = 0)] PI‘(Yl = 0|D1 = 1)

mazx (0, - -
mm(l, Pr(YE - 1|D1 = 0’D2 = 07 Yl = 0) PI‘(le = 0|D1 = 0))
B
< ATES, ™ <
min(1, T2 =11D1 =1 %1 = 0)Pr(¥i =0[D1 =1),
maz(0, 2= [1 —Pr(Yz = 1|D; =0, DQB: 0,Y1 = 0)] Pr(Y: = 0|Dy = 0))

Proof see Appendix A. O
and combining assumption 4 and assumption 8 give

Proposition 3 (Bounds under MTR and a single shock) Suppose assumption 3,
4, and 7 holds. Then if Pr(Y1 = 1|D; = 1) < Pr(Y1 = 1|D1 =0)

Pr(Y, =0/D =0)—[1 —Pr(Yo = 1|Dy =1,Y; = 0)]Pr(Y; =0|D; = 1)

max(o, PI'(Yl — O‘Dl — O) )_

Pr(Yg = l‘Dl = O,DQ = 0,Y1 = 0)
< ATES}V <
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PI‘(YQ = 1|D1 = 1,Y1 = O) PI‘(Y1 = 0|D1 = 1)
Pr(Y: = 0|D = 0)
PI"(YQ = l‘Dl = 0,D2 = O,Yl = 0)
and if Pr(Y1 =1|D =1) > Pr(Yy = 1|D, = 0)

)_

min(1,

PI’(YQ = 1|D1 = 1,Y1 = 0)*

Pr(Ya = 1|Dy = 0,D5 = 0,Y; = 0) Pr(Y; = 0|Dy = 0))
PI‘(Yl = O‘Dl = 1)

< ATES;V <

min(1,

B B B Pr(Y; = 0|D = 1)
Pr(Y2 =1|D1 = 1,Y1 = 0) — maxz(0, Pr(Y, = 0Dy =1)
[1 — PI‘(YQ = 1‘D1 = O, D2 == O,Yl = 0)] PI‘(Yl = 0|D1 = 0)

Pr(Y: = 0|D; = 1)

)

Proof see Appendix A. [J

These expressions show that these weak assumptions may have strong identi-
fying power. This will be further illustrated in our application to re-employment
bonus experiment. If Pr(Y; = 1|D = 1) =~ Pr(Y; = 1|D = 0) the bounds un-
der the MTR assumption and the single shock assumption are very narrow, as
we have assumed that the treated and non treated who exit during the first
period have similar characteristics. Note that, if either assumption 4 or as-
sumption 8 do not hold the bounds on the ATES; " may be wide even if
Pr(Y1=1D=1)=Pr(Y; =1|D =0).

The two assumptions of positive respectively negative treatment response
in period 2 will effectively bound away negative respectively positive average
treatment effects. For completeness are these bounds presented in Appendix B.

A third major source of heterogeneity in our general setting is that we have
not placed any restrictions on the relation between Pr(Yy! = 1|Y = 0, Y = 0)
and Pr(Y3! = 1|Y}! = 0,Y = 1), and no restrictions on the relation between
Pr(Y? = 1Y} = 0,Y? = 0) and Pr(Y3° = 1|Y! = 1,V = 0). In fact, we
allow for the extreme case that those who survives under both treatment and
no treatment in the first period all exit under no treatment in the second period,
whereas none of those who exit under treatment and survives under no treatment
in the first period exit under no treatment in the second period. It means that
some individuals exit relatively faster in one time period and relatively slower
in another time period. The corresponding assumption in the MPH model of
fixed unobserved heterogeneity obviously rules out any such heterogeneity.

We explore a weaker assumption compared to fixed unobserved heterogene-
ity, and explore the assumption that some individuals are inherently ”weaker”
than others under both treatment and no treatment as well as in all time periods.
We call this monotone exit rate and define it as

Assumption 9 (Monotone exit rate) For two individuals i # j, either

E[Y, 0 |Vii2y =0,..., Y = 0] SE[Y[V}i, =0,...,Y = 0]

jl
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or

E[Y Vi, =0,..., Y = 0] > B[V |V, =0,..., Vi =0].

hold for all t and all treatment histories ds.

Let us once again return to the medical example. If patient A has larger
chance of dying without chemotherapy compared with patient B in time period
one, the monotone exit assumption implies that patient A also has larger chance
of dying with chemotherapy in period one. It further means that if both patients
survive until time period ¢, patient A has larger chance of dying under both
chemotherapy and without chemotherapy in time period t. In other words,
patient A is assumed to be inherently more fragile compared to patient B. In
the two period case the monotone exit assumption implies that Pr(Y3'! = 1|Y{! =
0,V =0) <Pr(Y)' =1Y! =0,V = 1) and Pr(¥Yy° = 1|Y! = 0,Y =0) <
Pr(Y20 = 1|y}t = 1,Y? = 0). We then have
Proposition 4 (Bounds under monotone exit rate) Define A = maz(Pr(Y, =

0|D1 =1)+Pr(Y1 =0|D1 =0) — 1,0). Suppose that assumption 8 and assumption 9
holds. Then

—[1=Pr(Ya =1/D1 =1,Y1 =0)]Pr(Y1 =0[D; =1)
A
Pr(Y2 = 1|D1 = 0,D2 = 0,Y; = 0))
< ATES,V <
Pr(Yz =1|D1 = 1,Y1 = 0)—
—[1—=Pr(Ya=1|D; =0,D2 =0,Y; = 0)] Pr(Y; = 0|D; = 0))
1 :

max (0,

max (0,

Proof see Appendix A. O

For completion we report the bounds under monotone exit rate combined
with MTR and positively correlated shocks, and the bounds under monotone
exit rate combined with MTR, and single shocks in Appendix B.

