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Abstract
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estimates and is formally favored over the standard models and reduced-form
performance regressions. Based on this model, I document large and skewed
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can lead to large welfare losses for an individual investor who allocates capital to
actively-managed mutual funds.
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An investor’s decision to allocate capital to actively-managed funds relies on

the premise that mutual fund managers are endowed with skills that enable them

to outperform a passive investment strategy. This premise has spurred a large

literature aimed at measuring managerial ability and at characterizing the cross-sectional

distribution of managerial talent.1 The recent view contends that there is a small fraction

of managers who are able to significantly recuperate fees and expenses.2 However, ever

since Jensen (1968), the typical approach is to rely on performance regressions to measure

skill. In such performance regressions, mutual fund returns in excess of the short rate

are regressed on a constant and a set of excess benchmarks returns. The intercept of

the performance regression, the manager’s alpha, is then taken as a measure of ability.3

This reduced-form approach ignores that fund returns are the outcome of a portfolio

management problem. In structural portfolio management models, the manager’s ability

shapes her investment opportunity set, while the manager’s preferences determine which

portfolio is chosen along this investment opportunity set. The fact that a manager chooses

along the investment opportunity set that depends on her ability points to two important

dimensions of heterogeneity: managerial ability and risk preferences. It turns out that

the standard alpha reflects both managerial ability, as defined by the price of risk on the

active portfolio,4 and risk preferences. I show that the restrictions implied by structural

portfolio management models can be used to disentangle both attributes. As such, this

paper is the first to impose the economic restrictions following from theory to recover the

joint cross-sectional distribution of managerial ability and risk preferences.

The controversy surrounding the existence of managerial ability is largely the result

of inefficient inference.5 It is well known that averaging (risk-adjusted) returns over short

time spans leads to noisy estimates (Merton (1980)). Hence, the estimated cross-sectional

distribution of managerial ability reflects not only true heterogeneity, but also, and

perhaps predominantly, estimation error. The restrictions implied by structural portfolio

management models lead to much sharper estimates of managerial ability and risk aversion

because they exploit information in the volatility of fund returns and in the covariance of

fund returns with benchmark returns. By combining these estimates, I recover the cross-

1Jensen (1968), Gruber (1996), and Carhart (1997).
2Kosowski, Timmermann, Wermers, and White (2006), Cremers and Petajisto (2007), Kacperczyk,

Sialm, and Zheng (2005), Elton, Gruber, and Blake (2007).
3Alternatively, risk adjustments are performed by comparing fund returns to portfolios with matched

characteristics (Daniel, Grinblatt, Titman, and Wermers (1997)). Also in this case, risk-adjusted returns
are averaged to gauge the manager’s skill.

4DeTemple, Garcia, and Rindisbacher (2003) and Munk and Sorensen (2004) show that the manager’s
investment opportunity set can be summarized by the instantaneous short rate and prices of risk in a
continuous-time economy. Nielsen and Vassalou (2004) show that if an investor has to select one fund,
then she will prefer the one that has the highest price of risk. This makes the price of risk on the active
portfolio a natural measure of ability motivated by portfolio-choice theory.

5Pastor and Stambaugh (2002b), Lynch and Wachter (2007a), and Lynch and Wachter (2007b) propose
to use longer samples of benchmark returns to sharpen the estimates. Managerial ability is still estimated
by averaging risk-adjusted returns over short periods.
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sectional distribution of the standard performance measure, alpha. Figure 1 displays the

cross-sectional distribution of fund alphas following from performance regressions (top

panels) and structural estimation (bottom panels), both before (left panels) and after fees

and expenses (right panels).

[Figure 1 about here.]

The distribution following from the structural model displays considerably less

dispersion; its variance is three times smaller than in the case of standard performance

regressions.

While the finance literature has been focussing primarily on quantifying managerial

ability, recovering risk preferences is an important question in the economics literature.

Most estimates follow from game shows (Gertner (1993), Metrick (1995), and Assem,

Baltussen, Post, and Thaler (2007)), horse races (Jullien and Salanié (2000)), car

insurance markets (Cohen and Einav (2007)), labor supply decisions (Chetty (2006)),

hypothetical income gambles (Kimball, Sahm, and Shapiro (2007)), or experiments.6

Most closely related is the consumption-based asset pricing literature, which uses the

household’s Euler condition to estimate preference parameters. I propose to use the

first-order conditions of fund managers to estimate ability and risk preferences. The

mutual fund industry provides a great laboratory wherein to recover risk preferences for

at least two important reasons.7 First, fund managers routinely take decisions under

uncertainty. This implies that I observe a series of decisions by the same manager to

estimate risk preferences. Second, the decisions made by the manager involve non-trivial

sums of money and have non-trivial implications for the manager’s career. In addition,

as argued by Cohen and Einav (2007), it is important to estimate risk preferences in the

environment in which they will be applied. Estimates of risk aversion are of considerable

practical relevance in the context of an investor’s decision to allocate money to actively-

managed funds and in the context of mutual fund valuation.8

As a point of departure, I analyze two existing models of managerial preferences.

In the first model, the manager derives utility from mutual fund returns in excess of

a benchmark.9 The manager’s ability and her risk preferences can be recovered from

the fund’s beta (passive risk) and the amount of residual risk (active risk), and together

6Andersen, Harrison, Lau, and Rutstrom (2005) discuss the applicability of results obtained from
experiments to real-life settings.

7Becker, Ferson, Myers, and Schill (1999) estimate a structural model of delegated management, but
they impose the restrictions only on the benchmark allocation.

8Boudoukh, Richardson, Stanton, and Whitelaw (2004), Huberman (2007), and Dangl, Wu, and
Zechner (2007) develop models of mutual fund valuation. These models can be extended with the
preference specifications in this paper to study how heterogeneity in managerial ability and risk
preferences impact fund valuation.

9This model has been studied in Roll (1992), Becker, Ferson, Myers, and Schill (1999), Chen and
Pennacchi (2007), and Binsbergen, Brandt, and Koijen (2007).
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imply its alpha. The resulting estimates of ability are precisely measured, but implausibly

high. The implied distribution for alpha ranges from 6% to 12% on an annual basis. In

the second model, the manager derives utility from assets under management, which is

motivated by her compensation scheme (Elton, Gruber, and Blake (2003)). Assets under

management fluctuate because of internal growth (mutual fund returns) and external

growth (performance-sensitive fund flows). In addition, stellar (below-par) performance

may trigger promotion (demotion) to a larger (smaller) fund.10 It turns out that such

incentives have little impact on the manager’s optimal strategies in the relevant range

of risk aversion. The manager therefore acts as if she cares only about internal growth.

The resulting model has its own problems: the manager’s risk aversion is mechanically

centered around the Sharpe ratio of the benchmark return divided by its volatility. This

has the undesirable consequence that the risk aversion of a given manager who controls

multiple funds in different styles changes in a predictable manner across styles. As such,

the resulting estimates no longer reflect risk aversion. The first important finding of

this paper is therefore that the cross-equation restrictions implied by standard models of

delegated management lead to economically implausible estimates of either managerial

ability or risk aversion.

I propose an alternative model of managerial preferences, which imputes a concern

for the relative position in the cross-sectional asset distribution into the preferences of

the manager. I call this position the “fund’s status.” Managers are concerned about

the amount of assets they have under management relative to their peers, and derive

additional utility when they control larger funds. The status model nests the two standard

models. I allow for different curvature parameters over assets under management and

over fund status. The former preference parameter can be interpreted as risk aversion

over passive risk while the latter measures risk aversion over active risk. The two

curvature parameters and the fund’s status together imply an estimate for the manager’s

coefficient of relative risk aversion. Unlike the vast majority of models of delegated

portfolio management, the status model is not homogenous in assets under management.

It therefore predicts different risk-taking behavior for small and large funds. The two

key consequences are that larger funds take on less active risk and that fund alphas

are negatively related to fund size. Both are stylized facts documented in the empirical

mutual fund literature, and neither can be explained by existing models.11 This lends

further credibility to the utility specification. The status model also makes contact with

10Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997), Sirri and Tufano (1998), Chevalier
and Ellison (1999b), Busse (2001), Goriaev, Nijman, and Werker (2005), Cuoco and Kaniel (2006), Basak,
Pavlova, and Shapiro (2007b), Basak, Pavlova, and Shapiro (2007a), Chen and Pennacchi (2007), Dangl,
Wu, and Zechner (2007), Hu, Kale, Pagani, and Subramaniam (2007), Hugonnier and Kaniel (2007), and
Chapman, Evans, and Xu (2007) study the role of direct and indirect incentives.

11Chevalier and Ellison (1999b) document the relation between fund size and risk-taking and Chen,
Hong, Huang, and Kubik (2004) the link between fund performance and fund size.
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models where households derive utility from their position in the wealth or consumption

distribution.12 If status concerns matter at all, the mutual fund industry is likely to be the

environment where such concerns are the most powerful and therefore easiest to identify.13

The status model leads to a plausible cross-sectional distribution of managerial ability

and risk aversion as summarized in Figure 2. The horizontal axis displays the implied

coefficient of relative risk aversion, and the vertical axis shows the price of risk on the

active portfolio, which is my measure of ability. The median coefficient of relative risk

aversion equals 2.51, its mean 5.16, and its standard deviation 7.69. The median price of

risk on the active portfolio (to be read as a Sharpe ratio) equals .14, the mean is .28, and

the standard deviation .38. Both distributions are right-skewed. In addition, managerial

ability and risk aversion are highly positively correlated; their unconditional correlation is

about 80%. Skilled managers are likely to be conservative. I show that this correlation is

consistent with selection effects that arise when managers have a riskless outside option.

Less talented managers only opt into the actively-managed mutual fund industry if they

are sufficiently aggressive.

[Figure 2 about here.]

There are interesting differences in the joint distribution across the various investment

styles. Given the attention asset pricing devotes to market capitalization and book-to-

market ratios, it is interesting to compare the large/value and small/growth styles. The

left panel of Figure 3 displays the estimated cross-sectional density of the coefficient of

relative risk aversion for both investment styles. The median growth manager is more

aggressive (median risk aversion equals 1.49) than the median value manager (median

equals 3.95). The density of growth managers has much fatter tails: a substantial share

of growth managers display considerably higher risk aversion than value managers. For the

same groups of managers, the right panel of Figure 3 depicts the cross-sectional density

of managerial ability. The average growth manager is more skilled, and this ordering

prevails for higher-ranked managers in the tails. More generally, I analyze how cross-

sectional variation in risk aversion and ability relates to observable characteristics. I find

that ability is negatively related to fund size14 and stock holdings, and positively related

to the manager’s tenure and asset turnover. Risk aversion is negatively related to fund

12See Robson (1992), Zou (1994), Zou (1995), Bakshi and Chen (1996), Carroll (2000), Becker, Murphy,
and Werning (2005), and Roussanov (2007). These models are referred to as “spirit-of-capitalism” models.
It also relates to the external habit model of Campbell and Cochrane (1999) and Shore and White (2006)
and to the matching models with status concerns of Cole, Mailath, and Postlewaite (2001). Goel and
Thakor (2005) study the implications of status concerns for corporate investment decisions.

13One hypothesis is that status concerns are hard-wired in the manager’s preferences. Alternatively,
rank concerns may arise due to strategic interaction among fund managers (Basak and Makarov (2007)).
Sirri and Tufano (1998) discuss the importance of mutual fund rankings for fund flows.

14Chen, Hong, Huang, and Kubik (2004) document this negative relation for fund alphas, which are
a non-linear function of preferences and ability. I show that even after correcting for heterogeneity in
preferences, managerial ability relates negatively to fund size.
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size, expenses,15 and stock holdings. In both cases, observables only account for a limited

fraction of cross-sectional variation, leaving considerable unobserved heterogeneity.

[Figure 3 about here.]

The estimates of managerial ability and risk aversion follow from joint assumptions

about the financial market and the manager’s preferences. I formally show that the

status model significantly improves upon the two standard models of delegated portfolio

management. Perhaps more importantly, the status model is favored over performance

regressions. This implies that the conditional distribution of the status model provides a

better description of fund returns than performance regressions for which the conditional

and unconditional distribution coincide. Therefore, the status model is able to capture

important dynamics of mutual fund strategies that performance regressions cannot.

The average coefficient of relative risk aversion across managers varies over time due to

variation in the amount of assets under management and variation in the cross-sectional

asset distribution. Given the link that exists between risk aversion and the equity

risk premium in equilibrium asset pricing models (Campbell and Cochrane (1999)), it

is interesting to relate both time series. I measure the equity risk premium using the

apparatus developed in Binsbergen and Koijen (2007). The time-series variation in risk

aversion that I estimate from the universe of mutual fund managers tracks the equity risk

premium; their correlation is 62% (see Figure 4).

[Figure 4 about here.]

In conclusion, the second important finding of this paper is that introducing relative-

size concerns into the manager’s objective delivers plausible estimates of managerial ability

and risk aversion, and is formally favored over the standard models and over reduced-form

performance regressions.

I develop a novel econometric approach to bring the models to the data. The

finance literature typically restricts attention to infinite-horizon models, but they are

inappropriate for the problem at hand. Because the optimal policies in dynamic finite-

horizon models are often unknown in closed-form, one has to rely on numerical dynamic

programming. Estimating structural parameters in combination with a finite-horizon

dynamic programming method is computationally (nearly) infeasible. The problem gets

worse with multiple assets. The main technical contribution of this paper is to develop an

estimation method that relies on the martingale method for continuous-time models in

complete markets (Cox and Huang (1989)). The estimation method provides a powerful

tool to formulate the likelihood and enables me for the first time to estimate dynamic

15The relation between expenses and both managerial ability and risk aversion is consistent with the
equilibrium model of Berk and Green (2004) because the implied fund alphas relate positively to ability
and negatively to risk aversion.
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finite-horizon models. One additional advantage is that the computational burden is

independent of the number of assets. Koijen (2007) explains the method in a simple model

and illustrates its accuracy. The method may well prove useful to estimate (i) the cross-

sectional distribution of managerial ability and risk preferences in the hedge fund industry

(Panageas and Westerfield (2007)), (ii) dynamic games (Basak and Makarov (2007)), and

(iii) corporate finance models that are solved using martingale techniques. Since the

method is likelihood-based, it can be used with both classical or Bayesian estimation

procedures.16 Finally, to estimate the models, I construct a manager-level database that

covers the period 1992.1 to 2006.12.17 Manager-fund combinations are allocated to one

of nine investment styles that differ by size and book-to-market orientation.

The paper proceeds as follows. Section 1 describes the data. I provide details on

the financial market model in Section 2. Section 3 introduces two standard models

of delegated portfolio management and derives the cross-equation restrictions that are

implied by theory. Next, Section 4 discusses the econometric approach and Section 5

provides the empirical results for the benchmark models. Section 6 introduces the status

model and Section 7 contains the empirical results for this model. Finally, Section 8

concludes.

1 Data

Data sources I combine data from three sources. First, monthly mutual-fund returns

come from the Center for Research in Securities Prices (CRSP) Survivor Bias Free Mutual

Fund Database. The CRSP database is organized by fund rather than by manager, but

contains manager’s names starting in 1992. I use the identity of the manager to construct

a manager-level database. The sample consists of monthly data over the period from

January 1992 to December 2006. Data on the Fama and French size (SMB) and book-

to-market (HML) portfolios, Carhart (1997)’s momentum factor, and the short-rate data

also come from CRSP. Second, manager-fund combinations are allocated to investment

styles. I consider different approaches for robustness (discussed below). In one approach,

I use the benchmark mapping from Cremers and Petajisto (2007).18 Third, benchmark

16Baks, Metrick, and Wachter (2001), Pastor and Stambaugh (2002a), and Avramov and Wermers
(2006) use Bayesian methods to derive the optimal allocation to actively-managed funds. The approach
developed in this paper can extend these studies in at least two directions. First, the investor forms
prior beliefs over the coefficients of a performance regression, ignoring the cross-equation restrictions.
The economic restrictions can discipline the set of viable priors. Second, the investor learns about ability
from first moments, which is inefficient. By taking a structural approach, the investor can learn more
efficiently. This increases the discrepancy between the predictive density and the investor’s prior views.

17Other studies that construct a manager-level database are Baks (2006), Evans (2007), and Kacperczyk
and Seru (2007).

18I am grateful to Martijn Cremers and Antti Petajisto for sharing the data on the benchmark mapping.
If ωit denotes the weight at time t in stock i, and ωb

it the corresponding weight in benchmark b, then the

active share relative to benchmark b is defined as: ASt(b) ≡ 1
2

∑N
i=1

∣

∣ωit − ωb
it

∣

∣ . In addition, they define
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returns are obtained from Datastream.

