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Abstract: This paper examines to what extent dynamics in market, size and value betas are

predictable out-of-sample. Constructing ex-ante market and factor neutral portfolios, i.e. zero-

beta portfolios, we provide evidence that the dynamics in all three betas are predictable. We

are able to construct zero-beta portfolios based on the forecasted betas that even out-of-sample

have no significant exposure to neither the market nor the size and value factors. However, this

result is highly dependent on the particular specification used to model the dynamics in betas

and we conclude that more flexible specifications provide superior results. Finally, we find that

the out-of-sample reduction in portfolio risk, both for size, value and industry sorted portfolios,

is larger for models including the size and value factors in comparison with models relying only

on the market factor.
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1 Introduction

Many active portfolio strategies build on estimates of market beta as well as betas related to

the famous size and book-to-market factors developed by Fama & French (1992, 1993).1 The

main examples are market neutral strategies and similar strategies involving multiple sources

of beta risk, i.e. market and factor neutral strategies. These investment strategies involve

simultaneously taking long and short positions while at the same time creating exposure to

assets or portfolios that are identified as over- or undervalued. Accurate estimates of betas are

crucial also for other directional long-short strategies not aiming at zero beta risk exposure but

instead allowing managers to tilt towards value or growth portfolios, to shift from small-medium

capitalization stocks to large capitalization stocks and from a net long position to a net short

position, i.e. different types of beta-timing strategies. Therefore, if the temporal variation

in beta risk can be predicted, the performance of such portfolio strategies can be improved.

Conversely, unintended exposure to beta risk can severely hurt the performance of long-short

portfolios inherently relying on the construction of portfolios with a target for beta risk.2 There

is also an important link between the dynamics in beta and classical portfolio optimization

because restrictions on large covariance matrices are in practise often imposed in the form of

an underlying factor structure involving market and alternative betas.

There is an ongoing academic discussion on the nature of the time-variation in market

beta risk. In brief, there are three different approaches to model market beta dynamics in

the literature. The first is purely data-driven rolling sample estimators (Fama & Macbeth,

1973, Officer, 1973). The second is to assume an implicit link between beta dynamics and an

underlying unobserved state variable (Fabozzi & Frances, 1978, Ohlsson & Rosenberg, 1982,

Bos & Newbold, 1984). The third is to assume an explicit link between beta dynamics and

macroeconomic or fundamental variables (Shanken, 1990, Ferson & Harvey, 1991, 1993, Harvey,

1991). Ghysels & Jaquier (2005) argues in favor for purely data-driven filters and claim that

1 In general, an alternative or exotic beta risk is a sensitivity to a systematic risk factor that provides a non-

zero expected return after controlling for market beta risk. Potential sources of such beta return include size and

value effects, volatility, commodites, exposure to peak risk and corporate default risk.

2This is a problem especially for market and factor neutral strategies because these ex-ante beta-neutral

positions tend to go long in portfolios with underestimated betas and short in portfolios with overestimated

betas. This in turn is a consequence of the fact that the target beta of zero is far below the average beta of one.

Because of these estimation errors the ex-post portfolio betas are then on average positive, not zero (Fama &

Macbeth, 1973). This is in contrast to portfolio strategies for example targeting an average beta, which are much

less sensitive to estimation errors in betas (Ghysels & Jaquier, 2005).
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neither aggregate nor firm-specific variables has any predictive power for the time-variation

in market beta out-of-sample. Jostova & Philipov (2005) successfully use a mean-reverting

stochastic specification of market beta dynamics in an out-of-sample hedging application for

five U.S. industry portfolios.

The novelty of this study comes from the fact that it explores to what extent the dynamics

in size and value betas are predictable out-of-sample, while previous research has exclusively

focused on the predictability of market beta dynamics. We employ either purely data-driven

filters or stochastic time-series specifications of the dynamics in beta risk. Constructing ex-

ante market and factor neutral portfolios, i.e. zero-beta portfolios, we provide evidence that

the dynamics in all three betas are predictable. We are able to construct zero-beta portfolios

that even out-of-sample have no significant exposure to neither the market nor the size and

value factors. However, this result is highly dependent on the particular specification used to

model the dynamics in betas. We conclude that more flexible specifications provide superior

results. Finally, we also evaluate the beta predictions by measuring the out-of-sample reduction

in portfolio volatility of the zero-beta portfolios compared with the original portfolios. We

find that the out-of-sample reduction in portfolio risk, both for size, value and industry sorted

portfolios, is larger for models including the size and value factors in comparison with models

relying only on the market factor.