5 Application to the Illinois bonus experiment

5.1 The re-employment bonus experiment

Between mid-1984 and mid-1985, the Illinois Department of Employment Secu-
rity conducted a controlled social experiment.* The goal of the experiment was
to explore, whether bonuses paid to Unemployment Insurance (UI) beneficiaries
(treatment 1) or their employers (treatment 2) reduced the unemployment of
beneficiaries relative to a randomly selected control group. In this paper we
focus primarily on the effect of treatment 1.

Both treatments consisted of a $ 500 bonus payment, which was about four
times the average weekly unemployment insurance benefit. In the experiment,

4A complete description of the experiment and a summary of its results can be found in
Woodbury & Spiegelman (1987).
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newly unemployed claimants were randomly divided into three groups:
1. The Claimant Bonus Group. The members of this group were instructed
that they would qualify for a cash bonus of $500 if they found a job (of at
least 30 hours) within 11 weeks and, if they held that job for at least 4 months.
4186 individuals were selected for this group, of those 3527 (84%) agreed to
participate.
2. The Employer Bonus Group. The members of this group were told that their
next employer would qualify for a cash bonus of $500 if they, the claimants,
found a job (of at least 30 hours) within 11 weeks and, if they held that job for
at least four months. 3963 were selected for this group and 2586 (65%) agreed
to participate.
3. The Control Group, i.e. all claimants not assigned to one of the other groups.
This group consisted of 3952 individuals. The individuals assigned to the control
group were excluded from participation in the experiment. In fact, they did not
know that the experiment took place.

The descriptive statistics in Table 2 in Woodbury & Spiegelman (1987) con-
firm that the randomization resulted in three similar groups.

5.2 Results of previous studies

Woodbury & Spiegelman (1987) concluded from a direct comparison of the con-
trol group and the two treatment groups that the claimant bonus group had
significantly smaller average unemployment duration. The average unemploy-
ment duration was also smaller for the employer bonus group, but the difference
was not significantly different from zero. In the USA, UI benefits end after 26
weeks, meaning that all unemployment durations are censored at 26 weeks.
Therefore note that the response variable is insured weeks of unemployment,
and not weeks out of employment.

Meyer (1996) analyzed the same data but focused on the treatment effects
on conditional transition rates. Besides taking care of censoring, Meyer focuses
on the conditional transitions rates because labor supply and search theories
suggest interesting dynamic treatment effects. The bonus is only given to the
unemployed if (s)he finds a job within 11 weeks and retains it for four months.
The cash bonus is also the same for all unemployed. Based on these features
theory gives some interesting predictions, all investigated by Meyer (1996). The
first prediction is that the transition rate during the eligibility period (first 11
weeks) will be higher in the two treatment groups compared with the control
group. A second prediction is that the transition rate in the treatment groups
should rise just before the end of the eligibility period, as the unemployed are
in a hurry to collect the bonus.

In order to analyze these predictions, Meyer (1996) estimates a proportional
hazard (PH) model with a flexible specification of the baseline hazard. He uses
the treatment indicator as an explanatory variable. Since, there was partial
compliance with treatment his estimator can be interpreted as a intention to
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treat (ITT) estimator. In his analysis Meyer (1996) controls for age, the log-
arithm of base period earnings, race, sex and the logarithm of the size of the
unemployment insurance benefits. He finds a significantly positive effect of the
claimant bonus and positive but insignificant effect of the employer bonus. A
more detailed analysis of the effects for the claimant group reveals positive effect
on the transition rate during the first 11 weeks in unemployment, an increased
effect during week 9 and 10, and no significant effect on the transition rate after
week 11. All these results are in line with the predictions from labor supply
models and search theories.

5.3 Set identification

Meyer (1996) heavily relies on the proportionality of the hazard rate to investi-
gate the hypothesis suggested by labor supply models and search theories. We
now ask what can be said about these hypothesis if the assumptions imbedded in
the MPH (PH) model do not hold, that is what can be identified relying solely on
random assignment and additional weak assumptions. We follow Meyer (1996)
and estimate the ITT effect. We divide time into 12 discrete periods: week 1-2,
week 3-4, ... , week 23-24. The reason for this is that there is a pronounced
even-odd week effect in the data, with higher transition rate during odd weeks.
In this setting the theoretical predictions we wish to test could be expressed as;
() positive treatment effect during the period when the bonus could be claimed
(period 1-5)
ATES, ..., ATES; 90 > 0,

(#4) no effect once the bonus offer have expired (period 6-12)
ATES(l}...l,O...O’ ... ATES!; 100 — g,

and (7i7) intensified effect of the bonus offer at the end of the eligibility period
(period 5)
ATESL10-0 5 ATESL10-0.

From section 3 we have that under random assignment ATE}’O is point
identified, and that ATES;LOO in general is not point identified. We also wish
to consider bounds on ATES; %" for t > 2. It is clear that when deriving such
bounds one would end up with a sequence of restrictions: one for the treatment
group and one for the control group in each time period. We consider a simpler
version of these bounds. Consider the bounds for time period ¢: one way of
constructing such bounds is to redefine the time periods into considering ¢t = 0
to t — 1 as the new first period and period t as the new second period. The
two period bounds, derived in this paper, are then directly applicable. Note

5The non full compliance is addressed in detail by Bijwaard & Ridder (2005). They intro-
duce a new method to handle the selective compliance in the treatment group. If there is full
compliance in the control group, their two-stage linear rank estimator is able to handle the
selective compliance in the treatment group even for censored durations. In order to achieve
this they assume a MPH structure for the transition rate. Their estimates indicate that the
ITT estimates by Meyer (1996) underestimate the true treatment effect.
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that, this procedure gives conservative bounds as we have aggregated some
restrictions.