Sample selection I apply several screens to the mutual-fund data to obtain a sample

of active domestic-equity portfolio managers. I first classify the funds by the investment

objectives “Small company growth,” “Other aggressive growth,” “Growth,” “Growth and

income,” and “Maximum capital gains” using the Wiesenberger, ICDI, or Strategic Insight

Codes (Pastor and Stambaugh (2002b)). All funds that cannot be classified are omitted

from the sample.19 I drop funds that have an average total equity position (common plus

preferred stock) smaller than 80% in order to focus on all-equity funds. I also drop fund

years for which the total net assets are smaller than $10 Million. I omit observations for

which the manager’s name is missing and the years for which no information on returns

or total net assets is available. I only include fund years for which the fund is “Active”

in the terminology of Cremers and Petajisto (2007).

Several screens are specific to the manager-level database. First, manager names in the

CRSP database can take three forms: a manager/management team is (i) fully identified,

(ii) partly identified, or (iii) fully anonymous. For the partly identified or anonymous

management teams, I consider separately each team that manages a different fund.20

This presumably overstates the number of anonymous management teams in the mutual

fund industry, but there is no alternative way to match such (partly) unidentified teams.

I focus for most of the analysis on funds for which the manager/management team is

fully identified. Managers are matched on the basis of their names. Names in the CRSP

database are, however, often misspelled and abbreviated in different ways. I first use a

computer algorithm that detects commonly made errors. I then manually check all funds

carefully and code them consistently. Further, the manager’s starting date in the CRSP

database is subject to substantial measurement error (Baks (2006)). I remove a fund from

a manager’s career profile when the starting date contains inconsistencies (Baks (2006)

and Kacperczyk and Seru (2007)).

US mutual funds typically have multiple share classes associated with different fee

structures.21 Consistent with the literature, I merge different share classes: I construct

value-weighted returns, loads, expense ratios, and 12B-1 fees,22 fraction in stocks, and cash

using the total net assets of the different share classes to construct the weights. I select

the other variables from the share class that has the highest total net assets (Cremers

a fund to be active when the active share exceeds 30% and when the name does not contain “Index” or
“Idx.”

19This selection excludes international funds, bond funds, money market funds, sector funds, and funds
that do not hold the majority of their securities in US equity.

20Massa, Reuter, and Zitzewitz (2007) study the role of anonymous teams in delegated asset
management.

21Nanda, Wang, and Zheng (2007) study the share-class structure of mutual funds.
2212B-1 fees cover expenses related to selling and marketing shares, see Barber, Odean, and Zheng

(2005).

7



and Petajisto (2007)). Finally, several managers manage multiple funds at the same time.

For funds that are compared to the same benchmark, I merge the return using the fund’s

total net assets to weigh them. When funds operate in different styles, I keep them as

separate observations.

Mutual fund costs CRSP mutual fund returns are net fees and expenses, but

computed before back- and front-end loads. To focus on true managerial ability, I compute

gross returns by adding back expense ratios in line with Wermers, Yao, and Zhao (2007).

I sum the annual expense ratio divided by 12 to each monthly return in a particular year.

Benchmark selection The prime motivation for benchmarking is to disentangle

managerial skill and effort from the reward of following passive strategies.23 Benchmark

selection is notoriously difficult, regardless of whether one relies on regression techniques,

matched characteristics, or self-reported benchmarks.24 I employ two procedures to

identify the benchmark for each manager-fund combination; one is regression-based and

the other is holdings-based. In the first approach, I regress mutual fund returns on

benchmark returns, both in excess of the short rate, and select the benchmark that

maximizes the R-squared. Alternatively, I use the method of Cremers and Petajisto

(2007), which selects the benchmark that minimizes the active share of the fund. This

approach leads to a benchmark that has the highest overlap with a fund’s holdings. In

this paper, I report all results for the regression-based approach. The main results are

insensitive to the benchmark selection methodology.

I consider a set of nine benchmarks that are distinguished by their size and value

orientation. For large-cap stocks, I use the S&P 500, Russell 1000 Value, and Russell

1000 Growth; for mid-cap stocks, I take the Russell Midcap, Russell Midcap Value, and

Russell Midcap Growth; for small-cap stocks, I select the Russell 2000, Russell Value, and

Russell 2000 Growth. The style indexes are taken from Russell, in line with Chan, Chen,

and Lakonishok (2002) and Chan, Dimmock, and Lakonishok (2006).25

Summary statistics The sample consists of 3,694 unique manager-fund combinations

of 3,163 different managers who manage 1,932 different mutual funds. For 1,273 manager-

fund combinations I have more than three years of data available. I impose a minimum

data requirement of three years to estimate all models so that performance regressions

deliver reasonably accurate estimates. The left panel of Table 1 displays the allocation

23Admati and Pfleiderer (1997), Binsbergen, Brandt, and Koijen (2007), and Basak, Pavlova, and
Shapiro (2007a) discuss advantages and disadvantages of benchmarking.

24Chan, Dimmock, and Lakonishok (2006) and Sensoy (2007) provide results on different benchmark
selection methodologies. Brown and Goetzmann (1997) provide an interesting alternative regression-
based selection methodology.

25The correlation with the corresponding style index from Standard and Poor’s is in all cases higher
than 96.5%, measured over the full sample period.
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of manager-fund combinations to the nine styles for the full sample, the right panel for

manager-fund combinations for which at least 3 years of data is available. One fifth of the

managers are compared to the S&P 500.26 The benchmarks are relatively equally divided

across the size dimension, with a small tilt towards large-cap benchmarks. The majority

of the large-cap funds are neutral in the value-dimension, but the medium- and small-cap

funds are predominantly growth-oriented.

[Table 1 about here.]

Table 2 provides summary statistics for the total net assets under management (TNA),

total net assets of the fund family (as defined in Chen, Hong, Huang, and Kubik (2004)),

family size (the number of funds that belong to the fund family), expense ratio, 12B-1

fees, the total load (the sum of maximum front-end load fees and maximum deferred and

rear-end load fees), cash holdings as reported by the fund, stock holdings as reported

by the fund (the sum of common and preferred stock), manager’s tenure, fund age, and

annual turnover. The summary statistics are broadly consistent with prior studies.

[Table 2 about here.]

2 Financial market

The manager’s asset menu contains three assets. The first asset is a cash account that

trades at price S0
t . The cash account earns a constant interest rate r and its dynamics

satisfy:

dS0
t = S0

t rdt. (1)

The second asset is the benchmark portfolio with price SB
t :

dSB
t = SB

t (r + σBλB) dt + SB
t σBdZB

t , (2)

where λB is the price of risk, σB the standard deviation of the benchmark portfolio, and

ZB
t a standard Brownian motion. The coefficients are assumed to be constant during the

investment period.27 Third, manager i can trade a manager-specific active portfolio with

26Elton, Gruber, and Blake (2003) find that managers that have explicit incentives in their
compensation schemes are compared to the S&P 500 in 44% of the cases. This suggests that this
benchmark is either more popular with managers who receive incentive compensation, or that managers
deviate from their stated objectives. Sensoy (2007) provides evidence that managers deviate from the
benchmarks reported in the prospecti of these funds.

27Koijen (2007) discusses extensions of the econometric framework to accommodate time-varying
interest rates and prices of risk during the investment period. For tractability, I assume the parameters
to be constant during the investment period of one year. I update the short rate on an annual basis.
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price SA
it . Without loss of generality, I assume that the active asset does not carry any

systematic risk. The dynamics of the active portfolio read:

dSA
it = SA

it (r + σAiλAi) dt + SA
itσAidZA

it . (3)

I take the price of risk on the active portfolio, λAi, as the measure of managerial ability.28

σAi denotes the volatility of the active portfolio.

It would be straightforward to extend the model with multiple passive portfolios that

can easily be replicated by managers, like momentum, which are typically not considered

to reflect skill.

Benchmark portfolio, assets under management, and state-price density The

benchmark portfolio is given by the two-dimensional vector V = (v, 0)′ of portfolio

weights. The remainder, 1 − v, is allocated to the cash account.29 The value of the

benchmark at time t is denoted by Bt. The benchmark dynamics read:

dBt = Bt (r + vσBλB) dt + BtvσBdZB
t . (4)

Assets under management at time t, Ait, evolve according to:

dAit = Ait

(

r + xB
itσBλB + xA

itσAiλAi

)

dt + Aitx
B
itσBdZB

t + Aitx
A
itσAidZA

it

= Ait (r + x′
itΣiΛi) dt + Aitx

′
itΣidZit, (5)

where xB
it and xA

it are the fractions invested in the benchmark and active portfolio,

xit ≡
(

xB
it , x

A
it

)′
, Σi ≡ diag(σB, σAi)

′, Λi ≡ (λB, λAi)
′, and Zit ≡

(

ZB
t , ZA

it

)′
. The asset

dynamics excludes fund flows from outside investors, which I will discuss in detail in

Section 3.2.

The state-price density at time t of manager i is denoted by ϕit. The state-price

density plays a key role in the econometric approach and its dynamics satisfy:

dϕit = −ϕitrdt − ϕitΛ
′
idZit, ϕ0i = 1. (6)

I will omit the subscripts i for the remainder of the paper for notational convenience.

28The model can easily be set up by allowing the manager to trade J stocks with different prices of
risk. However, in all models I consider, the manager will perfectly diversify the active portfolio leading
to a single active portfolio (see Chen and Pennacchi (2007) and Basak, Pavlova, and Shapiro (2007b)).
The formation of the active portfolio becomes important in models of costly information acquisition (Van
Nieuwerburgh and Veldkamp (2007)). In this case, the active portfolio will not be perfectly diversified,
as costly learning capacity is allocated to a few stocks only.

29I assume fixed benchmark weights. Binsbergen, Brandt, and Koijen (2007) show that benchmarks
with constant weights can alleviate most efficiency losses that arise in a decentralized investment
management environment. Basak, Pavlova, and Shapiro (2007a) provide a similar result for a manager
that shifts risk in response to incentives. Both studies suggest there is little need for dynamic benchmarks.
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However, note that λA, σA, and ZA
t , and correspondingly SA

t , xt, and ϕt, are manager-

specific. The remaining parameters are common across all managers in a particular style.

3 Standard models of delegated management

I consider two standard models of delegated portfolio management that have been

suggested in the literature in Section 3.1 and 3.2. Section 3.3 derives the implied cross-

equation restrictions.

3.1 Relative-return preferences

The first model assumes that the manager derives utility from assets under management

relative to the value of the benchmark:

max
(xs)s∈[0,T ]

E0

[

1

1 − γ

(

AT

BT

)1−γ
]

, (7)

where γ is the coefficient of relative risk aversion. This model captures, in a reduced-

form, that the manager’s performance and ultimately her compensation is relative to

a benchmark.30 The optimal strategy is a constant-proportions strategy (Binsbergen,

Brandt, and Koijen (2007)):

x? =
1

γ
(ΣΣ′)

−1
ΣΛ +

(

1 − 1

γ

)

V. (8)

It combines the mean-variance portfolio and the benchmark portfolio. The two portfolios

are weighted by the coefficient of relative risk aversion. Consistent with the standard

interpretation in the investment industry, infinitely risk-averse agents (that is, γ → ∞)

hold the benchmark (x? = V ).

3.2 Preferences for assets under management

The standard model The second model assumes that the manager derives utility from

assets under management:

max
(xs)s∈[0,T ]

E0

[

1

1 − γ
A1−γ

T

]

, (9)

where γ denotes the coefficient of relative risk aversion. These preferences are motivated

by the observation that most managers are compensated by a fraction of the assets under

30Binsbergen, Brandt, and Koijen (2007) and Chen and Pennacchi (2007) provide some further
motivation for these preferences.
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management (Deli (2002)). The optimal strategy reads:

x? =
1

γ
(ΣΣ′)

−1
ΣΛ, (10)

which is also of the constant-proportions type.

Preferences, career concerns, and fund flows Assets under management fluctuate

due to investment returns (internal growth), but also due to fund flows and promotion or

demotion of the fund manager (external growth). Both performance-sensitive fund flows

and career concerns may motivate the manager to deviate from the optimal strategy in

(10). It is well known from empirical studies that new capital flows disproportionally

to funds with stellar performance,31 which results in an increasing and convex flow-

performance relationship. In addition, exceptional (below-par) performance can lead to

promotion (demotion) to a larger (smaller) fund. I analyze the importance of these

incentives using the calibration of Chapman, Evans, and Xu (2007). They calibrate

promotion/demotion probabilities to observed career events and estimate the flow-

performance relationship.32 Appendix B uses this model to study the interaction between

incentives and risk aversion. I show that in the relevant range of risk aversion, managerial

incentives are not powerful enough to distort the optimal strategy. I therefore abstract

from such incentives in the main text.

3.3 Cross-equation restrictions implied by structural models

The bulk of the performance literature averages risk-adjusted returns to obtain an estimate

of managerial ability. This means that a few years of data are used to estimate a mean

return, a notoriously noisy approach.33 The key difference in this paper is to use the

optimality conditions of the manager’s portfolio problem to uncover managerial ability. I

use the first model to illustrate the restrictions.

I start from a standard performance regression, formulated in continuous time:

dAt

At

− rdt = αdt + β

(

dSB
t

SB
t

− rdt

)

+ σεdZA
t , (11)

31See for instance Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997), and Sirri and
Tufano (1998). Lynch and Musto (2003), Berk and Green (2004), and Hugonnier and Kaniel (2007)
develop theoretical models to rationalize the relation between performance and fund flows.

32Hu, Hall, and Harvey (2000) and Baks (2006) also estimate promotion and demotion probabilities. I
use the calibration of Chapman, Evans, and Xu (2007) because their calibration covers most closely the
sample period I study (1994 to 2006).

33This noise has motivated researchers to form portfolios based on observable characteristics to identify
quality managers. These include the portfolios’ active share (Cremers and Petajisto (2007)), similarities
in portfolio holdings (Cohen, Coval, and Pastor (2005)), measures of concentration in portfolio holdings
(Kacperczyk, Sialm, and Zheng (2005)), or their reliance on public information (Kacperczyk and Seru
(2007)). By pooling managers cross-sectionally, the precision of the estimates increases.
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which, using (2), is equivalent to:

dAt

At

= (r + α + βσBλB) dt + βσBdZB
t + σεdZA

t . (12)

The parameters α, β, and σε are manager-specific; λB and σB are common to all managers.

The relative-return preferences in (7) lead to the optimal portfolio in (8), which I

substitute into (5) to obtain the optimal asset dynamics:

dAt

At

=

(

r +
λ2

B

γ
+

(

1 − 1

γ

)

vσBλB +
λ2

A

γ

)

dt +

(

λB

γ
+

(

1 − 1

γ

)

vσB

)

dZB
t +

λA

γ
dZA

t ,

(13)

where λA and γ are manager-specific, and v is common to all managers. The cross-

equation restrictions implied by the structural model follow from matching the drift and

diffusion terms in (12) and (13):

α = λ2
A/γ, (14)

β =
λB

γσB

+

(

1 − 1

γ

)

v, (15)

σε = λA/γ. (16)

The right-hand side of (15) and (16) identifies the two manager-specific structural

parameters, λA and γ. They are identified off the fund’s beta:34

β =
Cov

(

dAt

At
,

dSB
t

SB
t

)

Var
(

dSB
t

SB
t

) , (17)

and residual risk:

σ2
ε = Var

(

dAt

At

)

− β2Var

(

dSB
t

SB
t

)

, (18)

Equation (14) can be used to restrict α:35

α = σ2
ε

(

λB/σB − v

β − v

)

. (19)

Recall that β and σε are manager-specific, whereas λB, σB, and v are common to all

managers. This results in an estimate of the manager’s alpha via (19) that relies solely

34Formally, the covariance needs to be interpreted as the quadratic covariation, the variance as the
quadratic variation, and dt = 1.

35A similar restriction arises in the model of Section 3.2, α = σ2
ελB/(σBβ), which coincides with (19)

if v = 0, that is, in case of a cash benchmark.
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on information in second moments.

The typical approach in the literature is to estimate α, β, and σε separately. The

resulting estimate for α is based on information in average (risk-adjusted) fund returns.

As it turns out, this is the most inefficient moment to use. The likelihood-based estimation

procedure in Section 4 efficiently combines information from the average and the volatility

of fund returns as well as the covariance of fund returns with benchmark returns. Since

likelihoods are typically much steeper in parameters that govern second moments, ability

is effectively estimated using that information.