The data used are monthly returns from 10 size, 10 value and 10 industry portfolios taken

from Kenneth French’s data library. The sample period stretches from 1926:7 to 2004:12 and

the out-of-sample evaluation period is 1990:1 to 2004:12.

The remainder of the paper is organized as follows. Section 2 discusses the different specifi-

cations of beta dynamics employed. Section 3 details the evaluation methods. Section 4 contains

the results and section 5 concludes.

2 Beta dynamics

The beta dynamics is applied to two different factor models. The market model with a proxy

for the market portfolio as the sole factor states that the nominal excess return on any asset i

is given by:

rit = βiMt rMt + εit, (1)

where rit and rMt are nominal excess returns on asset i and the market portfolio and βiMt is the

beta of asset i with the market. Fama & French (1992) propose to augment the market model
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with a size and a value factor:

rit = βiMt rMt + βiSMB
t rSMB

t + βiHML
t rHML

t + εit, (2)

where rSMB
t+1 and rHML

t+1 are nominal returns on the Fama-French SMB (size) and HML (value)

portfolios and βiSMB
t and βiHML

t the corresponding conditional size and value betas.

The different specifications of beta dynamics explored in this paper are summarized in Table

I.

Table I: Different assumptions of beta dynamics

Model Description

CONST Expanding window betas

R60M Moving window 60 months betas

KFMR Kalman filtered mean-reverting betas

KFRW Kalman filtered random-walk betas

HF2S Hamilton filtered two-state betas

HF3S Hamilton filtered three-state betas

The different specifications are discussed below.

2.1 Specifications of purely data-driven filters

The main data-driven modeling approaches is either to use overlapping or non-overlapping

blocks of data to calculate beta. We use the standard 60 months overlapping window filter. We

refer to this filter as R60M.

2.2 Specifications of stochastic beta risk

2.2.1 Kalman filter approach

For the Kalman-filter based beta specifications, we assume that the conditional market, size

and value betas are forecasted through latent mean-reverting AR(1)-processes:

βiMt+1 = βiM + φM
¡
βiMt − βiM

¢
+ ηiMt+1 (3)

βiSMB
t+1 = βiSMB + φSMB

¡
βiSMB
t − βiSMB

¢
+ ηiSMB

t+1 (4)

βiHML
t+1 = βiHML + φHML

¡
βiHML
t − βiHML

¢
+ ηiHML

t+1 (5)
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This model may be viewed as an extension to a multivariate state-equation of similar models

in, among others, Adrian & Franzoni (2004), Brooks, Faff & McKenzie (2002) and Berglund

& Knif (1999). We also consider a random walk version, i.e. we place the restrictions φM =

φSMB = φHML = 1 on the AR-parameters. In the following these two models are referred to as

KFMR and KFRW, respectively. The conditional betas are related to the asset returns through

the measurement equation:

rit+1 = βiMt+1r
M
t+1 + βiSMB

t+1 rSMB
t+1 + βiHML

t+1 rHML
t+1 + εit+1. (6)

The forecasts of beta are obtained directly from the equations (3) - (5).The Kalman filter based

time-varying beta models are estimated by maximum likelihood following Hamilton (1994), page

385.

2.2.2 Hamilton filter approach

For the Hamilton-filter based beta specifications we assume that the within state betas are

determined by the equations:

rit+1 = βiMs rMt+1 + βiSMB
s rSMB

t+1 + βiHML
s rHML

t+1 + εist+1 (7)

for states s = 1, . . . , S. Here, βiMs is the (constant) within state market beta of asset i in state

s and similarly βiSMB
s and βiHML

s are the (constant) within state size and value betas. This

assumption implies the following overall regression with time-varying betas:

rit+1 =
XS

s=1
1{Xt+1=s}

£
βiMs rMt+1 + βiSMB

s rSMB
t+1 + βiHML

s rHML
t+1

¤
+ εit+1 (8)

where εit+1 =
PS

s=1 1{Xt+1=s}ε
i
st+1. The conditional market, size and value betas are forecasted

by probability weighted averages of within state betas:

βiMt+1 = Et[
SX
s=1

1{Xt+1=s}β
iM
s ] =

SX
s=1

Prt (Xt+1 = s)βiMs (9)

βiSMB
t+1 =

SX
s=1

Prt (Xt+1 = s)βiSMB
s (10)