Our bounds are expressed in terms of population moments, but they could
be estimated by replacing the population moments with their sample analogs,
for instance

>isy 1Dy = DYy,
Sl (D = 1)

Here N is the number of individuals in the sample and 1(-) is an indicator
function taking the value one if the expression in the parenthesis is true and zero
otherwise. Inferences for set identified models have been discussed in a series of
recent papers, see e.g. Chernozhukov et al. (2007) for an insightful overview of
this literature. Imbens & Manski (2004) have shown how to construct confidence
intervals when the identified set is an interval whose upper and lower endpoints
are means (or behave like means). Our general bounds are of that type. In
order to construct confidence intervals we first bootstrap (399 replicates) the
variance of the two endpoints, and then apply the Imbens & Manski (2004)
confidence intervals. We also apply that method to the bounds under additional
restrictions.®

Table 1 presents the upper and the lower bound on ATES; (and their con-
fidence intervals) for the claimant group under random assignment and combi-
nations of additional assumptions. Figure 1 displays the same bounds, and the
confidence intervals. The general bounds, which impose no assumptions beyond
random assignment are labeled no. The instantaneous treatment effect on the
transition rate (week 1-2) is point identified and indicates a positive treatment
effect of being offered the possibility to claim a bonus. The transition rate is
about 2 percentage points higher in the claimant group compared to the control
group. From week 3-4 and onwards the bounds are quite wide. In fact, without
further assumptions we cannot rule out that the bonus actually has a negative
impact on the conditional transition rate from week 3 and onwards. However,
note that until week 20 the bounds are nevertheless informative on the average
treatment effect.

Next, consider what can be identified under additional weak assumptions.
First, consider the plausibility of the assumptions considered in section 4. The
average treatment effect is positive during the first period. Assumption 4, mono-
tone treatment response, then implies that being offered a job bonus has positive
or zero effect on the transition rate from unemployment to employment for all
unemployed. It is hard to imagine that any individual would suffer from a
bonus offer, so that assumption 4, most likely, is fulfilled. Assumption 8, a sin-

PI‘(Yl = 0|D1 = 1) =

6Note that for some of these bounds intervals the upper (lower) bound is constructed by
taking the maximum (minimum) value of two or more restrictions. This means that the
Imbens & Manski (2004) inference in a strict sense is not applicable, see e.g. Pakes et al.
(2007) and Romano & Shaikh (2008). The complication arises since with a finite sample there
is some uncertainty about which restriction that is binding. One alternative is to apply the
subsampling method proposed in Romano & Shaikh (2008). However, we have noticed that
in our application there is little uncertainty about which of the restrictions that are binding.
We therefore feel confident in applying the Imbens & Manski (2004) confidence intervals.
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Table 1: Bounds on conditional transition probabilities for the Illinois job bonus

experiment (claimant bonus)

Assumptions No [1] MTRA4PS [2]

Week

1-2 0.008 ( 0.023 : 0.023) 0.037 0.007 ( 0.023 : 0.023) 0.038
3-4 -0.107 (-0.097 : 0.111) 0.120 -0.081 (-0.068 : 0.102) 0.111
5-6 -0.106 (-0.095 : 0.100) 0.111 -0.090 (-0.081 : 0.086) 0.095
7-8 -0.114 (-0.102 : 0.121) 0.133 -0.089 (-0.080 : 0.095) 0.105
9-10 -0.128 (-0.113 : 0.127) 0.143 -0.090 (-0.080 : 0.090) 0.100
11-12 -0.142 (-0.123 : 0.140) 0.159 -0.086 (-0.076 : 0.087) 0.097
13-14 -0.192 (-0.166 : 0.162) 0.188 -0.099 (-0.086 : 0.084) 0.096
15-16 -0.233 (-0.193 : 0.206) 0.244 -0.090 (-0.077 : 0.082) 0.095
17-18 -0.414 (-0.316 : 0.316) 0.406 -0.100 (-0.086 : 0.086) 0.100
19-20 -1.152 (-0.865 : 0.809) 1.107 -0.116 (-0.100 : 0.093) 0.107
21-22 -1.000 (-1.000 : 1.000) 1.000 -0.157 (-0.138 : 0.095) 0.111
23-24 -1.000 (-1.000 : 1.000) 1.000 -0.135 (-0.116 : 0.112) 0.129
Assumptions MTR+SS [3] ME [4]

1-2 0.006 ( 0.023 : 0.023) 0.039 0.008 ( 0.023 : 0.023) 0.037
3-4 0.000 ( 0.011 : 0.038) 0.056 -0.088 (-0.081 : 0.094) 0.103
5-6 -0.007 ( 0.004 : 0.046) 0.067 -0.075 (-0.068 : 0.075) 0.083
7-8 0.002 ( 0.013 : 0.063) 0.085 -0.070 (-0.063 : 0.078) 0.086
9-10 -0.004 ( 0.008 : 0.070) 0.084 -0.065 (-0.058 : 0.070) 0.077
11-12 -0.003 ( 0.008 : 0.063) 0.071 -0.057 (-0.051 : 0.063) 0.070
13-14 -0.013 (-0.002 : 0.057) 0.065 -0.061 (-0.053 : 0.057) 0.064
15-16 -0.008 ( 0.003 : 0.051) 0.059 -0.051 (-0.044 : 0.051) 0.059
17-18 -0.012 ( 0.000 : 0.050) 0.058 -0.052 (-0.045 : 0.050) 0.057
19-20 -0.015 (-0.003 : 0.050) 0.057 -0.126 (-0.048 : 0.050) 0.128
21-22 -0.034 (-0.021 : 0.047) 0.056 -1.285 (-1.000 : 1.000) 1.289
23-24 -0.015 (-0.002 : 0.056) 0.066 -1.000 (-1.000 : 1.000) 1.000
Assumptions ME+MTR+PS [5] ME+MTR+SS [6]