Simulation exercise The structural model implies that alpha is a performance measure

that mixes information on ability (λA) and preferences (γ). In addition, it shows that

second moments of mutual fund returns contain useful information on preferences and

ability. To illustrate the benefits of imposing this cross-equation restriction, Table 3

provides the results of a simple simulation experiment. I simulate 2,500 sets of three years

of monthly data from the model. The price of active risk takes values λA ∈ {.1, .2, .3} and

the coefficient of relative risk aversion takes values γ ∈ {2, 5, 10}. The market parameters

correspond to the S&P 500 as the style benchmark. Panel A of Table 3 provides the

results for the maximum-likelihood estimators of λA and γ. The resulting estimates are

unbiased and sharp. For λA = .2 and γ = 5, an 80%-confidence interval for λA ranges

from .16 to .24; for γ from 4.5 to 5.6. Panel B of Table 3 illustrates the efficiency gains

for fund alphas. I compare the model-implied alpha (αML) to the one that follows from

a performance regression (αOLS). When λA = .2 and γ = 5, the true α = .8%. The

80%-confidence interval for αML = [.54%, 1.05%], whereas for αOLS = [−2.15%, 3.93%].

In this example, the standard deviation of αML is .78%, whereas the standard deviation of

αOLS is three times larger at 2.37%. This implies that standard performance regressions

require nine times more data if the cross-equation restrictions are not imposed to deliver

the same accuracy in this model. It resonates with the empirical results in Figure 1 in the

introduction, which compares the implied estimates of alpha following from the model in

Section 6 to the estimates of performance regressions. This illustrates that imposing the

restrictions implied by theory significantly sharpens the implied estimates of α.

[Table 3 about here.]

4 Econometric approach

In this section, I develop a general method to estimate the ability and preference

parameters of dynamic models of delegated portfolio management in a complete-markets

setting. The method is likelihood-based and can therefore be combined with both classical

and Bayesian estimation procedures. Appendix E contains further details and Koijen
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(2007) discusses a simple example to illustrate the method and its accuracy. For the

models in Section 3, it is possible to construct estimators that are easier to implement

(Appendix E.1). However, because the estimates of ability and risk aversion following

from both standard models are economically implausible, I generalize the preferences in

Section 6. This model can no longer be estimated using standard techniques and requires

the novel approach given in this section.

The inference problem Consider a manager who can trade the style benchmark, the

active portfolio, and cash. I estimate the model using information on benchmark returns,

rBT , rB
t ≡ log SB

t − log SB
t−h, and mutual funds returns, rA

t ≡ log At − log At−h, with

yT ≡ {yh, . . . , yT}. I take h = 1/12 since the model is estimated using monthly data.

I set the short rate, r, equal to the average 30-day T-bill rate during the investment

period, which I take to be one year. The model parameters can be grouped into financial

market parameters that apply to all managers, ΘB ≡ {λB, σB}, and parameters that are

manager-specific, ΘA ≡ {λA, γ}.36

I adopt a two-step procedure to estimate the model. First, I estimate the financial

market parameters that are common to all managers, ΘB. Because asset prices follow

geometric Brownian motions conditional on the short rate, the log-likelihood of rBT ,

L(rBT ; ΘB), is trivial to construct. In the second step, I estimate the manager-specific

parameters, ΘA, using the log-likelihood of fund returns conditional on the benchmark

returns and the first-stage estimates, L(rAT | rBT ; ΘA, Θ̂B). The main complication is to

compute the second-stage likelihood.

While a single-step estimation would enhance the efficiency of the estimates, it would

require modeling the cross-sectional correlation of active portfolio returns. The two-step

procedure accommodates any cross-sectional dependence in active returns. It therefore

requires less restrictive statistical assumptions, is not subject to misspecification of the

correlation structure, and still results in consistent estimates. In addition, the two-step

procedure saves substantially on computational time.

The conditional log-likelihood of mutual fund returns To appreciate why it is

non-trivial to construct L(rAT | rBT ; ΘA, Θ̂B), consider the dynamics of assets under

management:

dAt = At (r + x?
t (At)

′ΣΛ) dt + Atx
?
t (At)

′ΣdZt, (20)

where x?
t (At) is the optimal investment strategy of the manager, which may depend on

time and assets under management. There are two complications, which are related.

36The volatility of the active portfolio cannot be identified from returns data only. This parameter is,
however, unimportant because it does not enter the likelihood once evaluated at the optimal strategy.
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First, the diffusion coefficient, x?
t (At)

′Σ, may be time varying if the manager implements

a dynamic strategy. This is the case for the model I study in Section 6. This often

implies that the exact discretization is unknown, which leads to a discretization bias.

The typical approach in the literature is to stabilize the diffusion coefficient to mitigate

the discretization bias. The likelihood is then constructed via simulations (Brandt and

Santa-Clara (2002) and Durham and Gallant (2002)) or series expansions of the transition

density (Ait-Sahalia (2002), Ait-Sahalia (2007), and Bakshi and Ju (2005)). Second,

the optimal strategy, and therefore the diffusion coefficient, is in most cases not known

analytically. This implies that standard stabilization methods cannot be implemented.

One solution would be to solve the dynamic problem numerically either in discrete

or continuous time.37 This approach has, at least, two drawbacks. First, solving the

discrete-time problem is computationally expensive. This stems from the fact that these

dynamic models typically feature one endogenous state variable, in this case assets under

management. This implies that the optimal policy needs to be constructed on a grid for

each period. Second, and related, the computational costs increase exponentially in the

number of assets. I can side-step these issues in computing the likelihood.

The manager’s problem and the martingale method The econometric approach

relies on the martingale method of Cox and Huang (1989). I first solve for the optimal

terminal asset level, A?
T :

max
AT ≥0

E0 [u (AT )] , (21)

s.t. E0 [ϕT AT ] ≤ A0, (22)

where (22) is the static representation of the dynamic budget constraint in (5). If the

utility index is strictly concave, it holds that A?
T = I (ξϕT ), where ξ is the Lagrange

multiplier corresponding to the budget constraint and I(·) ≡ (u′)−1 (·). By no-arbitrage,

time-t assets under management satisfy:

A?
t (ϕt) = Et

[

I (ξϕT )
ϕT

ϕt

]

, (23)

which is a function of ϕt only because (ϕt)t≥0 is Markovian. Since the utility index is

strictly concave, A?
t (ϕt) is invertible (Koijen (2007)). This implies that observing assets

under management, or fund returns, is equivalent to observing the time series of the

37See Balduzzi and Lynch (1999), Brandt, Goyal, Santa-Clara, and Stroud (2005), and Koijen, Nijman,
and Werker (2007) for recent advances to solve such problems.
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state-price density, ϕT . I then apply the Jacobian formula:

`
(

rA
t | rB

t , ϕt−h; ΘA, ΘB

)

= `
(

ϕt | rB
t , ϕt−h; ΘA, ΘB

)

+ log

∣

∣

∣

∣

∣

∣

(

∂
(

log A?
t − log A?

t−h

)

∂ϕt

)−1
∣

∣

∣

∣

∣

∣

,(24)

and note that ϕt−h (or, equivalently, A?
t−h) contains all time-(t − h) information needed

due to the Markov property. Both terms in (24) are straightforward to compute. Because

ϕt is log-normally distributed given ϕt−h and rB
t , this involves one-dimensional Gaussian

quadrature. Koijen (2007) demonstrates its accuracy for a low number of quadrature

points.

In Section 6, I develop a model in which the utility index is not globally concave. This

implies that the martingale approach cannot be applied directly. The solution proposed

in the literature is to replace the original utility index with the smallest concave function

that dominates it (Carpenter (2000), Cuoco and Kaniel (2006), and Basak, Pavlova,

and Shapiro (2007b)), and then use standard techniques. Appendix E.2 applies this

approach to the model of Section 6. Further, I construct the standard errors using the

outer-product gradient estimator. Appendix F shows how to test hypotheses in dynamic

models of delegated portfolio management. I use these tests to compare different nested

and non-nested models.

This method results in the exact likelihood of fund returns, up to the computation of

an expectation of a univariate random variable and its numerical derivative. The method

is insensitive to endogenous state variables and the computational effort is independent

of the number of assets in the manager’s menu. The only restriction on the method is

that the market is dynamically complete.38

5 Empirical results for the benchmark models

Relative-return preferences Table 4 displays results for the model in Section 3.1.

The benchmark weights are set to V = (1, 0)′ and T is set to one year.39 The first two

columns provide summary statistics for the estimates of ability and relative risk aversion

for the nine investment styles. Columns three to five show the implied coefficients of a

performance regression using Equation (14), and columns six to eight contain the results

of standard performance regressions in a continuous-time framework (Appendix A).

38It is theoretically possible to apply martingale techniques even in incomplete markets. See for instance
He and Pearson (1991), Cvitanic and Karatzas (1992), and the application in Sangvinatsos and Wachter
(2005).

39As an alternative, I also consider β = (1 − cash, 0), with “cash” the average cash position in a
particular year, and β = (1 − stock, 0), with “stock” the fraction invested in common and preferred
equity. The main conclusions are comparable for these alternative benchmark strategies.
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The average coefficient of relative risk aversion is high and its distribution is right-

skewed. The intuition is that mutual funds have a β that is close to one. Since λB/σB

substantially exceeds one for all styles, Equation (15) implies that γ needs to be high.

However, to match the amount of active risk that managers take, σε, the price of risk needs

to be high to offset the high risk aversion estimate (see Equation (16)). The average price

of risk ranges from .64 (small/growth) to 1.75 (midcap/value). Consequently, the implied

alpha is implausibly high, a result of Equation (14). The average estimates for alpha are

between 6.14% and 11.88% per annum. The average alpha is substantially higher than the

alpha following from standard performance regressions for all investment styles. As such,

this model is unable to simultaneously match the fund’s active and passive risk-taking

and a low average risk-adjusted return.

[Table 4 about here.]

Preferences for assets under management Table 5 displays the results for the

model in Section 3.2 and has the same structure as Table 4. This model almost perfectly

replicates the distribution of active (σε) and passive (β) risk-taking. The estimates for γ

and λA are considerably lower than for the model in Section 3.1. The estimates of alpha

are correspondingly lower, and range from 86 basis points (bp) to 294bp. Despite the

more reasonable estimates for managerial ability, the average coefficient of relative risk

aversion tracks λB/σB and displays little dispersion. The reason is that mutual funds

have, on average, a beta of one with respect to the style benchmark. To generate a unit

beta, γ equals λB/σB because the fund’s beta (xB) is in this model given by λB/(γσB),

see (8). This means that, by default, a value manager has a higher coefficient of risk

aversion than a growth manager, on average, because the price of risk is higher and the

volatility is lower for value stocks. Therefore, the estimated γ does not reflect risk aversion.

To make this point more clearly, I consider a sample of managers who manage multiple

funds at the same point in time (not reported). Such managers should display stable risk

preferences across styles. However, it turns out that the risk aversion estimates contain

a “fixed effect,” captured by λB/σB. Finally, note also that the distribution is virtually

symmetrical and displays very little dispersion (Table 5). This is at odds with Cohen and

Einav (2007) and Kimball, Sahm, and Shapiro (2007), who find strong evidence in favor

of right-skewed distributions.

[Table 5 about here.]

In summary, this model generates estimates of risk aversion that are mechanically tied

to that of the “representative agent,” leading to low dispersion in preference parameters

and a “fixed effect” per asset class. That is, the average risk aversion moves in lock-step

with λB/σB, which contaminates its interpretation as a coefficient of relative risk aversion.
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Robustness I consider various extensions to ensure the robustness of these results.

I allow for (i) time variation in risk premia that is governed by the short rate and the

dividend yield (Ang and Bekaert (2007)),40 (ii) other passive portfolios such as momentum,

(iii) cash positions in the benchmark, (iv) stochastic volatility, and (v) learning about

managerial ability.41 These modifications do not alter the conclusions qualitatively. In

conclusion, neither of the two standard models produces sound estimates of the joint

distribution of managerial ability and risk preferences.

6 Status model for delegated portfolio management

In this section, I develop and study the main implications of a new model of delegated

investment management that features status concerns on the part of the manager.

Section 7 presents the main empirical results.

Motivation Standard models of delegated portfolio managers postulate that the

manager cares only about assets under management or about performance relative to

a benchmark. However, a large literature in sociology and economics42 argues that status

considerations may be important for economic behavior and financial decision-making.

Given the numerous rankings of mutual funds and fund managers and their importance

for fund flows (Sirri and Tufano (1998)), the mutual fund industry provides an economic

environment where status concerns are clearly important. I generalize the manager’s

preferences so that she derives utility from both assets under management and the position

of the fund in the cross-sectional asset distribution. I call the latter the fund’s status.

There are at least two ways to motivate the status-seeking behavior of fund managers.

One hypothesis is that status concerns are hard-wired into the manager’s preferences as a

result of evolutionary forces (Robson (2001)). Alternatively, relative performance concerns

may arise endogenously from strategic interaction, as in Basak and Makarov (2007). The

40Becker, Ferson, Myers, and Schill (1999) discuss the importance of conditioning information in market
timing models.

41I extend the model in Section 3.1 to allow for the possibility that the manager does not know her
ability as in Berk and Green (2004) and Dangl, Wu, and Zechner (2007). Instead, the manager starts
off with a (Gaussian) prior on the price of risk and updates her views based on realized performance
(Cvitanic, Lazrak, Martellini, and Zapatero (2006)). The estimation error that is taken into account
increases the effective risk aversion. This implies that the manager’s prior mean needs to be even higher
than the estimates in absence of parameter uncertainty to reconcile active risk taking. Consequently, the
estimates for the prior mean are economically implausible or the prior is very tightly centered around the
maximum likelihood estimates without learning, which shuts down the learning channel. Alternatively, I
use the cross-sectional distribution of the mutual fund performance to form the prior instead of estimating
the prior distribution for each manager separately. A formal specification test indicates that both learning
models are strongly rejected in favor of the status model in Section 6.

42See for instance Robson (1992), Zou (1994), Zou (1995), Bakshi and Chen (1996), Carroll (2000),
Chang, Hsieh, and Lai (2000), Cole, Mailath, and Postlewaite (2001), Goel and Thakor (2005), and
Roussanov (2007). The latter two studies provide alternative motivations based on psychological and
sociological foundations and evidence.
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model that I develop is a parsimonious model of status concerns. An attractive feature

of the model is that it nests both models from Section 3.

The model Each investment style in the mutual fund industry comprises of a continuum

of mutual fund managers, in which each manager i, i ∈ M, manages a fund of size Ait at

time t. The total mass of managers is normalized to unity with a corresponding measure

µ. The percentile rank of a fund of relative size a at time t is defined by:

%t (a) ≡ µ

(

i

∣

∣

∣

∣

Ait

Ā0RB
t

≤ a

)

, (25)

where fund size is scaled by the median of the initial cross-sectional asset distribution,43

Ā0 ≡
{

Ā | µ
(

i
∣

∣Ai0 ≤ Ā
)

= .5
}

, multiplied by the benchmark return, RB
t ≡ Bt/B0. I

update the initial median fund size, Ā0, with the benchmark return to account for overall

growth in assets under management during the year if the manager invests along with the

pack. This implies that to improve status, the manager needs to deviate from the pack

by increasing or decreasing passive risk, or by allocating capital to the active portfolio. I

define Āt ≡ Ā0R
B
t . The manager’s preferences are represented by:

max
(xt)t∈[0,T ]

E0

[

η

1 − σ1
A1−σ1

T + (1 − η)S (1 − σ2) Ā1−σ1
T %T

(

AT

ĀT

)1−σ2
]

, (26)

with η ∈ [0, 1], σ1 > 1, and S(x) as a sign function: S(x) = 1 if x ≥ 0 and S(x) = −1

otherwise. The manager’s utility is a weighted average of two terms with weights η and

(1 − η), respectively. The first term summarizes the manager’s preferences for assets

under management. The second term captures status concerns. The term %T

(

AiT

ĀT

)

represents the manager’s position in the cross-sectional asset distribution. The curvature

parameter σ1 captures the manager’s aversion to fluctuations in assets under management;

σ2 controls aversion to variation in fund status.

Several aspects deserve further discussion. First, the distribution function %T (·) is

by definition bounded between zero and one. σ2 can therefore be negative without

inducing global convexities that would render the portfolio-choice problem ill-defined.