βiHML
t+1 =

SX
s=1

Prt (Xt+1 = s)βiHML
s (11)

where Xt is the unobservable Markov-switching state variable, Prt (Xt+1 = s) is the condi-

tional probability that the state of the market is s in the next period. Note that the one-

step-ahead probabilities for each state reflecting the uncertainty about the next period’s state,
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Prt (Xt+1 = s), are directly obtained from the Hamilton filter during estimation. This is why

we denote these betas ”Hamilton filtered” betas, i.e. the Hamilton filter is explicitly used in the

calculations of the forecasted betas. We assume that S = 2 or S = 3, i.e. that the number of

states are two or three, and that the error terms εist+1 are Normal distributed with a constant

variance that is equal across states.3 In the following these two models are referred to as HF2S

and HF3S, respectively. Related specifications for market beta can be found in Ramchand &

Susmel (1998), Huang (2000) and Galagedera & Shami (2004) and for Fama-French betas in

Coggi & Manescu (2004). The main methodological difference is that these papers are not con-

cerned with forecasts of betas per se and therefore do not employ the methodology developed

in Equations (9)-(11). The Hamilton filter based time-varying beta models are estimated by

maximum likelihood following Hamilton (1994), page 692.

2.2.3 Differences between the beta specifications

The different specifications of beta dynamics can broadly be categorized with respect to their

flexibility. In this sense the constant beta specification is the least flexible because it does

not allow for any time-variation in beta and its ”memory” stretches all the way back to the

beginning of the sample. At the other extreme, the random walk model is the most flexible

because it only remembers one period back. The remaining beta specifications fall somewhere

in between with the rolling regression as the second most flexible. The mean-reversion betas are

forced to return to a constant mean and the regime-switching betas are forced to take on values

between the lowest and highest within regime betas. In turn, the mean-reversion level and the

within regime betas are estimated using data from the beginning of the sample. Therefore we

consider these specifications less flexible than the rolling regression and random walk betas but

more flexible than the constant betas.

3 Evaluation methods

We use two different methods for evaluation of the different models. Both methods are con-

structed from a hedge or zero-beta portfolio in relation to our original portfolios (size, book-to-

market, industry). In the first method we regress the ex post return of the zero-beta portfolio

3We also estimated models with a state-dependent idiosyncratic variance, but this generalization in general

actually worsened the hedging performance. This result may be interpreted as if there is no out-of-sample

exploitable correlation between the value of the beta and the level of idiosyncratic variance.
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on the factors. In the second method we look at the out-of-sample reduction in volatility of the

hedge portfolios compared to holding the portfolio itself.

3.1 Hedge portfolio

Our empirical application designed to evaluate the usefulness of the forecasted betas is an out-

of-sample experiment of portfolio formation. Based on forecasted betas we construct long-short

portfolios with zero exposure to the market (and to size and value portfolios). This strategy is

implemented by selling short the market a dollar amount equal to the forecasted market betas

for each dollar invested in the corresponding test portfolios, i.e. the industry portfolios etc.

Therefore, the ex post returns from the zero-beta portfolios are

εiT+1 = riT+1 − β̂
iM
T+1|T r

M
T+1, (12)

where riT+1 and rMT+1 are the excess returns on portfolio i and the market portfolio in period

T +1 and β̂
iM
T+1|T is the one-period-ahead forecasted market beta. Incorporating size and value

factors the ex post returns are

εiT+1 = riT+1 − β̂
iM
T+1|T r

M
T+1 − β̂

iSMB
T+1|T r

SMB
T+1 − β̂

iHML
T+1|T r

HML
T+1 (13)

where β̂
iSMB
T+1|T and β̂

iHML
T+1|T are the one-period-ahead forecasted size and value betas. It follows

that the ex ante expected excess return on the zero-beta portfolios are zero and that idiosyncratic

volatility is the only remaining source of uncertainty.

For each out-of-sample period T + 1 the betas are forecasted based on an estimation of the

model from the beginning of the sample up to and including period T . In order to simulate

a real-time out-of-sample forecast situation, all parameters are updated when new information

arrives, i.e. all models are reestimated each month during the evaluation period. All betas are

forecasted one-period-ahead using the six models of beta in Table I.