1-2 0.008 ( 0.023 : 0.023) 0.037 0.008 ( 0.023 : 0.023) 0.037
3-4 -0.071 (-0.059 : 0.094) 0.103 0.002 ( 0.014 : 0.038) 0.055
5-6 -0.075 (-0.068 : 0.075) 0.082 -0.004 ( 0.007 : 0.046) 0.068
7-8 -0.070 (-0.063 : 0.078) 0.086 0.005 ( 0.016 : 0.063) 0.085
9-10 -0.065 (-0.058 : 0.070) 0.078 0.001 ( 0.012 : 0.070) 0.083
11-12 -0.057 (-0.051 : 0.063) 0.071 0.002 ( 0.012 : 0.063) 0.071
13-14 -0.061 (-0.053 : 0.057) 0.064 -0.007 ( 0.004 : 0.057) 0.065
15-16 -0.051 (-0.044 : 0.051) 0.059 -0.003 ( 0.007 : 0.051) 0.059
17-18 -0.052 (-0.045 : 0.050) 0.058 -0.005 ( 0.005 : 0.050) 0.057
19-20 -0.055 (-0.048 : 0.050) 0.058 -0.009 ( 0.002 : 0.050) 0.058
21-22 -0.070 (-0.062 : 0.047) 0.055 -0.026 (-0.014 : 0.047) 0.055
23-24 -0.061 (-0.053 : 0.056) 0.065 -0.009 ( 0.003 : 0.056) 0.066

Notes: Bounds in parenthesis and confidence intervals in brackets. Raw indicates the difference
in the raw hazard rate, and no the bounds under random assignment. MTR stands for assump-
tion monotone treatment response, SS a single shock, PS positively correlated shocks, and ME
monotone exit rate.
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Figure 1: Bounds on conditional transition probabilities for the Illinois job bonus
experiment (claimant bonus)

gle shock, means that being offered a bonus does not affect the random events
influencing the arrival of employment. All random events that is not caused
by the bonus offer should occur under both treatment and no treatment. We
have no strong beliefs to doubt this assumption. Since assumption 7, positively
correlated shocks, is weaker than assumption 8 we also explore the identify-
ing power of this assumption. Assumption 9, monotone exit rate, implies that
some unemployed individuals have a higher probability of finding employment
compared to other unemployed when being offered the job bonus as well when
not being offered the bonus. This assumption is fulfilled if the ranking of the
individuals in terms of the characteristics that determines job offers, such as
experience and job search effort, stays the same during the entire job search
period. We are confident in that this is a quite good description of reality.

As expected, when imposing additional weak assumptions the bounds are
tightened considerably. Assumption 7 and assumption 4 allow us to rule out
very large negative and very large positive average dynamic treatment effects.
Assumption ME has the same effect. Imposing assumption 8 and assumption 4
further tightens the bounds. If these assumptions hold we can rule out that the
bonus offer has a negative effect on the conditional transition rates. These two
assumptions together with assumption 9 give even more narrow bounds. Let us
return to the three hypotheses suggested by labor models and search theories,
and consider our most restrictive bounds as of model 6. We conclude that there

24



is a positive effect of the bonus offer on the conditional transition rate during
all periods up until week 11. It confirms the first hypothesis. The upper bound
increases in time period 5 (week 9-10), but the lower bound is lower than the
upper bound for period 4. Hence, we cannot rule out that there is an intensified
effect shortly before the bonus offer expires, but we cannot either rule out the
opposite. Now consider the third hypothesis: that there is no effect on the
transition rate after week 11. Obviously, as more time has passed the dynamic
selection is more severe in this time period. We conclude that there actually
may be a substantive positive effect on the conditional transition probabilities
also after week 11. As our results diverge from the results of previous studies
of the re-employment experiment we conclude that previous results based on
semi-parametric models heavily rely on the imposed structure.

6 Conclusions

In this article, we have derived and implemented sharp bounds on conditional
transitions probabilities under random assignment. We have shown that even
under random assignment only instantaneous average treatment effects is point
identified. Dynamic treatment effects, which requires that one study conditional
transitions probabilities, are in general not point identified. Because our bounds
impose no assumptions beyond the random assignment they are not sensitive
to arbitrary functional form assumptions made in semi-parametric models. We
have also derived bounds under additional weak assumptions such as monotone
treatment response and monotone exit rate.

Our re-analysis of data from the Illinois re-employment bonus experiment
shows that our bounds are informative about average treatment effects. It
also demonstrates that previous semi-parametric methods to deal with dynamic
selection heavily rely on structure that is imposed, as it restricts the possible
types of dynamic selection. The application further shows that imposing weak
assumptions may lead to quite narrowly identified bounds.