In economic terms, managers with a strong desire to improve their status are identified

by low, possibly even negative, values of σ2. Managers who are concerned about variation

in fund status have high values of σ2. The desire to move up in the asset distribution

can justify high levels of active risk-taking despite a lack of skill. Second, I assume that

the preferences are separable in assets under management and in status concerns. This

allows an interpretation in which the first part represents the current year’s compensation

43Alternatively, Roussanov (2007) normalizes by the mean of the, in his application, wealth distribution.
The median is empirically more stable than the mean as it curbs the impact of outliers. The resulting
cross-sectional asset distribution is more stable over time.
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and the second part captures the manager’s value function over her remaining career

prospects. Such career prospects presumably become less pressing when the manager’s

fund ranks higher in the cross-sectional asset distribution. In this interpretation, σ2

measures the manager’s career concerns. Third, the fund’s rank is represented by the

cumulative distribution function (CDF) of assets under management, %T (·), to simplify

the interpretation. Theoretically, any increasing function of fund size can serve the

same purpose, but the CDF captures the ease with which a manager can climb in

the cross-sectional asset distribution. If the CDF is steep, a small increase in assets

under management results in a substantial improvement in status. In contrast, a more

dispersed asset distribution requires a more stellar performance to realize the same status

improvement. Fourth, this model nests the models studied in Section 3. If η = 0, σ1 = 1,

and the asset distribution is uniform (that is, %T (a) = a/C, with C the upper-bound

of the asset distribution), I recover the preferences in Section 3.1 with a coefficient of

relative risk aversion σ2. If σ2 = 1, the model reduces to the preferences in Section 3.2

with a coefficient of relative risk aversion σ1. Fifth, the second term is pre-multiplied

by Ā1−σ1
T . This implies that the preferences are invariant to changes in aggregate wealth

(Roussanov (2007)). Sixth, I update the initial median fund size by the style benchmark

return, ĀT = Ā0R
B
T . Alternatively, I could use the return on the median fund. Using

the style benchmark return has two advantages. First, the benchmark return is easy for

managers to track and seems like the most visible target to beat. Second, the definition

of managerial ability gets obfuscated when the manager can trade the median fund.44 If

all managers are skilled, the median fund return inherits this skill. This would imply that

I estimate the manager’s ability only in sofar as it surpasses the skill present in the initial

median fund return. By using the style benchmark return to update the median fund

size, the definition of skill is consistent with the first part of the paper and the extant

literature.

Modeling the cross-sectional asset distribution As a first step towards analyzing

the model empirically, I model the cross-sectional asset distribution, %t(·).45 First,

I assume that the cross-sectional asset distribution is log-normal with mean µ%t
≡

Et

[

log
(

Ait/Āt

)]

and standard deviation σ%t ≡ Vart

[

log
(

Ait/Āt

)]
1
2 , %t(·; µ%t, σ%t).

Second, I assume that the asset distribution is stationary during the period [0, T ]:

44One other alternative would be to update the median fund with the median fund return and restrict
the asset menu to cash, the style benchmark, and the active portfolio. However, this renders the financial
market to be dynamically incomplete.

45Note that the model endogenously generates a cross-sectional asset distribution, %T (·), given %0(·)
and the cross-sectional distribution of managerial ability and risk preferences. For instance, Roussanov
(2007) derives the stationary distribution that is consistent with the optimal policies of households in a
life-cycle model. I am not merely interested in the stationary distribution, but also in the conditional
distribution. In addition, I want to estimate ability and risk preferences for a large cross-section of
managers. It is therefore computationally too intensive to impose the equilibrium condition as well. I
therefore model the cross-sectional asset distribution directly.
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µ%T = µ%0 and σ%T = σ%0. The first assumption is made for computational tractability.

Because the main objective is to estimate the model for a large cross-section of managers, I

need to impose some structure. The second assumption implies that the manager uses the

asset distribution at the beginning of the year to make her assessment of status throughout

the year. This assumption could be relaxed by allowing %T to be different from %0, but

the manager would need to be able to hedge the risk of a shifting distribution to preserve

market completeness.

I estimate the coefficients of the log-normal distribution (µ%0
and σ%0

) for each style

and each year using the cross-section of funds at the beginning of the year. To estimate

the cross-sectional asset distribution, I use all mutual funds in the CRSP data set. Clearly,

it would be inappropriate to use only those funds for which I can identify the manager or

management team. I test the appropriateness of the distributional assumption using the

Jarque-Bera test of normality. The average p−value across all years ranges from 10.2%

to 52.4% for the nine investment styles, which supports the normality assumption.46

Fund status, risk aversion, and risk-taking Fund size and the fund’s position in

the cross-sectional asset distribution play a key role in explaining risk-taking behavior.

First, I discuss the link between relative fund size and risk aversion. Second, I show that

the parameters σ1 and σ2 determine whether the manager adjusts either active or passive

risk if risk aversion changes. The former (σ1) controls passive risk-taking; σ2 determines

active risk-taking.

I first relate relative fund size and risk aversion. The status model is not homogenous

in assets under management. To understand the implications for risk-taking, I define the

coefficient of relative risk aversion, RRA(at):

RRA(at) = −aJt,aa

Jt,a

, (27)

where J denotes the value function and subscripts partial derivatives.47 If t = T , I obtain

the Arrow-Pratt measure of risk aversion (Appendix C provides further details). It is the

46There exists an interesting parallel between modeling the cross-sectional asset distribution of mutual
funds and the cross-sectional firm-size distribution (Luttmer (2007) and Lustig, Syverson, and Van
Nieuwerburgh (2007)) or the size distribution (Gabaix (1999), Gabaix and Ioannides (2004), and Eeckhout
(2004)). For the latter, it is still contested whether log-normality or a power law provides the correct
description of the data (Eeckhout (2004)). An interesting open question is what generates the cross-
sectional asset distribution in the mutual fund industry and what selection mechanisms are at play.
Understanding the decision-making of fund managers is a first step in this direction.

47I define the coefficient of relative risk aversion based on the value function, which is the relevant
measure of relative risk aversion for decision-making at time t. In the empirical section, I use RRA(a0)
as the measure of risk aversion.
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weighted average of two terms, with at ≡ At/Āt:

RRA (aT ) = ω(aT )σ1 + (1 − ω(aT ))

[

σ2
%′ (aT ) aT

% (aT )
− %′′ (aT ) aT

%′ (aT )

]

, (28)

with weight:

ω(aT ) ≡ ηa−σ1
T

ηa−σ1
T + (1 − σ2) (1 − η)S (1 − σ2) % (aT )−σ2 %′ (aT )

. (29)

For most empirically plausible parameter combinations, ω(aT ) goes from one to zero if aT

increases from zero to infinity. This implies that status concerns become more pressing if

fund status increases. Equation (28) implies that the manager’s coefficient of relative risk

aversion combines three measures of relative risk aversion: (i) σ1, (ii) σ2%
′(aT )aT /%(aT ),

and (iii) −%′′(aT )aT /%′(aT ). The third measure is the relative risk aversion if preferences

are linear in status only (η = 0 and σ2 = 0). Figure 5 displays the three components

if σ1 = 4, σ2 = .5, and η = .0005. The asset distribution is calibrated to the S&P 500.

The horizontal axis plots log(aT ), the vertical axis the relative risk aversion. The first

component (σ1) is obviously invariant to size; the second component decreases in fund

size, and the last component increases in fund size. For large funds, the third component

always dominates the second component. The three components aggregate to the overall

coefficient of relative risk aversion via the weight function (ω(aT )). For small funds,

status concerns are irrelevant (ω(aT ) ' 1) and risk aversion is solely governed by σ1 = 4.

By increasing the fund’s assets under management, status concerns gradually become

more important (ω(aT ) < 1). As a result, the coefficient of relative risk aversion drops.

In this region, the manager has a lot of scope to move up in the asset distribution by

deviating from the pack. By moving further up in the cross-sectional asset distribution,

the manager has little incentive to deviate from the pack for fear of losing her position in

the distribution. Status concerns are key in this region (ω(aT ) → 0). The minimum risk

aversion is attained around the 25-th percentile of the asset distribution. This implies

that risk aversion increases in fund size for most funds.

[Figure 5 about here.]

The parameters σ1 and σ2 are key to understanding whether the manager modifies

active or passive risk-taking if the coefficient of relative risk aversion changes. I show in

Appendix D that σ1 controls passive risk-taking. If the manager decides to use passive

risk to deviate from the pack, she can choose to increase or decrease the fund’s beta.

Either will lead to a tracking error relative to the average fund that has a unit beta.

Appendix D shows that the manager chooses to increase passive risk if σ1 < λB/σB and

decreases passive risk if σ1 > λB/σB. For σ1 = λB/σB, the manager’s passive risk-taking
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is insensitive to changes in the coefficient of relative risk aversion. Unlike passive risk-

taking, active risk-taking always increases when σ2 falls. This implies that σ2 controls

active risk-taking. The main problem with the models in Section 3 is that both active

and passive risk-taking are proportional to the coefficient of relative risk aversion. An

increase in the fund’s beta goes hand-in-hand with an increase in active risk. The status

model frees up this tight link.

I illustrate the role of σ1, σ2, and fund size by solving for the optimal initial allocation

to the benchmark and the active portfolio. I set η = .0005 and λA = .15. Appendix E.2

discusses the solution method. The results are presented in Table 6. The first four

columns show the impact of σ2. I set a0 = 1 and σ1 = λB/σB so that xB equals unity

and is invariant to changes in σ2. The main observation is that xA is inversely related to

σ2, whereas relative risk aversion is positively related to σ2. If σ2 increases from −1 to

30, the optimal allocation drops from xA = 155% to xA = 5%.

Columns five to twelve illustrate the role of σ1 and the link between relative fund

size and risk-taking. As before, I set σ2 = .5. I consider the optimal allocation for

different initial fund sizes. Columns five to eight consider the case in which σ1 = 3.75

(< λB/σB), whereas the last four columns correspond to σ1 = 4.25 (> λB/σB). First,

risk aversion is (inversely) hump shaped as in Figure 5. If σ1 = 3.75, the manager

increases passive risk (xB) as risk aversion drops, and decreases xB if σ1 = 4.25 for the

same change in fund status. Second, the manager always increases active risk if risk

aversion decreases. Note that xA is virtually unaffected by changing σ1, in particular

for larger fund sizes. This implies that σ1 controls passive risk-taking and σ2 active risk-

taking and provides a structural interpretation to the ideas of Litterman as iterated in the

introduction. Risk aversion to passive risk translates into aversion to fluctuations in assets

under management. Risk aversion to active risk translates into aversion to variation in

fund status. In conclusion, fund status is for most funds positively related to risk aversion.

How managers adjust risk-taking in response to a change in risk aversion is governed by

σ1 (passive risk) and σ2 (active risk).

[Table 6 about here.]

A key implication of the model is that managers of small funds will behave markedly

different from managers controlling large funds. Small funds have more room to grow

and to improve their status, which provides an incentive to deviate from the pack. The

opposite is true for managers of large funds. As such, large funds will take less active

risk and produce smaller alphas, consistent with empirical evidence on risk-taking and

performance in relation to fund size.

Statistical identification The model contains four manager-specific parameters, ΘA ≡
{σ1, σ2, η, λA}. It turns out that η is weakly identified. I therefore calibrate η to a common

24



value η = .0005. The previous section shows that this model can generate a wide variety

of risk-return distributions.

7 Main empirical results

This section presents the empirical results for the status model.

The cross-sectional distribution of ability and risk aversion Table 7 summarizes

the main estimation results by investment style, with the overall results across all styles in

the bottom panel. First, all parameters are right-skewed, in particular σ2. The coefficient

of variation (the standard deviation normalized by the mean) is much larger for σ2 than

for σ1 and λA. This points to substantial heterogeneity in status concerns. The dispersion

in σ1 is relatively small. This stems from the fact that σ1 controls passive risk-taking and

the empirical result that mutual fund betas display little dispersion.

[Table 7 about here.]

The bottom panel shows that the average coefficient of relative risk aversion is

estimated to be 5.16, with its median equal to 2.51 and a standard deviation of 7.69.

The average manager has therefore a risk aversion coefficient that is slightly lower than

the average household’s risk aversion of 8.2 as estimated by Kimball, Sahm, and Shapiro

(2007). It is appealing that mutual fund managers as a group are less conservative.

The average price of active risk is estimated to be .28, with a median equal to .14 and

a standard deviation of .38. To put the estimates in perspective, I compare the model-

implied estimates to the actual estimates of a performance regression (Appendix A).

Recall that the standard models in Section 3 cannot easily reproduce the coefficients

of standard performance regressions. The model-implied estimates are computed as the

average α, β, and σε sampled at a monthly frequency. To gauge the similarity, I perform

the following cross-sectional regression for, for instance, α:

α̂Performance
i = ρ0 + ρ1α̂

Status
i + ui, (30)

where α̂Performance
i is the estimate from a standard performance regression and α̂Status

i the

estimate from the status model. The estimates following from the structural model are

much sharper. I therefore use them as the right-hand side variables to mitigate the

errors-in-variables bias due to estimation uncertainty. The resulting estimates read: for

α, ρ̂0 = −.00 and ρ̂1 = .99 (R2 = 35.11%); for β, ρ̂0 = −.00 and ρ̂1 = 1.00 (R2 = 97.67%);

for σε, ρ̂0 = −.00 and ρ̂1 = 1.04 (R2 = 98.69%). In all cases it seems that the estimates

are virtually unbiased (ρ0 = 0 and ρ1 = 1). The most striking result is the R-squared
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for the regression of mutual fund alphas.48 The estimates from the structural model are

three times more accurate and do a good job of reproducing the average moments of

performance regressions. This is also illustrated in Figure 1, where the top panels provide

the results for a standard performance regression and the bottom panels for the structural

model. The left panels display the fund alphas before fees and expenses, the right panels

are net of all expenses. The distribution of fund alphas following from the structural

model is much less dispersed. This implies that the cross-sectional distribution of fund

alphas following from performance regressions reflects predominantly estimation error and

not heterogeneity in managerial ability or risk preferences.

Figure 2 displays a scatter plot of risk aversion (horizontal axis) and managerial

ability (vertical axis) to analyze their interaction. The correlation between ability and

risk aversion is 80.2%. A second-order polynomial fitted through this cloud shows that

managerial ability is increasing and concave in the coefficient of relative risk aversion. The

last part of this section discusses potential mechanisms that can generate this positive

relation.

There are also interesting differences across investment styles. I focus on large/value

managers and small/growth managers. Figure 3 provides a standard kernel density

estimate for risk aversion (left panel) and managerial ability (right panel). There are

pronounced differences in the distribution of risk preferences for the two types of managers,

despite the fact that the average risk aversion is very similar (5.66 for large/value and

5.49 for small/growth). Risk aversion is more evenly distributed for large/value managers,

but it is more right-skewed for small/growth managers. The median risk aversion for the

small/growth manager is 1.49, whereas the median large/value manager has a risk aversion

of 3.95. Ability, by contrast, is considerably higher for small/growth managers on average,

but their medians of .16 tie. This implies that there are more high-skilled managers in the

small/growth investment style, which is reflected by the thicker tail of the distribution.

Heterogeneity in risk aversion and ability I relate the estimates of managerial

ability and risk aversion to observable characteristics of managers and mutual funds

using multiple cross-sectional regressions. The characteristics include total net assets,

the manager’s tenure, turnover, expenses, investment in common and preferred stocks,

loads, 12B-1 fees, and the total net assets of the family. The results are presented in

Table 8. I include dummies to absorb style-fixed effects and use standard errors that are

robust to heteroscedasticity.

[Table 8 about here.]

48This implies that in the reverse regression of αModel
i on αPerformance

i , ρ̂1 would be downward biased
and, correspondingly, ρ̂0 upward biased. Indeed, the reverse regression results in ρ̂0 = .013 and ρ̂1 = .36,
which motivates the regression specification in (30).
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The dependent variables are expressed in logarithms and the independent variables are

standardized. As such, the coefficients are to be interpreted as the percentage change for

a one-standard deviation change in the characteristics. First, I find that skilled managers

operate on smaller funds, consistent with Chen, Hong, Huang, and Kubik (2004), who

document a negative relation between fund size and ability as measured by the fund’s

alpha. My structural model implies that a one-standard deviation increase in fund size

leads to almost a 9% decrease in the price of active risk.49 Second, managers with

longer tenure periods are more skilled, which may be the outcome of selection based

on skill or learning. A one-standard deviation increase in tenure increases the price

of risk by 7%. Chevalier and Ellison (1999a) find the same sign for fund alphas as a

measure for performance, but the effect is insignificant. Third, more skilled managers

have higher levels of turnover50 and have smaller stock holdings. Fourth, skilled managers

charge higher expense ratios, consistent with Berk and Green (2004), but the effect is

insignificant. Fifth, I find that more conservative managers manage larger funds, have

smaller expense ratios, and allocate a smaller share of their capital to stocks. The relation

between risk aversion and expenses is again consistent with Berk and Green (2004) because

fund alphas and risk aversion are inversely related. Finally, note that there is considerable

unobserved heterogeneity; the R-squared values are 13.0% for ability and 6.6% for risk

aversion.