3.1.1 Ex post portfolio betas

The ex post betas of the zero-beta portfolio returns, i.e. εiT+1 in (12) and (13), are estimated

by running time-series regressions of the zero-beta returns onto the factors:

εiT+1 = biMrMT+1 + υT+1 (14)

εiT+1 = biMrMT+1 + biSMBrSMB
T+1 + biHMLrHML

T+1 + υT+1. (15)

where biM , biSMB and biHML are the beta coefficients to be estimated. The portfolio returns

εiT+1 calculated in (12) are ex ante market neutral and the portfolio returns calculated in (13)
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are ex ante market and factor neutral. Therefore, our null hypothesis are that the estimated

coefficients in (14) and (15) are zero. This is like an absolute measure that can be compared

across all portfolios and specifications, and it will test if it is possible to construct portfolios

with no significant factor exposure ex post.

3.1.2 Reduction in ex post portfolio volatility

The reduction in total volatility is measured by the difference in volatility between the original

portfolio returns and the zero-beta portfolio returns, i.e. between riT+1 and εiT+1 in (12) and

(13). Since the betas in (12) and (13) are estimated out-of-sample, there is no guarantee

that the ex post volatility of the zero-beta portfolio is lower than the ex post volatility of the

original portfolio. Usually, however, using the estimated betas at least some of the systematic

risk is removed from the original portfolio, leaving a zero-beta portfolio with lower volatility.

The reduction in ex post volatility may alternatively be interpreted as the pseudo-R2 and the

difference in volatility reduction between the market model and the Fama-French three factor

model may consequently be interpreted as the change in pseudo-R2 when incorporating the

size and value factors. This is more like a relative measure that can compare the specifications

across the same type of assets or portfolios.

4 Results

We first use the absolute measure to differentiate between different beta specifications, which,

in particular is a comparison between constant betas (the model CONST is used) and dynamic

betas. Next, we look at the value of augmenting the market model with factor portfolios based

on size and book-to-market characteristics and if this difference is robust to different beta

specifications.

We analyze 10 size, 10 value and 10 industry portfolios from Kenneth French’s data library

(see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). The data are monthly and

stretches from 1926:7 to 2004:12. The out-of-sample evaluation period is 1990:1 to 2004:12.

4.1 Factor exposure ex post

The estimation of the ex post portfolio betas are presented in Table III. The results are very

clear: the two dynamic models R60M and KFRW are by far the best. Notice that the two best

models have the shortest memories compared to the other models. There is almost no difference
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between the market model and the three-factor model, which means that it is most convenient

to construct a market neutral portfolio just using the market model. The best dynamic models

are also good from an absolute point view, since they show that for most portfolios it is possible

to construct a hedge that has zero sensitivity out of sample. They perform extremely good for

the size portfolios with no significant betas and only slightly worse for the industry portfolios.

The constant beta model, which could be considered as a benchmark, is performing poorly

both absolutely, with several significant betas, and relative to R60M and KFRW. However, if

one is constrained to use the constant model, then the three factor model is better even for

constructing market neutral strategies. We can conclude that even if the more complicated

model KFRW is somewhat better that the common model R60M, since it has fewer significant

betas and lower estimates, one is tempted to consider R60M as the "best" model due to its

simplicity.

4.2 Volatility reduction ex post

In Table II we show the reduction in average volatility of the hedge portfolio in relation to the

unhedged portfolio for three different types of portfolios. For example 28.5 for the CONST

beta-model and the market model is the per centage reduction in average volatility of the

hedge portfolio (using (12)) compared to just holding the industry portfolio. We can see that

for all specifications the hedge reduces volatility on average for both size, growth/value and

industry portfolios (see the rows labeled Market and Fama-French in each panel in Table II).

The average reduction in volatility ranges from 28.5% (Market with constant betas) up to 77.6%

(Fama-French model using R60M for size portfolios). Notice that the market model is always

a more effective hedge for the characteristic sorted portfolios compared to the industry sorted

portfolios. Thus, betas contain useful information for hedging purposes out-of-sample and this

is independent of the beta specification.