The bounds that have been derived in this paper are for a two time period
setting. In future research we intend to generalize these bounds into a setting
with more than two time periods. We also intend to show how our bounds, that
are applicable under random treatment assignment, could be applied under
unconfounded treatment assignment. In that case one way to proceed is to
create bounds conditional on the covariates (or the propensity score) and then
average over the distribution of these covariates.
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Appendix A

Introduce the following notation

'y
Pyl) =
Yy iy
O (y3°ly1,y

Proof (Proposition 1.) First, consider bounds on E[Y20|Y = 0, = 0] =
p%(1]0,0). Start with equation (13), average out y9', and rearrange gives

1)
D)
) =
v)

Pr(Y}
Pr(Yy
Pr(Y,
= Plf(YO0 = yOOIY1 =y, YP =4).

p*(1]0,0)

o PI'(YQ = 1‘D1 = O, D2 = 0, Y1 = O) PI‘(Yl = O‘Dl = 0) fp00(1|1,0)p(1, 0)
p(0,0) '
Use equation (15) to substitute for p(1,0) = Pr(Y; = 0|D; = 0) — p(0,0)

p™(1]0,0) = (A1)
PY(YQ = 1‘D1 = O,Dg = O,Yl = 0) Pr(Y1 = O‘Dl = 0) .
p(0,0)
®(1[1,0)(Pr(Y1 = 0| Dy = 0) — p(0,0))
»(0,0) '

The LP problem then consists of maximizing and minimizing equation (A.1) in
p°°(1|0,1) and p(0,0). We have

°(1]0,0) _ —(Pr(Y; =0|D1 =0) — p(0,0)) _ p(1,0)
00(1]0,1) p(0,0) ~p(0,0) =

i.e. the objective function we want to maximize/minimize is non-increasing in
p%(1]0,1) for all values of p(0,0). Then for the maximization (minimization)
problem take the minimum (maximum) value of p°°(1|0,1), and notice that
0 < p®(1)0,1) < 1 gives

Pr(Yo =1|D; =0,D3 =0,Y; = 0) Pr(Y; = 0|D; =0)

maz p°°(1|0,0) =

»(0,0) )
(A.2)
with
Omazx p°°(110,0)
ap(0,0) B
_Pr(Yo= 1D = 0.0, = 0.Y; = 0)Pr(¥; = 01D, =0) _,
p(0,0)? ’
and
min p?°(1/0,0) = (A.3)
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Pr(Ys = 1|D; = 0, Dy = 0,Y; = 0) Pr(Y; = 0|D; = 0)
p(0,0)
(Pr(Y1 = 0|Dy = 0) — p(0,0))
p(0,0) ’

with
dmin p°°(1]0,0)

dp(0,0)
(1-Pr(Yo=1|D; =0,D3 =0,Y; =0)) Pr(¥Y; =0|D; =0)
p(0,0)2
So that both for the maximization problem and for the minimization problem
take p(0,0) as small as possible. This unknown joint distribution is bounded by

the known marginal distributions as given by equation (14) and (15). From the
results in Hoeffding (1940) and Frchet (1951) we have

> 0.

maz(Pr(Yy = 0|D; = 1) + Pr(Y1 = 0|D; = 0)) — 1,0) < p(0,0) < (A4)
min(Pr(Y1 = 0|D; =1),Pr(Y; = 0|D; = 0)).
Substitute the minimum value from equation (A.4) into equation (A.2)
maz p°°(1]0,0) = (A.5)

PI‘(YQ = 1|D1 = O,DQ = O,Yi = 0) PI‘(Yl = O|D1 = 0)
max(Pr(Yy =0|D; = 1)+ Pr(Y1 =0|/D; =0) — 1,0)
and into equation (A.3)

),

min(1,

min p°°(1]0,0) = (A.6)
maa(0, PEY2 = D1 = 0,03 = 0, = 0) Pr(¥i = 01Dy =0) _
" max(Pr(Y1 =0|Dy =1) + Pr(Yy =0|D; =0) — 1,0)
Pr(Y; =0|D; =0) — max(Pr(Y; =0|D; =1) + Pr(Y; =0|D; =0) — 1,0))
maz(Pr(Yy = 0|D; = 1) + Pr(Y; = 0|D; =0) — 1,0) '

Note that, we in equation (A.5) and (A.6) made it explicit that the probability
p°°(10,0) by definition lies between zero and one.

Second, consider bounds on E[Y3'1 |V} = 0, Y = 0] = p*!(1|0,0). Start with

equation (12), average out y9', rearrange, and use equation (14) to substitute

for p(0,1) gives

p'(1]0,0) = (A.7)
Pr(Yo =1/D; =1,Y; = 0)Pr(Y; =0|D; = 1)
p(0,0) -
p''(1]0,1)(Pr(Yy = 0|D; = 1) — p(0,0))
p(0,0) '

Then

op"'(1]0,0) _ —(Pr(i =0[Dy =1) = p(0,0)) _ p(0.1) _
op't(1[1,0) p(0,0) ~ p(0,0) =
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gives using similar reasoning as for the bounds on E[Y;°|Y}! = 0,Y} = 0]

PI'(}/Q = 1|D1 = ].,Yl = 0) Pr(Y1 = 0|D1 = 1)

maz p*t(1]0,0) = , A8
P (10,0) 00 (A8)
with
Omazx p'*(1]0,0)  Pr(Ya =1|D1 =1,Y1 =0)Pr(¥; = 0|D; = 1) <0
ap(0,0) a p(0,0)? -
and
min p*'(1]0,0) = (A.9)
PI‘(}/Q = 1|D1 = 1,}/1 = 0) PI‘(Y] = 0|D1 = 1) — PI‘(Y] = 0|D1 = 1) —|—p(0,0)
p(0,0)
with
Omin p''(1]0,0)
ap(0,0)
—PI‘(YQ = 1|D1 = ].,Yl = 0) PI‘(Yl = 0|D1 = 1) + PI‘(Yl = ].|.D1 = 0) >0
p(0,0)? o

So that again take p(0,0) as small as possible. Substitute the minimum value
from equation (A.4) into equation (A.8)

maz p**(1]0,0) = (A.10)

PI‘(YvQ = 1|D1 = 17Y1 = 0) PI‘(Yl = O‘Dl = 1) )
maz(Pr(Yy =0|D; = 1)+ Pr(Y; =0|D; =0) — 1,0)”’
and into equation (A.9)

min(1,

min p'*(1]0,0) = (A.11)
Pr(Y2 =1|D; =1,Y1 =0)Pr(Y1 =0|D; = 1)
max(0, -
max(Pr(Yy =0|/D; = 1)+ Pr(Y1 =0|D; =0) — 1,0)
PI‘(Y1 = O|D1 = 1) - maz(Pr(Yl = O‘Dl = 1) + PI‘(Yl = O‘Dl = 0) - 1,0)
max(Pr(Yy =0|D; =1)+Pr(Y; =0/D; =0) —1,0)

).