Testing competing models I study four models to describe mutual fund returns,

of which three are structural (Section 3.1, 3.2, and 6) and one is reduced-form,

namely performance regressions (Appendix A). A valid question is whether the status

model statistically improves the other three models. Since the relative-return model of

Section 3.1 is nested only if the asset distribution is uniform (which is inconsistent with

the data) and the performance regressions are non-nested, I use the test developed in

Vuong (1989) to compare non-nested models (Appendix F).

[Table 9 about here.]

I perform the tests at the manager level for significance levels of 5% and 10%. Table 9

reports the averages across all managers in a particular style. The status model is favored

if the average number of rejections exceeds the 5% or 10% significance level. The test

results provide a clear ranking of the models. First, all three competing models are

rejected in favor of the status model. It is important to note that the status model is also

favored over performance regressions. This implies that the conditional distribution of the

49See Edelen, Evans, and Kadlec (2007) and Pollet and Wilson (2007) for potential explanations for
the relation between performance and fund size.

50Chen, Hong, Huang, and Kubik (2004) document a positive, but insignificant, relation between
turnover and fund alphas. I find a significant relationship once corrected for heterogeneity in risk
preferences.

27



status model provides a better description of fund returns than performance regressions

for which the conditional and unconditional distributions coincide. Therefore, the status

model is able to capture important dynamics of mutual fund strategies that performance

regressions cannot. Second, the rejection rates are highest for relative-return preferences,

followed by preferences for assets under management. The reduced-form performance

regression are most competitive, but are still rejected too often in favor of the status

model. In conclusion, there is strong statistical support in favor of the status model.

The fraction of skilled managers Measuring mutual fund performance has been

of great interest to both academics and practitioners. The recent view contends that

there are only small number of fund managers who are able to recover their costs. For

this group of managers, performance actually persists. Knowing which fraction of the

managers possesses skill is key because most investors base their investment in active funds

on this premise.51 My approach provides a fresh look at this debate as the controversy

stems from the large uncertainty surrounding the estimates of alpha.52 Structural models

of delegated management lead to sharper estimates of managerial ability as the cross-

equation restrictions allow me to extract estimates of ability from the volatility of mutual

fund returns.

Figure 1 displays the empirical distribution of mutual fund alphas following from

performance regressions (top row) and the status model (bottom row). The left figures

portray the fund alphas before costs, whereas the right figures subtract the fund’s

expenses. Before fees and expenses, the average alpha is 157bp for both performance

regressions and for the status model. These numbers change to an average of 2bp after

costs. This implies that the average alphas are zero, consistent with the prior literature.53

However, the distribution of alphas from the structural model is much narrower. The

fraction of alphas that exceed zero is therefore substantially smaller. For the performance

regressions, 46.03% of the after-costs alphas exceed zero, while this number drops to

30.95% in the case of the status model.

The large number of managers that produce fund alphas that exceed fees and expenses

51Alternatively, investors may choose to invest in mutual funds for time considerations only. Mamaysky
and Spiegel (2002) argue that investors can allocate their capital to mutual funds to complete the static
investment opportunity set with dynamic strategies even if the dynamic strategies require no private
information.

52Baks, Metrick, and Wachter (2001) address the question in a Bayesian way, while Kosowski,
Timmermann, Wermers, and White (2006) use a bootstrap analysis to compute the correct, finite-sample
distribution of the estimates. The former paper finds that even skeptical investors may allocate part of
their capital to active management, and the latter paper estimates the fraction of skilled managers to be
about 10%.

53Note that the risk-adjustment is only via the style benchmark. The results typically look somewhat
worse if one also corrects using a four-factor model. Also, I require three years of return data to estimate
the models, which introduces a survivorship bias. The results in Kosowski, Timmermann, Wermers, and
White (2006) suggest, however, that this effect may be small.
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reflects sampling error. I now study the managers who are able to reliably recuperate their

costs. Statistical significance is determined using the asymptotic standard errors.54 This

is slightly more involved for the status model. To compute the standard errors for the

status model, I first compute the fund’s alpha as α(Θ) = xA0(Θ̂A)λ̂Aσ̃A, which I in turn

average over all fund years.55 I compute the standard errors by applying the delta theorem

as
√

T
(

Θ̂A − ΘA

)

→d N (0, ΣΘ). For each manager, I test whether the after-costs alpha

significantly exceeds zero at the 5% level. For the performance regressions, I can reject

the null in 9.43% of the cases, while this number increases to 13.12% for the status model.

This result is important because it shows that despite the fact that fewer managers recover

their costs based on point estimates (31% instead of 46%), the increased efficiency of the

estimator implies that more fund managers robustly display skill (13% instead of 9%). The

fraction of skilled managers increases by almost 40%. Kosowski, Timmermann, Wermers,

and White (2006) show that even a small number of skilled managers can be economically

important, which underscores the economic relevance of this exercise.

[Table 10 about here.]

To conclude, Table 10 depicts the fraction of managers that reliably recover their costs

and expenses by investment style. Skilled managers are concentrated in the small/growth-

oriented styles. For most investment styles, the structural estimation results in a more

rosy view of ability in the mutual fund industry.

Cross-sectional stability of ability and risk aversion A subset of fund managers in

my dataset controls multiple funds belonging to different investment styles. This provides

an opportunity to study the stability of ability and risk aversion estimates holding constant

the economic environment. Obviously, it may be that a manager is more skilled in the

large/value style than in small/growth or vice versa. Likewise, there may be disparity in

fund sizes, which induces differences in risk aversion across styles. It would nevertheless

be reassuring to detect a positive relationship across styles.

The sample contains 105 style matches for which I have at least three years of data.

The resulting scatter plot of risk aversion and ability is displayed in Figure 6. The

correlation in risk aversion estimates across styles equals 65.0%; it equals 32.9% for

managerial ability. Both are significantly positive at the 1%-level. It implies that risk

aversion estimates are stable across styles, which is important. Managerial ability is less

stable, which may reflect that risk aversion is more an attribute of the manager, while

ability is more asset-class specific.

54Alternatively, I could bootstrap the standard errors as in Kosowski, Timmermann, Wermers, and
White (2006) to construct the finite-sample distribution of the test statistics. This would require frequent
re-sampling and re-estimation of the structural model, which is computationally infeasible.

55The results are very similar if I sample the fund’s alpha at a monthly frequency and subsequently
average it over all fund years.
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[Figure 6 about here.]

Time series of relative risk aversion and expected returns The status model

is not homogenous in assets under management. This implies that variation in both

fund status and the cross-sectional asset distribution lead to variation in the coefficient

of relative risk aversion. Both will move around the average coefficient of relative risk

aversion across managers. The solid line in Figure 4 displays that average coefficient from

1992 to 2006. In recent equilibrium models featuring habit formation, time variation

in risk aversion translates into time variation in risk premia (Campbell and Cochrane

(1999)). It is therefore interesting to compare the resulting time series with the time

series for expected returns, which is taken from Binsbergen and Koijen (2007). They use

a present-value model to estimate the time series of expected returns and expected growth

rates, which results in stronger predictors for future returns and dividend growth rates

than standard predictive regressions. The dashed line corresponds to the time series of

expected returns from 1992 to 2006. The two time series display a strong co-movement;

their correlation equals 62.6%. This lends further credibility to the risk aversion estimates

and its variation over time. I also compute the average price of active risk over the sample

period (not reported). This average is very stable and varies in a range of only .05 over

time.

Correlation risk aversion and managerial ability One empirical finding that is

remarkably robust across all models is that risk aversion and managerial ability are

positively correlated. Three potential mechanisms can generate this empirical regularity.

First, it may simply be a genetic feature that skilled investors tend to be more conservative.

Second, even if ability and risk aversion are uncorrelated in population, selection effects

can lead to an increasing and concave relation between ability and managerial risk

aversion, consistent with Figure 2. For expositional reasons, I focus on the model of

Section 3.2, but the argument applies to all models. Consider an individual who can

choose between a job in the mutual fund industry and a less risky job at a savings bank.

For argument’s sake, suppose the bank provides a known and constant income OT at

t = T . I assume that the manager decides which job to take based on one-period utilities,

but the argument extends easily to a multi-period framework. As such, the manager

compares the value function corresponding to the mutual fund industry (A0 = 1):

JMF =
1

1 − γ
exp

(

(1 − γ)r +
1 − γ

2γ

(

λ2
A + λ2

B

)

)

, (31)
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with the value function induced by the outside option JOO = 1
1−γ

O1−γ
T . The indifference

locus reads:

λ̄A (γ) =

√

(log OT − r)2γ − λ2
B. (32)

Fund managers will opt into the industry only if λA ≥ λ̄A (γ). The right-hand side

of (32) is increasing and concave in γ. Hence, even when ability and risk aversion are

uncorrelated in population, selection effects may lead to the relation between ability and

risk aversion. A third explanation would be that the status component in the utility index

implicitly proxies for career concerns. Skilled managers may act more cautiously, realizing

that they have more at stake than less skilled managers. The status component of the

utility function can be interpreted as a value function or continuation utility. Consistent

with the prediction that skilled managers are more status concerned, I find that the

correlation between λA and σ2 is positive and equals 57%. I show in Section 3.2 that a

model with career concerns is unable to affect optimal policies for the relevant range of

risk aversion. One reason why this model has so little bite is a peso-problem in measuring

career concerns. If all managers avoid particular actions as they know this will induce

demotion, then the model of demotion probabilities needs to extrapolate into this region

and underestimate true career concerns faced by fund managers.

8 Conclusions

I use structural models of delegated portfolio management to recover the cross-sectional

distribution of managerial ability and risk aversion. I develop a new likelihood-based

estimation procedure to analyze such models empirically. By imposing the cross-equation

restrictions that are implied by the structural models, I show that both managerial ability

and risk preference parameters can be estimated from the volatility instead of the mean

of fund returns. As such, I obtain sharp estimates of managerial ability, an issue that

has plagued the performance literature ever since Jensen (1968). I find that 31% of

the managers have positive alphas after costs. Once sampling uncertainty is taken into

account, this number drops to 13%.

Two standard models of delegated portfolio management result in economically

implausible estimates of either managerial ability or risk aversion. Therefore, I develop

a new model that imputes a concern for the relative position in the cross-sectional asset

distribution into the preferences of the manager. I find that this model describes fund

returns better than the other structural models and reduced-form performance regressions.

The resulting estimates of managerial ability and risk aversion are plausible.

The main empirical results can be summarized as follows. First, risk aversion

and managerial ability are both right-skewed, and there is more heterogeneity in risk
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preferences than in ability. Second, risk aversion and managerial ability are positively

related. Skilled managers are more cautious. I show that this result can be explained by

selection arguments or career concerns. Third, only a small fraction of the cross-sectional

variation can be related to observable characteristics, which points to considerable

unobserved heterogeneity. Fourth, the model endogenously generates time variation in risk

aversion. I find that this time variation strongly co-moves with the equity risk premium;

their correlation is 62%.

My results can be extended in several directions. First, the methodology that I

develop may be applied to a range of different problems that use martingale techniques.

Such applications include dynamic models with strategic interaction (Basak and Makarov

(2007)), ability and preferences in the hedge fund industry (Panageas and Westerfield

(2007)), and dynamic corporate finance models. Second, learning about managerial ability

plays a key role in many theoretical mutual fund models (for instance, Berk and Green

(2004) and Dangl, Wu, and Zechner (2007)). The approach in this paper implies that

the individual investor’s learning mechanism is much more efficient if the investment

problem of the manager is taken into account. It seems therefore interesting to revisit the

role of learning when explaining phenomena in mutual fund markets using the approach

advocated in this paper. Third, recent models of consumption-based asset pricing use

the household’s Euler condition to price the assets. However, most capital invested

in financial markets flows through the hands of delegated portfolio managers. Several

recent studies show that the manager can become the inframarginal agent that prices

the assets (for instance He and Krishnamurthy (2006)). If this is the case, deepening our

understanding of the preferences of mutual fund managers is an important component of a

better understanding of asset prices. The pronounced co-movement between risk aversion

and risk premia I find suggests that there is merit to this conjecture. The results in this

paper provide a first step in modeling the preferences of the managers that decide upon

the optimal asset allocation on behalf of most households. Explicitly incorporating the

intermediation sector in consumption-based asset pricing models is left for future research.

Finally, it is interesting to explicitly model the manager’s private information as in Liu,

Peleg, and Subrahmanyam (2007). Information on the manager’s returns and portfolio

holdings56 can then be used to extract information about the manager’s quality of private

information and risk preferences, which builds upon recent work of Cohen, Coval, and

Pastor (2005), Wermers, Yao, and Zhao (2007), and Yuan (2007).

56Dybvig and Rogers (1997) propose a simple estimator of preference parameters based on holdings
data.
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A Performance regressions in continuous time

This appendix summarizes performance regressions in a continuous-time framework. Nielsen and Vassalou
(2004) discuss the link between continuous-time and discrete-time performance measures. I focus on the
case with one style benchmark, but extensions to multi-factor benchmark models are trivial. In continuous
time, the standard performance regression reads:

dAt

At
− rdt = αdt + β

(

dSB
t

SB
t

− rdt

)

+ σεdZA
t . (A.1)

This implies that the dynamics of assets under management satisfy:

dAt

At
= (r + α + βσBλB) dt + βσBdZB

t + σεdZA
t . (A.2)

For comparability with the structural models, I perform a two-step procedure in which I compute the
likelihood of fund returns, rA,κ×T , conditional on benchmark returns, rB,κ×T , and the passive parameters,
Θ̂B, that are estimated in the first step. κ denotes the number of fund years available for a particular
manager-fund combination. I define ΘC ≡ {α, β, σε}.

The performance parameters ΘC are estimated by maximizing the log-likelihood:

max
ΘC

L
(

rA,κ×T | rB,κ×T ; ΘC , Θ̂B

)

= max
ΘC

κT/h
∑

t=h

`
(

rA
t | rB

t ; ΘC , Θ̂B

)

. (A.3)

Given the log-normal structure of the financial market in Section 2, the joint dynamics of the passive
return and the mutual fund return are given by:

rB
t =

(

r̄ + σBλB − 1

2
σ2

B

)

h + σB∆ZB
t , (A.4)

rA
t =

(

r̄ + α + βσBλB − 1

2
β2σ2

B − 1

2
σ2

ε

)

h + βσB∆ZB
t + σε∆ZA

t , (A.5)

with h = 1/12 because the parameters are expressed in annual terms, r̄ the average 1-month T-bill rate
over the relevant year, ∆yt ≡ yt − yt−h, and:

(

∆ZB
t

∆ZA
t

)

∼ N (02×1, hI2×2) . (A.6)

It therefore holds:
rA
t | rB

t ∼ N
(

µt, σ
2
)

, (A.7)

with:

µt ≡
(

r̄ + α + βσBλB − 1

2
β2σ2

B − 1

2
σ2

ε

)

h + β

(

rB
t −

(

r̄ + σBλB − 1

2
σ2

B

)

h

)

, (A.8)

σ2 ≡ σ2
εh, (A.9)

which results in the log-likelihood in (A.3).

B Career concerns and fund flows

This appendix extends the model in Section 3.2 to allow for career concerns and external fund flows.
The model closely follows Chapman, Evans, and Xu (2007). Section B.1 summarizes the model, while
Section B.2 provides further details on its calibration. Section B.3 derives the Bellman equation and
demonstrates its homogeneity in assets under management. Section B.4 briefly summarizes the numerical
procedure. The optimal strategies and results are discussed in Section B.5. Time is expressed in months
in this section to simplify notation.
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B.1 The model

The dynamics of assets under management reads At = θtAt−3, with θt:

θt ≡











RA
t exp

(

Ft−3(zt−3) + εF
t

)

, w.p. 1 − qP
t|t−3(zt−3, Aget−3) − qD

t|t−3(zt−3, Aget−3)

νP , w.p. qP
t|t−3(zt−3, Aget−3)

νD , w.p. qD
t|t−3(zt−3, Aget−3)

,

with RA
t ≡ At/At−3 and qP

t|t−3 (qD
t|t−3) the probability that the manager will be promoted (demoted)

at time t conditional upon the information at time t − 3. The change in assets under management in
case of promotion (demotion) is denoted by νP > 1 (νD < 1). Ft−3 denotes the expected fund flow and
εF
t ∼ N

(

0, σ2
F

)

is the idiosyncratic risk present in fund flows.57 Fund flows and promotion/demotion
probabilities depend on past fund performance via zt, which evolves as:

zt = ρ0zt−3 + ρ1

(

RA
t − RB

t

)

, (B.1)

and forms a weighted average of past relative performance. Promotion and demotion probabilities
furthermore depend on the number of years that the manager is active in the mutual fund industry,
Aget. Appendix B.2 describes the exact functional forms and calibration in full detail, derives the value
function, and provides further details on the numerical method. The decision frequency is quarterly and
I assume that the manager follows a constant-proportions strategy at intermediate points in time.58

B.2 Model specification and calibration details

Fund flows are modeled as a third-order polynomial in past performance:

Ft = δ0 +

3
∑

i=1

δi · (zt)
i,

of which the parameters are given in the Table 11. It also reports the idiosyncratic volatility of fund flows
(σF ) and the increase (decrease) in assets under management, νP (νD), in case of promotion (demotion).