Looking at the value of augmenting the market model with the Fama-French factors, we find

that for all specifications of beta, the hedging performance of the Fama-French model is superior

to the market model (see last row in Table II). As expected the efficiency gain from incorporating

the Fama-French factors is smallest for industry portfolios (the relative gain varies between 14.0

and 28.2 percentage) and largest for size portfolios (between 46.4 and 49.1 percentage). These

results indicate that the Fama-French size and value factors provide additional out-of-sample

information for hedging purposes over and above the information contained in market beta for

both growth/value, size and industry portfolios.
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Some points can also be made about the results for individual portfolios (see Tables IV-VI

in Appendix). First, we note that the market model has large difficulties hedging the Energy

and Utilities portfolios. For the Fama-French model, the situation improves, but these two

portfolios are still clearly the most difficult to hedge. However, from Table IV we can see that

R60M and KFRW produce hedge portfolios for these two industries that have no significant

factor exposure ex post. For the Fama-French model smaller cap (value) portfolios are the

most difficult to hedge and larger cap (growth) portfolios the easiest (see Tables V-VI). Just

looking at R60M vs KFRW the former model is slightly superior when it comes to reduce ex

post volatility.

5 Conclusion

In this study we evaluate to what extent the dynamics in market, size and value betas are

predictable out-of-sample using two factor models: the market model and the Fama-French three

factor model. The specification of the beta dynamics varies from constant betas to Kalman and

Hamilton filtered betas. The evaluation of the different models is based on a hedge or zero-beta

portfolio in relation to our original portfolios. We compare the portfolios along two dimensions.

First we regress the ex post return of the zero-beta portfolio on the factors. This is an absolute

comparison across all portfolios and specifications, which tests if it is possible to construct

portfolios with no significant factor exposure ex post. Secondly, we analyze the out-of-sample

reduction in volatility of the hedge portfolios compared to holding the portfolio itself. This like

a relative measure that compares the specifications across the same type of assets or portfolios.

We find that the dynamic models, moving window 60 months betas (R60M) and Kalman

filtered random-walk betas (KFRW), are better than all other specifications. For these two

models it is possible to construct a hedge that has zero sensitivity out of sample for most

portfolios. For all specifications the hedge reduces volatility on average, which means that

betas contain useful information for hedging purposes out-of-sample. Looking at the value of

augmenting the market model with the Fama-French factors, we find that for all specifications

of beta, the hedging performance of the Fama-French model is superior to the market model.

These results indicate that the Fama-French size and value factors provide additional out-of-

sample information for hedging purposes over and above the information contained in market

beta for both growth/value, size and industry portfolios.

Thus, the general advice is to use a dynamic three factor model where the dynamic sensitivi-
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ties are estimated by R60M or KFRW. Even if the more complicated model KFRW is somewhat

better than the common model R60M, the latter might be considered a "better" model due to

its simplicity.
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Appendix

Table II: Average percentage reduction in volatility of hedged portfolios compared

to unhedged portfolios and the difference between the Fama-French hedge and the

market hedge.

PANEL A: 10 SIZE SORTED PORTFOLIOS.
Beta-model: CONST R60M KFMR KFRW HF2S HF3S

Market 50.5 52.3 51.2 48.1 51.3 51.0

Fama-French 74.3 77.6 75.7 74.8 75.1 75.8

Difference 23.8 25.3 24.5 26.7 23.8 24.8

PANEL B: 10 BOOK-TO-MARKET SORTED PORTFOLIOS.
Beta-model: CONST R60M KFMR KFRW HF2S HF3S

Market 40.3 47.9 48.2 50.0 46.1 47.3

Fama-French 59.9 63.3 63.5 64.2 61.7 61.9

Difference 19.6 15.5 15.3 14.2 15.6 14.6

PANEL C: 10 INDUSTRY PORTFOLIOS.
Beta-model: CONST R60M KFMR KFRW HF2S HF3S

Market 28.5 33.0 31.6 33.7 31.3 31.8

Fama-French 32.5 41.0 40.5 41.2 36.0 36.4

Difference 4.0 8.0 8.9 7.5 4.7 4.6
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Table III. Results for individual portfolios: Ex post beta exposure.

PANEL A: Market. Bold faced number are significant on the 5% level.

SIZE CONST R60M KFMR KFRW HF2S HF3S
MARKET P01 -0.557 0.038 -0.352 0.001 -0.397 -0.251

P02 -0.263 0.063 -0.146 -0.036 -0.204 -0.154
P03 -0.226 0.040 -0.142 -0.030 -0.154 -0.141
P04 -0.166 0.037 -0.107 -0.031 -0.102 -0.093
P05 -0.136 0.046 -0.058 -0.009 -0.074 -0.069
P06 -0.158 0.023 -0.089 0.011 -0.047 -0.042
P07 -0.136 0.014 -0.073 0.003 -0.056 -0.055
P08 -0.029 0.046 0.003 0.010 0.001 -0.003
P09 -0.103 -0.009 -0.034 -0.007 -0.055 -0.037
P10 0.038 -0.014 0.014 -0.007 0.019 0.031