Third, consider bounds on ATETS,"%. After substitutions the only vari-
able appearing in equation (A.1) in the derivations of the bounds for E[Y °|Y{} =
0,YY = 0,D; = 1] and in equation (A.7) in the derivations of the bounds for
E[Y1HYE = 0,V = 0,D; = 1] is p(0,0). However, in both cases the opti-
mal value of p(0,0) is the minimum value so that the bounds for E[Y{°|Y]! =
0,Y? = 0,D; = 1] and E[Y3''|Y! = 0,Y? = 0,D; = 1] can be used directly
when constructing bounds for ATETS;"". We then have

maz ATET S, " = maz p**(1]0,0) — min p°°(1]0,0)

and
min ATETS,"% = min p'*(1|0,0) — maz p°(1]0,0),
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which give the results in proposition 1.

Proof (Corollary 1.) p*'(1]0,0) is point identified if maz p**(1|0,0) = min p'1(1]0,0),
using proposition 1 this holds if
P]."(Yl = 0|D1 = 1) - max(Pr(Yl = 0|D1 = ].) + Pr(Y1 = 0|D1 = 0) - ].,0)
maz(Pr(Yy =0/D; = 1)+ Pr(Ys =0/D; =0) — 1,0)

equals zero, i.e. if Pr(Y; = 0|D; = 0) = 1. In the same way p°(1|0,0) is point
identified if maz p°°(1|0,0) = min p°°(1]0,0), using proposition 1 this holds if
PI‘(Yl = 0|D1 = 0) - max(Pr(Yl = O|D1 = 1) + PI‘(Yl = O|D1 = O) - 1,0)
max(Pr(Yy =0|D; = 1)+ Pr(Y1 =0|D; =0) — 1,0)

equals zero, ie. if Pr(Y; =0/D; =1) = 1. ATETSQH’00 is point identified if
both p®(1]0,0) and p**(1]0,0) are point identified, i.e. if Pr(Y; =0/D; =1) =1
and Pr(Y; = 0|D; = 0) = 1 hold.

Proof (Corollary 2.) The bounds on ATETS,"% are informative if they ex-
clude either 1 or -1, which hold if max p''(1]0,0) < 1, or min p'*(1/0,0) > 0,
or max p°°(1]0,0) < 1, or min p°(1]0,0) > 0 hold. Using proposition 1 it
immediately follows that this hold if

PT(YQ = 1|D1 = 1,Y1 = 0) PI‘(Yl = 0|D1 = ].)
maz(Pr(Yy =0/D; = 1)+ Pr(Y1 =0/D; =0) — 1,0)

smaller than 1, or if

PI‘(YQ = 1‘D1 = 07D2 == O,Yl == 0) Pr(Y1 = O‘Dl == 0)
maz(Pr(Yy =0|/D; = 1)+ Pr(Y; =0|D; =0) — 1,0)

P]."(Yl = 0|D1 = 0) - max(Pr(Yl = 0|D1 = ].) + PT(Yl = 0|D1 = 0) - 1,0)
maz(Pr(Yy =0/D; = 1)+ Pr(Y1 =0/D; =0) — 1,0)

largen than zero, or if

PI‘(YQ == 1|D1 = 1,Y1 = O) PI‘(Y& == 0|D1 == 1)
max(Pr(Yy =0|D; = 1)+ Pr(Y1 =0|D; =0) — 1,0)

Pr(Y; = 0|D; = 1) — maz(Pr(Y; = 0|D; = 1) + Pr(Y; = 0|D; = 0) — 1,0)
max(Pr(Yy =0|/D; = 1)+ Pr(Y1 =0|/D; =0) — 1,0)

larger than zero, or if

PI‘(YQ = 1‘D1 = O,DQ = O,Yl = 0) PI‘(Yl = O‘Dl = 0)
maz(Pr(Yy =0/D; = 1)+ Pr(Y1 =0/D; =0) — 1,0)
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smaller than one. This gives the result in the corollary.

Proof (Proposition 2.) Assumption 4 and 7 only restrict p(0,0). Following
the derivations of the general bounds we then we end up with the equations
(A.2),(A.3),(A.8) and (A.9). Moreover, again take p(0,0) as small as possible
for both the maximization and the minimization problem. The restrictions as
implied by assumption 4 differs whether p'(1) > p°(1) or p'(1) < p°(1) hold.
First consider p!(1) > p°(1). From assumption 4 we have

Pr(Y! =1)>Pr(Y? =1) = Pr(Y} =1) > Pr(Y =1),Vi

K3

and from assumption 7

= Pr(Yh = 1Y = 1) > Pr(Y = 0]} = 1), Vi
which lead to

= Pr(Y;; =1,Y; =1) > Pr(Y3 = 0,Y}} =1),¥i

and thus
= Pr(Y] =LY =1) > Pr(Y{ =0,Y =1).