[Table 11 about here.]

The promotion and demotion probabilities are represented by a multinomial logit model:

qP
t|t−h =

exp(ϕ′
P xt)

1 + exp(ϕ′
P xt) + exp(ϕ′

Dxt)
, qD

t|t−h =
exp(ϕ′

Dxt)

1 + exp(ϕ′
P xt) + exp(ϕ′

Dxt)
,

with xt ≡ (zt, Aget)
′. The parameters that describe the promotion and demotion probabilities are

depicted in Table 12. The variable Aget indicates the period that the manager is active in the industry
and is used to compute the dummy variables in Table 12.

[Table 12 about here.]

The performance variable zt evolves according to (B.1). The parameters for the value manager equal:
ρ0 = 0.51 and ρ1 = 0.178; for growth managers: ρ0 = 0.59053 and ρ1 = 0.15309.

B.3 Homogeneity of the value function

The manager’s problem is given by:

max
{x0,x3,x6,x9}

E0

[

1

1 − γ
A1−γ

T

]

. (B.2)

57Uncertainty in fund flows is assumed to be independent of the other financial risks.
58This assumption follows Campbell and Viceira (1999) and Campbell, Chan, and Viceira (2003).

Under this assumption, the investor can hold long and short positions without rendering the strategy
inadmissible.
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Define the manager’s value function as:

J(At, zt, t) = max
{xt,...,xT−3}

Et

[

1

1 − γ
A1−γ

T

]

, (B.3)

with J(AT , zT , T ) ≡ A1−γ
T

1−γ . The value function satisfies the Bellman equation:

J(At, zt, t) = max
xt

Et [J(At+3, zt+3, t + 3)] . (B.4)

I show that value function has the property:

J(At, zt, t) = A1−γ
t J(1, zt, t)

= A1−γ
t J̃(zt, t), (B.5)

with J̃(zt, t) ≡ J(1, zt, t). The proof is by induction. At t = T , the property trivially holds. Suppose
that (B.5) also holds for s, t < s ≤ T , then it follows:59

J(At, zt, t) = max
xt

Et [J(At+3, zt+3, t + 3)] (B.6)

= max
xt

Et

[

At+3J̃(zt+3, t + 3)
]

= max
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t
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
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P Et
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]
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D Et

[
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]

+
(

1 − qP
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)

Et

[

R
A(1−γ)
t+3 exp

(
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)

J̃(zt+3, t + 3)
]





= max
xt

A1−γ
t J̃(zt, t),

which establishes the homogeneity of the value function.

B.4 Numerical procedure

The optimal allocation to the style benchmark and active portfolio are determined by means of numerical
dynamic programming. Since the model is specified at a quarterly frequency, the manager needs to make
four investment decisions per annum, conditional on prior performance, x?

t (zt). The optimal policies are
determined using the Bellman equation derived in the previous section. The model features three shocks;
two for the financial market and one for idiosyncratic fund flows. However, the latter shock only enters
the value function in case the manager is not demoted nor promoted:

(

1 − qP
t+3|t − qD

t+3|t

)

Et

[

R
A(1−γ)
t+3 exp

(

Ft(1 − γ) + εF
t+3(1 − γ)

)

J̃(zt+3, t + 3)
]

,

see (B.6). As a result, this shock can be integrated out analytically:

(

1 − qP
t+3|t − qD

t+3|t

)

Et

[

R
A(1−γ)
t+3 exp

(

Ft(1 − γ) + εF
t+3(1 − γ)

)

J̃(zt+3, t + 3)
]

=

(

1 − qP
t+3|t − qD

t+3|t

)

exp

(

Ft(1 − γ) +
1

2
(1 − γ)2σ2

F

)

Et

[

R
A(1−γ)
t+3 J̃(zt+3, t + 3)

]

,

which implies that only two shocks are left. I use bivariate Gaussian quadrature to compute all
expectations that arise (Tauchen and Hussey (1991)). For the performance variable zt, I form an equally-
spaced grid on [−0.90, 0.90] with steps of size 0.05. I solve for the optimal strategy and the implied value
function at each of the grid points. Refining the step sizes does not change the results. The value function
in between grid points is interpolated via cubic-spline interpolation.

59For notational convenience, I omit the arguments of the promotion/demotion probabilities and
expected fund flows.
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B.5 Optimal strategies

Figure 7 depicts the optimal investment strategy of a large/value manager that works between 3-7 years
in the mutual fund industry.60 The top figure displays the manager’s holdings of the benchmark asset and
the bottom figure the optimal allocation to the active portfolio. The axes correspond to the manager’s
coefficient of relative risk aversion (γ) and prior relative performance (zt). The downward sloping plane
corresponds to the problem in which there are no incentives (θt = RA

t ), while the non-monotone plane
describes the optimal solution to the full-fledged model. Three aspects are worth mentioning. First, the
optimal allocations are non-monotone in risk aversion. The intuition is as follows. As (B.6) shows, the
value function has three components corresponding to promotion, demotion, and no career change. The
demotion event results in a drop in assets in which case the value function is pre-multiplied by ν1−γ

D .
Since νD < 1, this number turns large when γ increases, and the manager effectively minimizes the
demotion probability, which is virtually linear in performance. As a result, the manager acts as if she is
more aggressive. Second, for low levels of risk aversion, incentives do not affect the optimal investment
strategy. This region turns out to be key however. Mutual funds have betas with respect to their style
benchmarks that are close to one and display relatively little dispersion. In this model, this can be
reconciled by either a risk aversion level that is close to λB/σB in case incentives have no bite and the
manager acts as an asset-only investor. Alternatively, the manager’s risk aversion is such that it exactly
balances the demotion probability in the increasing region in the direction of risk aversion. The latter case
can however be ruled out for different economic reasons. It is well known that older managers take more
risk (Chevalier and Ellison (1997)), which in fact motivates Chapman, Evans, and Xu (2007) to study
the impact of career concerns on risk-taking. Older managers are less likely to be demoted, meaning that
the increase in risk-taking for more conservative managers becomes less pronounced. Hence, the model
predicts that older managers to take on less risk, which clearly is at odds with the data. Therefore, I
conclude that incentives, once calibrated to observed career changes and fund flows, hardly affect the
optimal policies in the relevant region of risk aversion. As such, I study the reduced-form case with
θt = RAt from now on for this model. Third, in the direction of past relative performance, there is a
slight increase in risk-taking. This is a consequence of the convexities in fund flows. Indeed, if Ft is zero,
the slope in this direction is nearly zero. The economic significance is small however, which resonates
with the findings of Chapman, Evans, and Xu (2007).

[Figure 7 about here.]

C Relative risk aversion in the status model

The manager’s preferences are given by:

E0

[

u
(

AT , ĀT

)]

= E0

[

η

1 − σ1
A1−σ1

T + (1 − η)S (1 − σ2) Ā1−σ1

T %

(

AT

ĀT

)1−σ2

]

. (C.1)

The coefficient of relative risk aversion reads:

RRA
(

AT , ĀT

)

≡ −AT u(2,0)
(

AT , ĀT

)

u(1,0)
(

AT , ĀT

) , (C.2)

60The results for the small/growth managers and different tenure stages are qualitatively similar.
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with u(i,j) denoting the i-th derivative with respect to AT and the j-th derivative to ĀT . The required
derivatives are given by:

u(1,0)
(

AT , ĀT

)

= ηA−σ1

T + (1 − σ2) (1 − η)S (1 − σ2) Ā−σ1

T %

(

AT

ĀT

)−σ2

%′
(

AT

ĀT

)

(C.3)

u(2,0)
(

AT , ĀT

)

= −σ1ηA−σ1−1
T − σ2 (1 − σ2) (1 − η)S (1 − σ2) Ā−σ1−1

T %

(

AT

ĀT

)−σ2−1 [
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(
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ĀT

)]2

+ (1 − σ2) (1 − η)S (1 − σ2) Ā−σ1−1
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ĀT

)−σ2
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(

AT

ĀT

)

= −σ1ηA−σ1−1
T − (C.4)

(1 − σ2) (1 − η)S (1 − σ2) Ā−σ1−1
T %
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ĀT
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




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(
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ĀT

)

+ σ2

[

%′
(

AT

ĀT

)]2

%
(

AT

ĀT

)






,

which implies that the Arrow-Pratt measure of relative risk aversion reads:

RRA
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AT , ĀT

)

=

σ1ηA−σ1

T + (1 − σ2) (1 − η)S (1 − σ2) Ā−σ1
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+ σ2

[

%′

(

AT
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2
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T + (1 − σ2) (1 − η)S (1 − σ2) Ā−σ1

T %
(
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ĀT

)−σ2

%′
(

AT

ĀT
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= ω(aT )σ1 + (1 − ω(aT ))

[

σ2
%′ (aT ) aT

% (aT )
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%′ (aT )
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, (C.5)

with:

ω(aT ) ≡ ηa−σ1

T

ηa−σ1

T + (1 − σ2) (1 − η)S (1 − σ2) % (aT )
−σ2 %′ (aT )

. (C.6)

Note that both % > 0 and %′ > 0, which implies ω(aT ) ∈ [0, 1].

D The role of σ1 in passive risk-taking

I show in this appendix that σ1 controls passive risk taking in the status model of Section 6. I solve for
the optimal strategy using the martingale method, which relates to Basak, Pavlova, and Shapiro (2007b).
In the martingale approach, I first solve for the optimal terminal asset level. The optimal investment
strategy is then given by the strategy that replicates this terminal claim.

Using the homogeneity property of the value function, the manager’s problem can be reformulated
as:

max
RA

T
≥0

E0

[

η

1 − σ1

(

a0R
A
T

)1−σ1

+ (1 − η)S (1 − σ2)R
B(1−σ1)
T %T

(

a0
RA

T

RB
T

)1−σ2

]

, (D.1)

with RA
t ≡ At/A0. The optimization is subject to the static budget constraint (recall that ϕ0 = 1):

E0

[

RA
T ϕT

]

= 1. (D.2)

The corresponding Lagrangian reads, with ξ denoting the Lagrange parameter:

Z(RA
T , RB

T , ξ) =
η
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A
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− ξϕ̃T RAB
T , (D.3)
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where last equality defines ũ(·), RAB
T ≡ RA

T /RB
T , and I define:

ϕ̃T ≡ ϕT

(

RB
T

)σ1

. (D.4)

This change of variables shows that I can equivalently optimize over RAB
T . One complication is that the

objective function may not be globally concave in RAB
T if σ2 < 0 or if %′′ > 0. Hence, standard first-

order conditions are not sufficient. The standard approach is to construct the concavification of ũ
(

RAB
T

)

(Carpenter (2000), Cuoco and Kaniel (2006), and Basak, Pavlova, and Shapiro (2007b)), which is the
smallest concave function that dominates ũ

(

RAB
T

)

. I call the concavified function û
(

RAB
T

)

. Details on
the construction of this function are provided in Appendix E.2. The resulting optimization problem is
given by:

max
RAB

T

û
(

RAB
T

)

− ξϕ̃T RAB
T . (D.5)

Denote the optimal relative terminal asset level by:

RAB?
T = f (ξϕ̃T ) , (D.6)

which is decreasing in ϕT as can be shown using the techniques in Basak, Pavlova, and Shapiro (2007b).
Equipped with the optimal terminal relative return, I can compute the time-t return on assets:
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t

)1−σ1

]
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ϕ̃T

ϕ̃t

f (ξϕ̃T )

]

, (D.7)

in which I change the measure to an equivalent measure G via the Radon-Nikodym derivative:

dG

dP
≡

(

RB
T

RB
t

)1−σ1

Et

[

(

RB
T

RB
t

)1−σ1

] . (D.8)

All expectations under the equivalent measure G are denoted by EG
t [·], while P−expectations are denoted

by Et [·]. Note that the first expectation in (D.7) is a deterministic function of the remaining investment
horizon, T − t. Due to the Markovianity of (ϕt)t≥0, it holds:

RA?
t = RB

t g (ξ, ϕ̃t) , (D.9)

with:

g (ξ, ϕ̃t) ≡ Et

[
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RB
T
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t

)1−σ1

]

EG

t
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ϕ̃T

ϕ̃t

f (ξϕ̃T )

]

. (D.10)

The last step is to compute the optimal investment strategy, x?
t (ϕt), which is the replicating portfolio

of RA?
t . To this end, I match the diffusion term of RA

t , which is given by RA
t x′ΣdZt, with the one of

RA?
t . The latter diffusion term takes the form (Ito’s lemma):

(

∂g (ξ, ϕ̃t)

∂ϕ̃t

)

RB
t ϕ̃t [−Λ′ + σ1e

′
1Σ] dZt + RA?

t e′1ΣdZt, (D.11)
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which leads to:

x?
t (ϕ̃t) =

(

xB?
t (ϕ̃t)

xA?
t (ϕ̃t)

)

= e1 − σ1

(

∂g (ξ, ϕ̃t)

∂ϕ̃t

)

ϕ̃t

RAB?
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[

1

σ1
Σ−1Λ − e1

]

, (D.12)

with e1 denoting the first unit vector. Since û
(

RAB
T

)

is increasing and concave in RAB
T , it holds that

g (ξ, ϕ̃T ) is monotonically decreasing in ϕ̃T . As a result:

− σ1

(

∂g (ξ, ϕ̃t)

∂ϕ̃t

)

ϕ̃t

RAB?
t

, (D.13)

is positive. If σ1 > λB/σB, then xB?
t (ϕ̃t) < 1, while, by contrast, xB?

t (ϕ̃t) > 1 if σ1 < λB/σB. This
implies that the manager can increase of decrease the benchmark weight if she wants to deviate from
the herd. It depends on σ1 how the manager deviates and implies that σ1 controls passive risk-taking.
Quantitatively, the deviation also depends on σ2, which affects g(ξ, ϕ̃t). Lower values of σ2 will make
the utility index more convex, thereby enlarging the risk-shifting region and increasing the manager’s tilt
away from the benchmark.

The two special cases in which the preferences reduce to the preference specifications in Section 3
can be identified easily. If η = 0, it holds:

− σ1

(

∂g (ξ, ϕ̃t)

∂ϕ̃t

)

ϕ̃t

RAB?
t

= 1, (D.14)

and the optimal portfolio simplifies to:

x?
t =

1

σ1
Σ−1Λ. (D.15)

When η = 1, the asset distribution is uniform, and σ1 = 1, it holds:

− σ1

(

∂g (ξ, ϕ̃t)

∂ϕ̃t

)

ϕ̃t

RAB?
t

=
1

σ2
, (D.16)

and the optimal portfolio simplifies to:

x?
t =

1

σ2
Σ−1Λ +

(

1 − 1

σ2

)

e1, (D.17)

which is the optimal strategy derived in Binsbergen, Brandt, and Koijen (2007).

E Econometric approach

This appendix details the construction of the likelihood of mutual funds returns conditional on passive
returns. Section E.1 provides the results for the two benchmark models in Section 3. Section E.2
constructs the likelihood for the model in Section 6 in which the manager care about their relative
position in the asset distribution.

E.1 Two benchmark models

In both benchmark models, the optimal strategy is a constant-proportions strategy ((8) and (10)). This
implies that the likelihood can be constructed as in Appendix A with:

α = xAσAλA, (E.1)

β = xB , (E.2)

σε = xAσA, (E.3)

and ΘC is replaced by ΘA = {λA, γ}.
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E.2 Status model

Section 4 and, in more detail, Koijen (2007) uses the mapping from assets under management to the
state-price density that is implied by the martingale method to construct the likelihood of fund returns.
This mapping is straightforward to construct in case of a globally concave utility index (Koijen (2007)).
This appendix provides the procedure for the status model in which the utility index can feature local
convexities. I combine martingale techniques in the presence of local convexities (Basak, Pavlova, and
Shapiro (2007b)) with the simplifications in Section D.

I outline the main procedure if there is at most one convex region. The method directly extends to
multiple convex regions.

1. Check whether the Lagrangian is globally concave:

ũ
(

RAB
T

)

− ξϕ̃T RAB
T =

η

1 − σ1

(

a0R
AB
T

)1−σ1

+ (1 − η)S (1 − σ2) %T

(

a0R
AB
T

)1−σ2 − ξϕ̃T RAB
T ,

(E.4)
for instance, by computing the maximum of ũ′′

(

RAB
T

)

. If the maximum is positive, the function
features local convexities; otherwise, the Lagrangian is globally concave.