BM CONST R60M KFMR KFRW HF2S HF3S
MARKET P01 0.110 -0.016 0.037 -0.019 0.003 0.020

P02 -0.001 -0.015 -0.027 -0.002 -0.027 -0.019
P03 0.021 -0.022 0.006 0.011 0.004 -0.011
P04 -0.198 -0.055 -0.083 0.012 -0.107 -0.106
P05 -0.182 -0.048 -0.099 0.012 -0.118 -0.092
P06 -0.229 -0.039 -0.135 -0.008 -0.125 -0.138
P07 -0.381 -0.030 -0.164 0.005 -0.206 -0.213
P08 -0.442 -0.017 -0.139 -0.009 -0.230 -0.151
P09 -0.528 0.036 -0.150 0.008 -0.256 -0.164
P10 -0.598 0.068 -0.339 -0.009 -0.364 -0.292

IND CONST R60M KFMR KFRW HF2S HF3S
MARKET NoDur -0.185 -0.117 -0.032 -0.011 -0.119 -0.100

Durbl -0.148 -0.043 -0.103 -0.013 -0.113 -0.097
Manuf -0.256 -0.041 -0.187 0.008 -0.219 -0.179
Enrgy -0.308 -0.070 -0.300 -0.032 -0.279 -0.290
HiTec 0.399 0.151 0.168 0.142 0.172 0.217
Telcm 0.510 0.087 0.167 0.011 0.259 0.295
Shops -0.058 -0.038 -0.036 -0.008 -0.027 -0.043
Hlth -0.172 -0.139 -0.136 -0.052 -0.127 -0.136
Utils -0.483 0.015 -0.352 0.001 -0.365 -0.370

Other -0.186 -0.031 -0.139 0.009 -0.136 -0.120
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PANEL B: Fama-French. Bold faced number are significant on the 5% level.

SIZE CONST R60M KFMR KFRW HF2S HF3S
FF P01 -0.199 -0.012 -0.065 -0.024 -0.138 -0.083

-0.403 0.036 -0.213 0.007 -0.355 -0.196
-0.564 0.039 -0.167 0.036 -0.335 -0.160

P02 -0.014 0.006 0.033 0.006 -0.020 0.002
-0.167 0.032 0.053 0.012 0.009 0.023
-0.288 0.039 0.006 0.025 -0.144 -0.086

P03 -0.026 -0.003 0.011 0.006 0.002 -0.001
-0.083 0.001 -0.021 -0.005 -0.039 -0.022
-0.113 0.039 -0.007 0.015 -0.030 0.008

P04 0.030 0.005 0.035 0.015 0.055 0.038
-0.067 -0.024 0.006 -0.006 -0.012 0.048
-0.033 0.048 0.044 0.019 0.053 0.042

P05 0.010 0.014 0.010 -0.008 0.025 0.032
-0.040 -0.029 -0.028 -0.001 -0.044 -0.022
-0.039 0.031 -0.005 -0.006 0.009 0.023

P06 -0.011 -0.001 0.008 -0.008 -0.004 0.003
-0.023 -0.050 -0.041 -0.014 0.021 0.016
-0.024 -0.007 0.011 -0.015 -0.015 -0.021

P07 -0.015 -0.002 0.004 -0.002 -0.007 -0.004
-0.016 -0.029 -0.016 -0.020 -0.015 -0.029
0.061 0.013 0.037 -0.002 0.067 0.062

P08 0.053 0.018 0.054 0.005 0.072 0.075
0.123 -0.019 0.083 -0.005 0.089 0.094
0.066 -0.004 0.069 0.000 0.081 0.085

P09 -0.007 -0.014 0.014 -0.026 0.009 0.012
0.060 0.019 0.032 0.029 0.033 0.034
0.062 0.009 0.039 -0.018 0.091 0.071

P10 0.008 0.000 0.007 0.013 0.002 0.002
-0.097 0.019 -0.016 -0.009 -0.047 -0.021
-0.045 -0.001 -0.001 0.010 -0.029 -0.029
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BM P01 CONST R60M KFMR KFRW HF2S HF3S
FF -0.136 -0.003 -0.042 0.004 -0.064 -0.068