So that expressed in the short hand notation that
p'(1) > p°(1) = p(1,1) > p(0,1). (A.12)
In the same way under assumption 7 and assumption 4
Pr(Y! =1)>Pr(Y? =1) = Pr(Yi =1) > Pr(Y = 1)
= Pr(Y]=0[Y;} =0) >

2

Pr(Yj) = 1|Y;] = 0)
= Pr(Y; =0,Y] =0) > Pr(Y;; =0,Yj} = 1)
= Pr(Y! =0,Y? =0) > Pr(Y{ =0,V = 1).

So that expressed in the short hand notation that
p*(1) > p°(1) = p(0,0) > p(0,1). (A.13)
Using equation (14) and (15) we can rewrite equation (A.12) and (A.13) as
p(1,1) > p(0,1)  p'(1) — p(1,0) =
p'(1) — (°(0) — p(0,0)) > p'(0) — p(0,0) <
2p(0,0) > p*(0) — p*(1) + p°(0) = 2p" (0) — 1 + p°(0) &

1
p(0.0) = 2 +Pr(Yy = 0|Dy = 1) + 5 Pr(¥; = 0|D; = 0) (A.14)

N | —
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and
p(0,0) > p(0,1) & p(0,0) > p'(0) — p(0,0) <
Y0) Pr(Y1=0/D;=1)

p
p(0,0) > =~ = 5 . (A.15)

Combining equation (A.14) and (A.15) and noticing that equation (A.14) is
more restrictive than p(0,0) > maxz(Pr(Yy = 0Dy = 1) + Pr(Y; = 0|D; =
0)) — 1,0) gives

p(0,0) > (A.16)
PI‘(Yl = O|D1 = 1))

5 .
Substituting the minimum value of p(0,0) given by equation (A.16) into equa-
tions (A.2),(A.3),(A.8) and (A.9) and using

1 1
max(—§ + PI‘(Y1 = O|D1 = 1) + 5 PI‘(Y& = 0|D1 = 0),

max ATETS; Y = maz p**(1]0,0) — min p*°(1]0,0) (A.17)
and
min ATETS,"" = min p'*(1]0,0) — maz p°(1]0,0), (A.18)

gives the second result in the proposition.
Second consider p'(1) < p°(1), by similar reasoning as above under assump-
tion 7 and assumption 4

p'(1) > p°(1) = p(1,1) > p(1,0). (A.19)

and
p'(1) > p°(1) = p(0,0) > p(1,0). (A.20)

Further derivations as above using equation (14), (15), (A.19) and (A.20) gives
p(0,0) >

Pr(Y, =0|D; =0)

2 )
and the first result in the proposition follows by substituting this into equations
(A.2),(A.3),(A.8) and (A.9), and using equations (A.18) and (A.17), gives the
first result in the proposition.

1 1
ma:c(_§ +Pr(Y1 =0[D; =0) + 9 Pr(Yy =0[Dy = 1),

Proof (Proposition 3.) Assumptions 4 and 7 only restrict p(0,0). Again, fol-
lowing the derivations of the general bounds we then we end up with the equa-
tions (A.2),(A.3),(A.8) and (A.9), so that again take p(0,0) as small as possi-
ble for both the maximization and the minimization problem. First consider
p'(1) > p°(1). From assumption 4 we have

Pr(Y =1)>Pr(Y? =1) = Pr(Y} =1) > Pr(Y =1),Vi
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and from assumption 8 we have
Pr(Yy =1) 2 Pr(Yj) =1) = Y}] 2 Y}],Vi
further
Vi >VYi,Vi=Pr(Y]! =0,Y =0)=Pr(Y{" =0) =Pr(Y; =0|D =1)

or in the short hand notation that

p*(1) > p°(1) = p(0,0) = Pr(Y; = 0|D = 1) (A.21)
By similar argument under assumption 4 and assumption 8

pt(1) < p°(1) = p(0,0) = Pr(Y; = 0|D = 0). (A.22)

Substituting A.21 and A.22 for p(0,0) into equations (A.2),(A.3),(A.8) and
(A.9), and using equations (A.18) and (A.17), gives the result in the propo-
sition.

Proof (Proposition 4.) First, consider p"°(1]0,0). In deriving the general
bounds we have after substitutions equation (A.1). It still holds here so that for
the maximization (minimization) problem we wish to take the minimum (max-
imum) value of p°°(1|0,1). In comparison with the general bounds assumption
9 places the additional restriction that p°°(1]1,0) > p°°(1]|0,0), so that for the
maximization problem we have p°°(1]0,1) = p°(1]0,0), and for the minimiza-
tion problem we have p°°(1|0,1) = 1. It further means that equation (A.6)
still holds for the minimization problem, and for the maximization problem
substituting for p°°(1]0,1) = p®°(1|0,0) gives

P (10,0) =
Pr(Yo=1/D; =0,D2 =0,Y; =0)Pr(Y; =0|D; =0) B
p(0,0)
p% (10,0)(Pr(Y: = 0| Dy = 0) — p(0,0))
p(0,0) ’
and thus after rearranging
mazx p*°(1]0,0) = Pr(Ys = 1|D; = 0,Dy = 0,Y; = 0). (A.23)

Second, consider p'!(1]0,0). By similar reasoning equation (A.7) still holds,
and for the maximization problem p'!(1|0,1) = p''(1]0,0) and for the mini-
mization problem we have p'!(1]0,1) = 1. So that equation (A.11) still holds,
and for the maximization problem substituting for p'*(1]0,1) = p'(1]0,0) gives

p''(1]0,0) =
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PI‘(YQ = 1|D1 = 1,Y1 = 0) PI‘(Y& = 0|D1 = 1)

p(0,0)
p''(1]0,0)(Pr(Y: = 0| Dy = 1) — p(0,0))
p(0,0)
and thus after rearranging
maz p'*(1]0,0) = Pr(Yy = 1|D; = 1,Y; = 0). (A.24)

Combining equation (A.6),(A.11),(A.23) and (A.24),and using equations (A.18)
and (A.17), gives the result in the proposition, gives the result in the proposi-
tion.