2. If the objective function is not globally concave, I construct its concavification. The concavified
function is the smallest function that dominates ũ(·), see Carpenter (2000), Cuoco and Kaniel
(2006), and Basak, Pavlova, and Shapiro (2007b). This means that the convex region is replaced
by a chord between R1 and R2, where R1 and R2 solve (R1 < R2):

ũ (R1) = A + BR1, (E.5)

ũ′ (R1) = B, (E.6)

ũ (R2) = A + BR2 (E.7)

ũ′ (R2) = B. (E.8)

This results in a system of four equations in four unknowns, which simplifies to:

ũ′ (R1) = ũ′ (R2) , (E.9)

ũ′ (R1) =
ũ (R2) − ũ (R1)

R2 − R1
, (E.10)

which is a system of two equations in two unknowns (R1 and R2) only. The concavified function
is then defined as:

û
(

RAB
T

)

= ũ
(

RAB
T

)

, if RAB
T /∈ [R1, R2]

û
(

RAB
T

)

= A + BRAB
T , if RAB

T ∈ [R1, R2]
(E.11)

This function is, by construction, concave and continuously differentiable. In summary, I use ũ(·)
if the utility index is globally concave and û(·) in case of local convexities. I will use û(·) in the
remainder of the procedure, which can be replaced by ũ(·) if the utility index is globally concave.

3. Compute the Lagrange parameter, ξ. I need to find ξ that satisfies the budget constraint:
E0

[

RA
T ϕT

]

= 1. Appendix D, Equation (D.7) shows that the budget constraint can be written as:

1 = E0

[

(

RB
T

)1−σ1

]

EG

0 [ϕ̃T f (ξϕ̃T )] , (E.12)

with f(ξϕ̃T ) the optimal terminal asset level relative to the benchmark (RAB?
T ) that solves:

max
RAB

T

û
(

RAB
T

)

− ξϕ̃T RAB
T . (E.13)

The scaled state-price density ϕ̃t is defined in (D.4). The first expectation in (E.12) can be
computed analytically given the log-normal structure of the financial market:
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]
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2
σ1σ

2
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)

. (E.14)
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To compute the second expectation, I use that under G (by Girsanov’s theorem) it holds that
(using the Radon-Nikodym derivative in (D.8)):

ZP,G
t ≡ ZP

t − (1 − σ1)σP t, (E.15)

is a G-Brownian motion. ZA
t is a P- and G-Brownian motion. This implies that ϕ̃T given ϕ̃t can

be written as (τ ≡ T − t):
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,

with ∆Zt:T ≡ ZT − Zt. It therefore holds:

log ϕ̃T − log ϕ̃t ∼G N
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µϕ̃,T , σ2
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, (E.16)

with:

µϕ̃,T ≡
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τ, (E.17)

σ2
ϕ̃,T ≡ (λP − σ1σP )

2
τ. (E.18)

The expectation in (E.14) is computed using univariate Gaussian quadrature with six points (see
Tauchen and Hussey (1991)). This holds true regardless of the number of Brownian motions
driving the uncertainty in the financial market.

4. Solve for the transformed state-price density at each point, ϕ̃t, in time to match the observed
mutual fund return:
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t = RB

t Et
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RB
t

)1−σ1

]
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ϕ̃T

ϕ̃t

f (ξ, ϕ̃T )

]

, (E.19)

in which the expectations are computed as in the previous step. This completes the mapping
from fund returns, RA,T , to a time-series of the (transformed) state-price density, ϕ̃T . Then the
log-likelihood contribution follows as a standard application of the change-of-variables theorem:

`
(

RA
t | RB,t, RA,t−h

)
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∣

∣

∣

∣

∣

. (E.20)

Note that I do not need to compute the portfolio weights explicitly, as I can compute the likelihood
of assets under management directly.

Koijen (2007) provides further details on the exact implementation and explains the method in the model
of Section 3.2.

F Hypothesis testing

I formally test competing models of delegated portfolio management to study which model describes
the returns produced by fund managers best. I the testing procedure, I distinguish between nested and
non-nested models.

Nested models If the models are nested, the likelihood-ratio test can be used to discriminate
between models. Denote by L1 the log-likelihood corresponding the unconstrained model evaluated at
the maximum-likelihood estimates, and L0 the log-likelihood of the constrained model. The likelihood-
ratio statistic:

LR = 2
(

L1 − L0
)

, (F.1)
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follows under the null a chi-squared distribution with the degrees of freedom equal to the number of
parameter constraints.

Non-nested models If the models are non-nested, the standard likelihood-ratio test cannot be
applied. However, Vuong (1989) develops an alternative test that also uses the likelihood ratio as the
main input, and which can be used to test non-nested models.61 The different dynamic model of delegated
management are not necessarily nested. The log-likelihood of fund returns conditional on the benchmark

returns corresponding to Model 1 is denoted by L(1)
(

rT
A | rT

B; ΘA

)

=
∑T/h

t=h `(1)
(

rAt | rt
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)
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)
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. The null hypothesis reads:
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B; Θ
(1),?
A

)]
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[
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, (F.2)

in which E0 [·] denotes the expectation under the true model, and Θ
(j),?
A the pseudo-true parameters of

Model j. The null hypothesis does not require either of the models to be correctly specified. Then under
H0:
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with p the number of parameters estimated in Model 1, q the number of parameters for Model 2, and
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A the maximum-likelihood estimates of Model j. In addition, ω̂T is defined as:
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Implementation All tests will be performed at the manager level. This implies that the test will
have relatively little power at a per-manager basis. However, I can take advantage of the large cross-
section of managers available. If the significance level is set at 5%, I expect to reject the null only for
5% of the managers. If the rejection rate is considerably higher, this provides strong evidence that one
of the models provides a better description of mutual fund behavior.

G Utility cost calculation

To compute the loss in certainty-equivalent wealth, I need to determine π1, π2, and CEQ (π1, π2). First,
to compute π2, I only need to integrate out financial uncertainty. This requires me to obtain the joint
distribution of the benchmark, SB

T , and the state-price density ϕT (see Appendix E.2) to compute WT .
Note that in the derivation of the optimal strategy in Appendix E.2, I require the transformed state-price
density SB−γ

t ϕt. As such, it is sufficient to simulate SB
T and ϕT to compute the payoffs of the active

and passive asset, and the investor’s wealth in turn. I use Monte Carlo simulations to integrate out the
financial uncertainty and I sample the manager’s strategy at a monthly frequency. To compute π1, I also
need to integrate out heterogeneity in ability and preferences. I use the empirical distribution function
that I estimate in Section 7 and the integration is replaced by summation as a result. The expectation
with respect to financial risks is again approximated by Monte Carlo simulations. The value function
follow directly and hence CEQ(π1, π2). Note that the optimal strategy depends on a0. For each manager,
I take the average over the sample period available for the particular manager and use this value in the
simulation exercise.

If the manager uses performance regressions, the computations can be simplified in this case as the

61This test is also used in St-Amour (2006) to discriminate between structural consumption-based asset
pricing models.
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value function conditional on the parameters can be computed analytically and is given by (W0 = 1):

J (π, T, ΘA) =
1

1 − γI

exp

(

(1 − γI)
(

x′
I Σ̄Λ + r

)

− γI(1 − γI)

2
x′

I Σ̄Σ̄′xI

)

,

with Σ̄ the volatility matrix of the passive asset and the managed portfolio.
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Mutual fund style Selected benchmark Fraction of Number of Fraction of Number of
observations (%) managers observations (%) managers

Years of data ≥ 1 Years of data ≥ 3
Large-cap/blend S&P 500 20.1 714 20.3 258
Large-cap/value Russell 1000 Value 11.7 427 11.7 149
Large-cap/growth Russell 1000 Growth 11.6 448 11.1 141
Mid-cap/blend Russell Mid-cap 10.2 383 9.9 126
Mid-cap/value Russell Mid-cap Value 6.3 228 6.4 82
Mid-cap/growth Russell Mid-cap Growth 13.7 526 13.5 172
Small-cap/blend Russell 2000 7.8 291 8.6 110
Small-cap/value Russell 2000 Value 6.2 200 6.3 80
Small-cap/growth Russell 2000 Growth 12.4 477 12.2 155

Total 100.0 3,694 100.0 1,273

Table 1: Number of manager-fund combinations per investment style
The table summarize the number and fraction of manager-fund combinations per investment style.
Managers are allocated to a benchmark by performing nine regressions of fund returns in excess of
the short rate on excess benchmark returns. I select the benchmark that maximizes the R-squared. The
left panel displays the allocation of manager-fund combinations for the full sample, the right panel for
manager-fund combinations for which at least 3 years of data is available.

Mean St.dev. Percentiles

10% 25% 50% 75% 90%

TNA ($mln) 1,042 3,757 22 54 174 630 2,001
Family TNA ($mln) 14,621 45,837 74 342 1,807 9,050 23,088
Family size 8.3 9.0 1.0 2.0 5.0 11.0 18.0
Expense ratio (%) 1.3 0.5 0.8 1.0 1.3 1.6 1.9
12B-1 fee (bp) 21.5 28.0 0.0 0.0 6.1 34.0 65.0
Total load (%) 2.1 2.4 0.0 0.0 1.0 4.7 5.5
Cash holdings (%) 4.2 4.5 0.0 1.0 3.1 6.3 10.2
Stock holdings (%) 94.9 5.0 87.8 92.4 96.2 98.4 99.7
Manager tenure (years) 5.2 4.5 1.2 2.1 3.9 6.8 10.6
Fund age (years) 11.1 12.5 2.2 3.9 6.9 12.3 27.1
Turnover (%) 89 96 18 36 67 113 175

Table 2: Summary statistics
The table provides the summary statistics of manager and fund characteristics. I provide summary
statistics for the total net assets under management (TNA), total net assets of the fund family (as
defined by Chen, Hong, Huang, and Kubik (2004)), family size (the number of funds that belong to
the fund family), expense ratio, 12B-1 fees, the total load (the sum of maximum front-end load fees
and maximum deferred and rear-end load fees), cash holdings as reported by the fund, stock holdings as
reported by the fund (the sum of common and preferred stock), manager’s tenure, fund age, and turnover.
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Panel A: Structural parameters

Model parameters λA γ

λA γ Mean Std 10% 50% 90% Mean Std 10% 50% 90%
2 0.10 0.01 0.08 0.10 0.11 2.00 0.09 1.90 2.00 2.11

0.1 5 0.10 0.01 0.08 0.10 0.11 5.01 0.21 4.74 5.00 5.29
10 0.10 0.01 0.08 0.10 0.11 10.01 0.43 9.48 10.00 10.57
2 0.20 0.03 0.16 0.19 0.24 2.01 0.18 1.80 2.00 2.24

0.2 5 0.20 0.03 0.16 0.19 0.24 5.03 0.44 4.51 5.00 5.61
10 0.20 0.03 0.16 0.19 0.24 10.06 0.87 9.01 9.99 11.22
2 0.30 0.05 0.24 0.29 0.37 2.03 0.27 1.72 2.00 2.39

0.3 5 0.30 0.05 0.24 0.29 0.37 5.08 0.68 4.29 4.99 5.97
10 0.30 0.05 0.24 0.29 0.37 10.16 1.37 8.58 9.99 11.94

Panel B: Structural and reduced-form estimation of fund alphas

Model parameters αML αOLS

λA γ α Mean Std 10% 50% 90% Mean Std 10% 50% 90%
2 0.5% 0.49% 0.12% 0.34% 0.47% 0.65% 0.57% 2.95% -3.18% 0.62% 4.44%

0.1 5 0.2% 0.20% 0.05% 0.14% 0.19% 0.26% 0.23% 1.18% -1.27% 0.25% 1.77%
10 0.1% 0.10% 0.02% 0.07% 0.09% 0.13% 0.13% 0.64% -0.64% 0.12% 0.90%
2 2.0% 1.96% 0.50% 1.35% 1.90% 2.63% 2.15% 5.90% -5.34% 2.25% 9.85%

0.2 5 0.8% 0.78% 0.20% 0.54% 0.76% 1.05% 0.86% 2.37% -2.15% 0.89% 3.93%
10 0.4% 0.39% 0.10% 0.27% 0.38% 0.53% 0.47% 1.25% -1.08% 0.45% 2.02%
2 4.5% 4.46% 1.23% 3.02% 4.30% 6.10% 4.71% 8.84% -6.54% 4.86% 16.21%

0.3 5 1.8% 1.78% 0.49% 1.21% 1.72% 2.44% 1.89% 3.55% -2.62% 1.94% 6.52%
10 0.9% 0.89% 0.25% 0.60% 0.86% 1.22% 0.96% 1.79% -1.32% 0.96% 3.36%

Table 3: Simulation experiment to compare model-implied and regression-based alphas
Panel A displays the results of a simulation exercise in which I simulate the model in Section 3.1 for three
years on a monthly frequency. Managerial ability takes values in λA ∈ {.1, .2, .3} and the coefficient of
relative risk aversion takes values in γ ∈ {2, 5, 10}. The table provides the mean, standard deviation,
and 10%, 50%, and 90% quantiles of the estimates across 2,500 data sets. Both models are estimated by
means of likelihood, see Appendix E.1. Panel B displays the fund’s alpha that is implied by the structural
model, αML = λ2

A/γ, or that follows from a standard performance regression, αOLS , see Appendix A.
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Model-implied Performance regressions
γ λA α β σε α β σε

S&P 500 Mean 46.08 1.36 6.27% 1.10 4.48% 0.82% 0.96 4.10%
Median 31.29 1.37 5.74% 1.10 4.36% 0.67% 0.96 3.75%
St.dev. 108.15 0.34 3.51% 0.05 2.02% 2.98% 0.11 1.97%

Russell 1000 Value Mean 38.21 1.62 7.74% 1.15 4.72% 0.30% 0.93 4.09%
Median 35.94 1.63 7.70% 1.13 4.59% 0.29% 0.92 3.91%
St.dev. 14.99 0.32 3.24% 0.06 1.65% 2.60% 0.13 1.55%

Russell 1000 Growth Mean 17.35 0.91 6.00% 1.08 6.19% 1.26% 0.94 5.47%
Median 15.93 0.89 5.03% 1.06 5.77% 0.99% 0.92 4.99%
St.dev. 9.30 0.40 4.90% 0.09 3.27% 3.60% 0.18 2.74%

Russell Mid-cap Mean 23.75 1.48 10.72% 1.19 7.03% 1.11% 0.96 6.47%
Median 24.17 1.44 9.50% 1.16 6.50% 0.90% 0.95 5.98%
St.dev. 8.55 0.36 5.89% 0.09 2.90% 4.43% 0.17 2.87%

Russell Mid-cap Value Mean 27.90 1.75 11.88% 1.23 6.71% -0.04% 0.94 5.97%
Median 26.01 1.77 10.81% 1.22 6.62% 0.32% 0.94 6.00%
St.dev. 8.30 0.29 4.41% 0.07 1.89% 4.15% 0.18 1.77%

Russell Mid-cap Growth Mean 11.42 0.94 9.27% 1.11 9.30% 0.40% 0.95 7.98%
Median 10.77 0.93 6.46% 1.08 8.37% 0.59% 0.95 7.76%
St.dev. 6.01 0.42 7.21% 0.13 4.02% 5.80% 0.22 3.08%

Russell 2000 Mean 19.92 1.35 10.57% 1.11 7.72% 3.55% 0.90 6.78%
Median 17.80 1.35 9.44% 1.10 7.32% 3.59% 0.93 6.28%
St.dev. 9.44 0.39 5.62% 0.06 3.13% 5.20% 0.18 2.92%

Russell 2000 Value Mean 29.01 1.70 11.45% 1.20 6.77% 1.61% 0.95 6.28%
Median 26.74 1.73 11.67% 1.18 6.53% 1.46% 0.94 5.93%
St.dev. 12.57 0.29 4.34% 0.11 2.53% 3.68% 0.16 2.49%

Russell 2000 Growth Mean 7.90 0.64 6.14% 1.05 10.14% 5.49% 0.96 9.10%
Median 6.86 0.56 4.52% 1.01 9.27% 5.01% 0.97 8.69%
St.dev. 7.51 0.51 5.82% 0.06 6.31% 6.92% 0.17 4.73%