-0.175 -0.009 -0.088 0.002 -0.109 -0.095
P02 -0.186 0.042 -0.028 0.026 -0.061 -0.052

0.004 0.009 -0.007 0.027 0.002 -0.009
-0.050 -0.008 -0.040 -0.060 -0.062 -0.049

P03 0.259 0.103 0.119 0.047 0.208 0.169
0.122 0.003 0.073 0.011 0.119 0.103

-0.052 0.001 0.000 -0.006 -0.036 -0.071
P04 0.385 0.112 0.135 0.060 0.326 0.265

-0.009 -0.041 0.042 0.005 0.043 0.016
0.044 -0.033 0.045 0.067 0.021 0.005

P05 0.286 0.042 0.156 0.044 0.275 0.237
0.058 -0.043 0.091 0.004 0.079 0.071
0.106 -0.037 0.060 0.009 0.076 0.108

P06 0.289 0.027 0.299 0.035 0.298 0.322
0.005 -0.034 0.047 -0.005 0.024 0.020
0.043 0.013 0.033 0.061 0.026 0.015

P07 0.056 0.026 0.088 0.039 0.106 0.105
-0.012 -0.017 -0.015 -0.017 0.006 -0.016
0.015 0.013 -0.008 0.006 0.010 -0.001

P08 0.064 0.032 0.123 -0.023 0.084 0.091
-0.028 -0.002 -0.017 -0.013 -0.007 0.002
0.052 -0.010 0.047 -0.002 0.044 0.039

P09 0.043 0.041 0.067 -0.007 0.065 0.035
-0.059 0.050 -0.030 0.004 -0.005 0.012
-0.148 -0.019 -0.075 -0.007 -0.142 -0.144

P10 -0.265 0.033 -0.111 -0.006 -0.136 -0.102
0.035 0.095 0.035 0.042 0.038 0.039

-0.337 0.013 -0.145 0.009 -0.259 -0.276
-0.219 0.097 -0.131 0.079 -0.193 -0.157
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IND CONST R60M KFMR KFRW HF2S HF3S
FF NoDur -0.018 -0.105 -0.056 -0.046 -0.011 -0.026

-0.152 0.064 0.007 0.090 -0.161 -0.159
0.398 0.053 -0.044 -0.027 0.146 0.087

Durbl -0.018 0.018 -0.045 0.025 0.002 0.026
-0.283 -0.089 -0.116 -0.066 -0.343 -0.265
0.128 0.068 0.040 0.053 0.117 -0.055

Manuf -0.099 -0.038 -0.090 -0.030 -0.102 -0.107
-0.001 -0.031 0.013 0.000 0.058 -0.005
0.264 0.026 0.131 -0.037 0.147 0.115

Enrgy -0.104 -0.060 -0.151 -0.043 -0.115 -0.090
0.174 -0.145 0.188 -0.069 0.193 0.103
0.315 -0.037 0.061 -0.025 0.229 0.249

HiTec 0.034 0.148 0.091 0.125 0.219 0.196
0.165 0.029 -0.006 -0.034 0.015 0.065

-0.504 0.107 -0.032 0.067 -0.183 -0.043
Telcm 0.395 0.097 0.124 0.027 0.242 0.232

-0.118 -0.046 -0.056 -0.033 -0.026 0.047
-0.243 -0.069 -0.074 -0.077 -0.208 -0.218

Shops 0.021 -0.007 0.016 -0.006 0.011 0.032
-0.133 -0.121 -0.119 -0.128 -0.151 -0.168
0.392 0.101 0.170 0.015 0.294 0.241

Hlth -0.232 -0.113 -0.090 -0.051 -0.196 -0.157
-0.252 0.032 -0.035 -0.006 -0.238 -0.249
0.076 0.098 0.067 -0.014 0.008 -0.001

Utils -0.174 0.023 -0.172 0.024 -0.112 -0.120
0.090 0.042 0.070 0.005 0.052 0.125
0.451 0.004 0.077 -0.008 0.294 0.297

Other 0.123 -0.003 0.099 0.003 0.045 0.114
-0.259 -0.048 -0.095 -0.036 -0.229 -0.148
0.141 0.011 0.099 -0.010 -0.005 0.085
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Table IV: Results for individual industry portfolios: Reduction in volatility.