Proof (Proposition 7.) From the proof of proposition 4 we have that assump-
tion 9 restricts p®(1]0,0) and p*'(1]0,0). The proof further shows that after
imposing assumption 9 p(0,0) do not appear for the maximization solutions
for p°°(1]0,0) and p'*(1]0,0). So that we have maz p°(1]0,0) from equation
(A.23) and max p*'(1]0,0) from equation (A.24). Further assumption 9 do not
restrict p(0,0). However, assumption 4 and assumption 7 restrict p(0,0), that
is the same assumption as in the derivations of proposition 2. We can therefore
use the minimization solutions for min p°(1]0,0) and min p*'(1]0,0) from the
proofs for proposition 2. Combining these results and noting that minimum so-
lution for p(0,0) depends on whether Pr(Y; = 1|D; = 1) < Pr(Y; =1|D; =0)
or Pr(Y; = 1|D; = 1) < Pr(Y1 = 1|D; = 0) give the result in the proposition.

Proof (Proposition 8.) Following similar reasoning as in the previous proof
gives the result.
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Appendix B

Proposition 5 (Bounds under positive treatment response in period2) Suppose
assumption 3 and assumption 5 holds. Then
A—-[1-Pr(Yo=1|D; =1,Y1 =0)]Pr(Y1 =0|D; = ))_
A
PI"(YQ = l‘Dl = 0,D2 = O,Yl = 0) Pr(Y1 = 0‘D1 = 0)))
A
< ATES,V <
PI”(YZ = 1|D1 = 17Y'1 = 0) PI“(Y1 = O|D1 = 1))7
A
A — [1 — PI“(YQ = l‘Dl = O7 DQ = O,Yi = 0)] PI”(Y& = 0|D1 = 0)))
A
Proposition 6 (Bounds under negative treatment response in period2) Suppose
assumption 3 and assumption 6 holds. Then
A—-[1-Pr(Yo=1|D; =1,Y1 =0)]Pr(Y1 =0|D; = 1))_
A
PI"(YQ = l‘Dl = 0,D2 = O,Yl = 0) PI“(Yl = O‘Dl = 0)))
A
< ATES," <
Pr(Y2 =1/D1 =1,Y1 =0)Pr(Y1 =0|D1 = 1))_
A
A — [1 — PI“(YQ = l‘Dl = O7 D2 = 07Yi = 0)] PI‘(Y& = 0|D1 = 0)))
A
Proposition 7 (Bounds ME, MTR response and positively correlated shocks)
Suppose assumption 3, 4, 7 and 9 holds. Define A = mam(f% +Pr(Y1 = 0|D; =
0) + 2 Pr(vy = 0|Dy = 1), ZOA=UPI=0 g B = maz(—L + Pr(Yy = 0|D1 = 1) +
LPr(Y; = 0|Dy = 0), ZO=0L=DY Then if Pr(Y; = 1|Dy = 1) < Pr(Yy = 1|D; = 0)

A — [1 — PI‘(YQ = 1|D1 = 1,Y1 = 0)] PI‘(Y1 = O|D1 = 1)

maz (0, maz(0,

min(1,

maz(0, min(1,

max (0,

min(0, max(0,

min(1,

min(0, min(1,

max (0,

maz(0, 1 )—
Pr(Yz = 1|D; = 0,D2 = 0,Y; = 0)
< ATES}V <
PI’(YQ = 1|D1 = 1,Y1 = 0)*
mam((]’ A — [1 — PI‘(Y'Q = 1|D1 = O,DQA: O, Y1 = O)] Pr(Y1 = 0‘D1 = 0))

and if Pr(Y1 =1|D; = 1) > Pr(Y1 = 1|D1 = 0)

B—[1—Pr(Ya =1|Dy = 1,Vs = 0)] Pr(Y1 = 0|D; =
B

Pr(Yz = 1|D1 = 0, Dy = 0,Y; = 0)
< ATES,V <
Pr(Yz = 1|D1 =1,Y1 = 0)—
B [1 = Pr(¥s = 1|D1 = 0,02 =0, ¥ = 0)] Pr(¥i = 0|D: = 0)
B

))_

maz (0,

max(0,
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Proposition 8 (Bounds ME, MTR response and single shocks) Suppose assump-
tion 3, 4, 8 and 9 holds. Then if Pr(Y1 =1|D; =1) < Pr(Y1 = 1|D; =0)
Pr(Y1 =0D=0)—[1—-Pr(Y2=1|D1 =1,Y1 =0)] Pr(Y1 =0|D1 = 1)
maz(0, Pr(Y: = 0|D; = 0) )

PI‘(YQ = 1‘D1 = O,Dz = O,Yl = 0)
< ATES);V <
Pr(YQ = 1|D1 = 1,Y1 = 0) — Pr(YQ = 1|D1 = 0,D2 = O, Y1 = O)
and if Pr(Y:r = 1|D = 1) > Pr(Y: = 1|D; = 0)
PI‘(YQ = 1|D1 = 1,Y1 = 0) — PI‘(YQ = 1|D1 = O,DQ = O, Yl = O)

< ATES}M <
Pr(Ya=1/D; =1,Y; = 0)—
Pr(Y: =0|D =1)
maz (0, 5y, = 0/Dy = 1)
—[1 — PI‘(YQ = 1‘D1 = O, D2 = O,Yi = 0)] PI’(Y& = 0|D1 = 0))
Pr(Y: = 0|D; = 1)
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