Table 4: Parameter estimates for the model in Section 3.1
The table summarizes the estimation results for the model in Section 3.1. The model is estimated by
means of maximum likelihood for 1,273 managers over the period 1992.1 to 2006.12 for all nine investment
styles. Fund managers are included when at least three years of return data is available to estimate the
models. The first two columns provides the estimates of the structural model, γ and λA. Columns
three to five provide the implied estimates for the coefficients of a performance regression, α, β, and
σε. The last three columns report the results of standard performance regressions (Appendix A). In all
cases, I report the cross-sectional mean, median, and standard deviation (St.dev.) of the estimates. The
parameters are expressed in annual terms.
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Model-implied Performance regressions
γ λA α β σε α β σε

S&P 500 Mean 4.25 0.18 0.89% 0.95 4.16% 0.82% 0.96 4.10%
Median 4.19 0.17 0.65% 0.95 3.82% 0.67% 0.96 3.75%
St.dev. 0.47 0.08 0.87% 0.11 1.99% 2.98% 0.11 1.97%

Russell 1000 Value Mean 6.41 0.26 1.21% 0.93 4.13% 0.30% 0.93 4.09%
Median 6.37 0.25 0.99% 0.92 3.90% 0.29% 0.92 3.91%
St.dev. 0.89 0.10 0.89% 0.13 1.56% 2.60% 0.13 1.55%

Russell 1000 Growth Mean 2.18 0.12 0.86% 0.94 5.55% 1.26% 0.94 5.47%
Median 2.05 0.11 0.55% 0.92 5.03% 0.99% 0.92 4.99%
St.dev. 1.66 0.15 1.54% 0.17 2.77% 3.60% 0.18 2.74%

Russell Mid-cap Mean 5.20 0.33 2.53% 0.95 6.54% 1.11% 0.96 6.47%
Median 5.08 0.30 1.80% 0.95 6.04% 0.90% 0.95 5.98%
St.dev. 0.92 0.15 2.39% 0.17 2.85% 4.43% 0.17 2.87%

Russell Mid-cap Value Mean 7.81 0.46 2.94% 0.93 6.02% -0.04% 0.94 5.97%
Median 7.33 0.42 2.55% 0.93 6.03% 0.32% 0.94 6.00%
St.dev. 3.13 0.20 1.77% 0.18 1.74% 4.15% 0.18 1.77%

Russell Mid-cap Growth Mean 2.04 0.16 1.49% 0.95 8.11% 0.40% 0.95 7.98%
Median 1.94 0.15 1.19% 0.95 7.86% 0.59% 0.95 7.76%
St.dev. 0.49 0.07 1.16% 0.22 3.15% 5.80% 0.22 3.08%

Russell 2000 Mean 3.24 0.22 1.74% 0.90 6.97% 3.55% 0.90 6.78%
Median 2.92 0.20 1.35% 0.93 6.38% 3.59% 0.93 6.28%
St.dev. 1.77 0.10 1.78% 0.17 2.94% 5.20% 0.18 2.92%

Russell 2000 Value Mean 6.19 0.38 2.70% 0.95 6.32% 1.61% 0.95 6.28%
Median 6.11 0.37 2.13% 0.94 5.92% 1.46% 0.94 5.93%
St.dev. 1.13 0.14 1.87% 0.16 2.50% 3.68% 0.16 2.49%

Russell 2000 Growth Mean 1.16 0.11 1.19% 0.96 9.38% 5.49% 0.96 9.10%
Median 1.12 0.10 0.87% 0.97 8.89% 5.01% 0.97 8.69%
St.dev. 0.22 0.05 1.27% 0.17 4.79% 6.92% 0.17 4.73%

Table 5: Parameter estimates for the model in Section 3.2
The table summarizes the estimation results for the model in Section 3.2. The model is estimated by
means of maximum likelihood for 1,273 managers over the period 1992.1 to 2006.12 for all nine investment
styles. Fund managers are included when at least three years of return data is available to estimate the
models. The first two columns provides the estimates of the structural model, γ and λA. Columns
three to five provide the implied estimates for the coefficients of a performance regression, α, β, and
σε. The last three columns report the results of standard performance regressions (Appendix A). In all
cases, I report the cross-sectional mean, median, and standard deviation (St.dev.) of the estimates. The
parameters are expressed in annual terms.
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σ1 = 4.00, a0 = 1 σ1 = 3.75, σ2 = .5 σ1 = 4.25, σ2 = .5

σ2 RRA xB xA ρ0(a0) RRA xB xA ρ0(a0) RRA xB xA

-1 0.50 100% 155% 10% 2.57 111% 33% 10% 3.63 92% 23%
0 0.96 100% 78% 20% 1.27 121% 63% 20% 1.66 83% 52%

0.5 1.19 100% 62% 30% 1.10 123% 68% 30% 1.16 78% 66%
1.5 1.64 100% 44% 40% 1.14 121% 64% 40% 1.15 79% 64%
2.5 2.10 100% 34% 50% 1.22 120% 60% 50% 1.22 80% 60%
5 3.25 100% 22% 60% 1.31 119% 56% 60% 1.31 81% 56%
10 5.54 100% 13% 70% 1.41 117% 52% 70% 1.41 83% 52%
20 10.13 100% 7% 80% 1.54 116% 47% 80% 1.54 84% 47%
30 14.72 100% 5% 90% 1.74 114% 42% 90% 1.74 86% 42%

Table 6: Fund status, risk aversion, and risk-taking
The first four columns display the optimal initial allocation to the benchmark portfolio (xB) and the
active portfolio (xA) as well as the Arrow-Pratt measure of relative risk aversion for different values of
σ2. The next four columns display the optimal initial strategies and coefficient of relative risk aversion
for different initial values of assets under management, a0, expressed in terms of percentile rank (%0(a0))
if σ1 = 3.75. The last four columns provide the results for σ1 = 4.25. I set η = .0005, σ2 = .5 and
λA = .15 for the results in the last eight columns. The volatility of the active portfolio, σA = 20%. The
market parameters and the parameters describing the asset distribution are calibrated on the basis of the
S&P 500 so that λB/σB = 4. The short rate is set to r = 5%.

σ1 σ2 λA RRA σ1 σ2 λA RRA
S&P 500 Mean 4.32 11.04 0.23 5.96 R. Mid-cap G. Mean 2.09 8.34 0.26 3.47

Median 4.09 0.77 0.11 3.17 Median 1.89 0.77 0.12 1.52
St.dev. 1.13 28.08 0.33 9.27 St.dev. 0.98 22.08 0.34 5.02

R. 1000 V. Mean 6.35 11.44 0.21 5.66 R. 2000 Mean 3.61 9.63 0.37 6.04
Median 6.06 1.56 0.16 3.95 Median 2.88 0.99 0.17 2.28
St.dev. 1.38 28.12 0.24 7.04 St.dev. 2.16 23.79 0.49 8.69

R. 1000 G. Mean 2.18 9.23 0.22 4.67 R. 2000 V. Mean 6.15 7.52 0.26 4.81
Median 1.96 0.53 0.08 1.66 Median 5.81 1.00 0.15 2.48
St.dev. 1.66 25.11 0.36 8.83 St.dev. 1.29 21.78 0.28 5.68

R. Mid-cap Mean 5.29 8.15 0.30 5.01 R. 2000 G. Mean 1.54 10.60 0.43 5.49
Median 4.93 1.29 0.18 2.71 Median 1.14 0.99 0.16 1.49
St.dev. 1.79 22.94 0.36 7.36 St.dev. 1.57 22.13 0.58 8.21

R. Mid-cap V. Mean 7.51 6.09 0.28 5.06 Overall Mean 4.05 9.50 0.28 5.16
Median 7.03 1.49 0.21 4.37 Median 4.04 0.99 0.14 2.51
St.dev. 1.83 20.31 0.26 5.46 St.dev. 2.41 24.57 0.38 7.69

Table 7: Parameter estimates for the status model in Section 6
The model is estimated for by means of maximum likelihood for 1,273 managers over the period 1992.1 to
2006.12 for all nine investment styles. I also report the results across all styles (“Overall”). Fund managers
are included when at least three years of return data is available to estimate the models. The first three
columns provides the estimates of the structural model, σ1, σ2, and λA. The last column reports the
implied coefficient of relative risk aversion. λA is expressed in annual terms. In all cases, I report the
cross-sectional mean, median, and standard deviation (St.dev.) of the estimates. R. abbreviates Russell,
V. Value, and G. Growth.
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log(λA) log(RRA)

Estimate T-statistic Estimate T-statistic

Log(TNA) -8.87%?? -2.55 -9.99%?? -2.93

Tenure 7.27%?? 2.19 4.10% 1.26

Turnover 6.36%?? 2.01 0.11% 0.04

Log(Expenses) 5.04% 1.16 -9.07%?? -2.13

Stock holdings -6.37%?? -2.17 -6.47%?? -2.24

Loads -3.41% -1.00 1.17% 0.35

12B-1 fees 0.04% 0.01 4.38% 1.07

Log(Family TNA) 0.10% 0.03 3.30% 1.00

Fund age 3.53% 1.10 2.48% 0.79

R-squared 13.0% 6.6%

Table 8: Heterogeneity in risk aversion and ability
The table displays results of multiple cross-sectional regressions of managerial ability and risk aversion on
observable manager and fund characteristics. The characteristics include the fund’s total net assets, the
manger’s tenure, turnover, expenses, the investment in common and preferred stocks, loads, 12B-1 fees,
the family’s total net assets, and the fund’s age. The cross-sectional regressions include style dummies.
The standard errors used to compute t-statistics are robust to heteroscedasticity. ?? indicates statistical
significance at the 5% level.
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Relative-return Preferences for Performance regressions
preferences assets under management

Investment style 10% 5% 10% 5% 10% 5%
S&P 500 77.1% 68.6% 36.0% 29.8% 20.9% 14.0%
Russell 1000 Value 91.3% 86.6% 43.6% 37.6% 21.5% 12.8%
Russell 1000 Growth 61.7% 53.2% 33.3% 28.4% 17.7% 10.6%
Russell Mid-cap 82.5% 72.2% 34.1% 25.4% 7.9% 4.8%
Russell Mid-cap Value 90.2% 89.0% 35.4% 26.8% 9.8% 4.9%
Russell Mid-cap Growth 58.1% 47.1% 40.7% 29.1% 18.0% 8.7%
Russell 2000 68.2% 52.7% 36.4% 26.4% 10.0% 3.6%
Russell 2000 Value 90.0% 85.0% 31.3% 25.0% 18.8% 15.0%
Russell 2000 Growth 38.7% 31.6% 45.8% 37.4% 16.1% 12.9%

Overall 71.2% 62.9% 37.9% 30.2% 16.6% 10.3%

Table 9: Testing competing models
The table displays the results testing competing models to describe fund returns. The models under
the null are: (i) relative-return preferences (Section 3.1), (ii) preferences for assets under management
(Section 3.2), and (iii) reduced-form performance regressions (Appendix A). The alternative is the status
model (Section 6). For the models that are nested, I use the likelihood-ratio test. To compare non-nested
models, I use the test developed in Vuong (1989), see Appendix F. I test the models at the manager level
and report the average number of rejections at either the 5% or 10% significance level. As such, a model
is rejected if the average number of rejections exceeds 5% or 10%.

Fraction significant at the 5% level

Investment style Performance regression Status model
S&P 500 5.4% 7.4%
Russell 1000 Value 4.7% 6.7%
Russell 1000 Growth 6.4% 6.4%
Russell Mid-cap 6.3% 15.9%
Russell Mid-cap Value 2.4% 12.2%
Russell Mid-cap Growth 5.8% 19.2%
Russell 2000 23.6% 21.8%
Russell 2000 Value 2.5% 11.3%
Russell 2000 Growth 27.1% 21.3%

Table 10: Testing for the fraction of skilled managers
The table reports the fraction of managers that significantly recuperates their fees and expenses at the 5%
level. I use either performance regressions or the status model to estimate the fund’s alpha. I subsequently
test whether the alpha, after fees and expenses, reliably exceeds zero. For the status model, the standard
errors are computed using the delta method. The main text provides further details.
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δ0 δ1 δ2 δ3

Value 0.0135 0.0928 -0.0031 -0.0371
Growth 0.0142 0.1389 0.0411 -0.0703

νD νP σF

0.423 1.72 0.13

Table 11: Model parameters
The table lists the parameters for the model of fund flows in Appendix B. δi, i = 0, . . . , 3, describe how
fund flows depend on past performance (see (B.2)) and σF is the idiosyncratic risk in fund flows. The
table also displays the (proportional) reduction in assets under management in case of demotion (νD) and
the (proportional) increase in case of promotion (νP ). The estimates are taken from Chapman, Evans,
and Xu (2007).

Variables contained in xt

Promotion zt I(Tenure≤3) I(Tenure∈(3,7]) I(Tenure>7) ztI(Tenure≤3) ztI(Tenure∈(3,7])

Value 0.9327 -4.8866 -4.6177 -4.5313 0.0244 -0.2620
Growth 0.9118 -4.8004 -4.6615 -4.6746 0.2188 0.0482

Demotion
Value -0.6682 -3.4784 -3.5454 -3.8634 -0.0884 -0.2415
Growth -0.5930 -3.7300 -3.7186 -3.8829 0.0331 -0.1348

Table 12: Model parameters
The table lists the parameters for the model of managerial promotion and demotion in Appendix B.
It contains the parameters of the multi-nominal logit model. The estimates are taken from Chapman,
Evans, and Xu (2007).
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Figure 1: Estimated distribution of fund alphas
The figure displays the distribution of fund alphas following from performance regressions (top panels)
and from the structural status model (bottom panels) in Section 6. The left panels provide the results
before fees and expenses, whereas the right panels correspond to the results after fees and expenses.
The model is estimated for 1,273 manager-benchmark combinations. The alpha in case of performance
regressions is computed as explained in Appendix A.
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Figure 2: Managerial ability and risk aversion
The figure displays the cross-sectional distribution of managerial ability and the coefficient of relative risk
aversion that follows from the model in Section 6. The model is estimated for 1,273 manager-benchmark
combinations. The red line corresponds to a second-order polynomial fitted through the cloud of points
to illustrate the relation between managerial ability and the coefficient of relative risk aversion.
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Figure 3: Managerial ability and risk aversion across styles
The left panel of this figure displays the distribution of the coefficient of relative risk aversion. The right
panel depicts the distribution of managerial ability. The red (blue) lines correspond to the small/growth
(large/value) style. The densities are estimated using a standard kernel density estimators based on a
normal kernel function.
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Figure 4: Time series of risk aversion and expected returns
The blue line depicts the average time-series variation in the coefficient of relative risk aversion that follows
from the status model in Section 6. This time series is computed by averaging the coefficients of relative
risk aversion in the cross-section of fund managers in each year. The dashed green line corresponds to
the time series of the equity risk premium, which is taken from Binsbergen and Koijen (2007).
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Figure 5: Fund size and the coefficient of relative risk aversion (RRA(aT ))
The figure displays the coefficient of relative risk aversion (blue dashed-dotted line) on the vertical axis
as a function of the fund’s relative size on the horizontal axis for the model in Section 6. The coefficient
of relative risk aversion is decomposed into three components, see Equation (28): (i) σ1 (green solid line),
(ii) σ2%

′(aT )aT /%(aT ) (red dotted line), and (iii) −%′′(aT )aT /%′(aT ) (brown dashed line).
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Figure 6: Cross-sectional stability of ability and risk aversion
The top panel compares the estimates for the coefficient of relative risk aversion across styles for managers
who simultaneously manage funds in different styles. The bottom panel displays the same results for
managerial ability. The red line corresponds to the 45-degree line along which the estimates ideally line
up. The sample contains 105 managers that are active in multiple styles and that have at least three
years of data.
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Figure 7: Optimal investment strategy in the presence of incentives
The figure displays the optimal allocation to the style benchmark (top panel) and the active portfolio
(bottom panel) for different values of the coefficient of relative risk aversion (γ) and past performance
(zt). zt is defined in (B.1). The monotone planes correspond to the optimal strategy of the model in
Section 3.2. The non-monotone planes display the optimal strategies in the model of Appendix B. In
this model, assets under management change due to fund returns, performance-sensitive fund flows, and
promotion and demotion. The figure depicts the optimal investment strategy of a large/value manager
that works between 3-7 years in the mutual fund industry.

63


	Data 
	Financial market 
	Standard models of delegated management
	Relative-return preferences 
	Preferences for assets under management 
	Cross-equation restrictions implied by structural models

	Econometric approach
	Empirical results for the benchmark models 
	Status model for delegated portfolio management
	Main empirical results
	Conclusions
	Performance regressions in continuous time 
	Career concerns and fund flows
	The model
	Model specification and calibration details
	Homogeneity of the value function
	Numerical procedure
	Optimal strategies 

	Relative risk aversion in the status model
	The role of 0=x"011B1 in passive risk-taking 
	Econometric approach 
	Two benchmark models 
	Status model

	Hypothesis testing
	Utility cost calculation