PANEL A: Market

.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

NoDur 19.4 23.5 28.8 28.4 23.4 26.2

Durbl 37.7 38.1 37.8 36.2 37.9 37.7

Manuf 43.9 49.8 46.5 49.2 45.4 46.7

Enrgy 9.2 12.6 8.9 12.6 9.4 9.5

HiTec 44.6 49.0 49.4 49.6 48.1 49.2

Telcm 29.4 39.0 37.3 38.0 36.6 35.4

Shops 39.8 40.8 41.7 40.9 41.8 41.7

Hlth 21.0 23.9 22.5 26.3 24.3 24.4

Utils −6.0 4.8 −4.0 6.1 −1.5 −2.0

Other 46.1 47.6 47.6 49.5 47.5 48.9

PANEL B: Fama-French.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

NoDur 18.6 34.7 35.4 35.5 31.0 26.9

Durbl 37.8 41.6 41.3 39.7 36.0 37.2

Manuf 48.3 55.0 53.0 54.5 49.5 50.2

Enrgy 16.6 17.0 14.5 16.7 16.5 12.5

HiTec 52.4 59.6 61.5 61.1 57.8 60.0

Telcm 31.7 40.7 40.7 40.0 36.2 35.7

Shops 33.4 43.3 44.3 44.0 35.4 38.4

Hlth 18.5 28.5 29.3 32.0 21.2 23.0

Utils 10.1 23.3 20.0 21.5 15.6 16.4

Other 57.6 66.0 65.2 67.0 60.7 63.4
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Table V: Results for individual size portfolios: Reduction in volatility.

PANEL A: Market.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

P01 (small) 13.5 22.4 17.4 14.3 16.8 18.4

P02 32.1 33.8 32.3 22.7 31.7 30.1

P03 39.1 40.6 39.4 33.3 39.6 38.0

P04 43.5 44.3 43.0 37.5 43.5 43.1

P05 49.8 50.2 49.6 45.8 50.0 49.0

P06 55.7 57.1 56.9 56.6 57.7 57.7

P07 60.4 62.2 61.4 60.9 62.0 62.0

P08 66.1 65.8 66.0 65.1 66.1 66.0

P09 70.8 72.9 72.3 72.2 72.3 72.8

P10 (big) 73.6 73.5 73.3 73.1 73.6 73.2

PANEL B: Fama-French.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

P01 (small) 53.0 63.0 58.0 55.9 57.1 61.0

P02 74.1 78.8 76.1 74.5 76.1 76.6

P03 80.2 82.8 82.7 82.8 80.8 81.6

P04 78.0 79.8 79.3 78.5 78.4 79.2

P05 76.1 77.4 76.6 75.4 76.1 76.6

P06 72.1 73.7 72.0 72.0 72.8 72.0

P07 73.7 76.4 74.4 72.8 73.2 72.8

P08 73.7 77.0 74.4 74.0 73.5 73.4

P09 75.5 78.0 74.9 74.3 75.5 75.4

P10 (big) 86.3 89.0 88.4 88.0 87.4 88.8
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Table VI: Results for individual book-to-market portfolios: Reduction in volatil-

ity.

PANEL A: Market.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

P01 (low) 61.2 61.9 62.3 62.2 62.7 62.4

P02 66.5 66.0 67.2 67.8 67.4 67.8

P03 59.9 60.2 60.1 60.1 60.2 60.4

P04 45.9 48.6 50.3 50.2 48.5 48.8

P05 40.9 42.8 44.3 45.1 43.2 43.6

P06 46.1 50.4 50.0 53.0 50.0 49.7

P07 27.1 39.1 39.0 42.5 35.5 36.7

P08 20.3 36.6 38.1 39.6 31.4 35.5

P09 21.3 41.8 45.5 47.0 37.0 40.1

P10 (high) 13.6 31.0 25.7 32.6 24.6 27.5

PANEL B: Fama-French.

Beta-model: CONST R60M KFMR KFRW HF2S HF3S

P01 (low) 72.2 77.4 75.2 76.1 75.6 75.4

P02 60.8 67.4 69.2 69.4 64.4 66.3

P03 55.8 65.1 67.1 66.0 59.1 60.2

P04 54.3 59.6 60.1 58.8 56.6 56.8

P05 55.3 59.0 55.0 59.4 54.3 53.9

P06 63.3 61.4 63.2 62.1 61.7 61.2

P07 60.9 60.5 61.4 64.1 63.1 62.2

P08 68.3 68.8 68.2 69.6 68.8 69.9

P09 59.9 62.1 63.2 63.8 62.3 63.1

P10 (high) 48.5 51.8 52.8 52.3 50.9 49.9
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