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Investment, Income, and Incompleteness

ABSTRACT: The utility-maximizing consumption and investment strategy of an individual
investor receiving an unspanned labor income stream seems impossible to find in closed
form and very difficult to find using numerical solution techniques. We suggest an easy
procedure for finding a specific, simple, and admissible consumption and investment
strategy, which is near-optimal in the sense that the wealth-equivalent loss compared
to the unknown optimal strategy is very small. We first explain and implement the
strategy in a simple setting with constant interest rates, a single risky asset, and an
exogenously given income stream, but we also show that the success of the strategy is
robust to changes in parameter values, to the introduction of stochastic interest rates,

and to endogenous labor supply decisions.
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Investment, Income, and Incompleteness

“However, the largest component of wealth for most households is human capital, which
is nontradable.” (John Campbell on Household Finance in his Presidential Address to the

American Finance Association on January 7, 2006.)

1 Introduction

Human wealth is a dominant asset of most individuals and households and is known to have potentially
large effects on the optimal consumption and investment decisions over the life-cycle. However, since
labor income is typically not spanned by financial assets and the income insurance contracts offered
by governments and insurance companies are far from perfect, human wealth is a non-traded asset.
Due to this fact, it seems impossible to find closed-form expressions for the dynamic consumption and
investment strategies maximizing the life-time utility of an individual consumer-investor. In fact, most
of the portfolio choice literature disregards labor income completely (e.g. Samuelson (1969), Merton
(1969), Kim and Omberg (1996), Sgrensen (1999), Campbell and Viceira (2001), Brennan and Xia
(2002), and Liu (2007)) or assumes that labor income is deterministic or spanned by traded assets
(e.g. Hakansson (1970) and Bodie, Merton, and Samuelson (1992)). Some recent papers do allow for
unspanned labor income but they have to resort to coarse and computationally intensive numerical
solution techniques that can handle only low-dimensional problems, have an unknown precision, and do
not provide much understanding of the economic forces driving consumption and portfolio decisions
(e.g. Cocco, Gomes, and Maenhout (2005), Van Hemert (2007), and Koijen, Nijman, and Werker
(2008)). In this paper we suggest an easy procedure for finding a simple consumption and investment
strategy, which is near-optimal in the sense that the wealth-equivalent loss compared to the unknown
optimal strategy is very small.

Throughout the paper we take a continuous-time framework where uncertainty is generated by a
number of standard Brownian motions. The labor income is spanned when the standard Brownian
motions driving income changes contemporaneously affect the returns of sufficiently many traded
financial assets. In that case the entire labor income stream can be seen as the dividend stream from
a trading strategy in those assets so that the human wealth, i.e. the present value of all future labor
income, is uniquely valued by the no-arbitrage principle. The optimal consumption and portfolio
decisions of an investor will then follow from the (often well-known) solution to the same problem
without labor income basically by replacing financial wealth by the sum of financial and human wealth.
In the more realistic case of unspanned labor income, the dynamics of the income rate is affected by a
standard Brownian motion unrelated to the returns on traded financial assets. Since the market price
of risk, Ay, associated with that Brownian motion cannot be read off the prices of financial markets,
the market is incomplete so that the no-arbitrage valuation of human wealth breaks down, and it is no
longer possible to derive the optimal decisions with income from the optimal decisions without income.

The specific consumption and investment strategy we propose to follow with unspanned income
is motivated by the optimal decisions in a set of artificially completed markets, a concept originally
introduced by Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitani¢ and Karatzas (1992). For any
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given market price of risk A; (which may in general be a stochastic process), we define an artificially
completed market where the individual can invest in the same assets as in the original incomplete
market and a hypothetical asset completing the market. The risk-return tradeoff of the hypothetical
asset is governed by A;. When the price dynamics of the traded assets is sufficiently simple, i.e.
interest rates and risk premia have affine or quadratic dynamics (see e.g. Liu (2007)), and A is a
deterministic function of time, we can derive a simple, closed-form expression for the optimal strategy
of a power-utility maximizer in the artificially completed market. We transform this strategy into an
admissible strategy in the true, incomplete market by disregarding the investment in the hypothetical
asset and modifying the remaining strategy slightly to ensure non-negative wealth. Each specification
of A; leads to one specific strategy. We then optimize over A; to find the best of those strategies. In
the optimization we compute the expected utility generated by a given strategy using straightforward
Monte Carlo simulation. In order to evaluate the strategy we propose, we would like to compare the
expected utility it generates to the maximum expected utility, but the whole problem is that the latter
and the associated strategies are unknown. However, we can easily compute an upper bound on the
maximum expected utility in the incomplete market by taking a minimum of the expected utilities
obtainable in the artificially completed markets considered. Comparing the expected utility of the
specific strategy with this upper bound on the maximum expected utility, we derive an upper bound
on the wealth-equivalent loss associated with the specific strategy.

Although our approach is not restricted to low-dimensional problems, we explain and test our
strategy in a simple setting with constant interest rates, a single risky asset, and an exogenously given
income stream. First, we consider only the artificial markets corresponding to different constant values
of A\;. With our benchmark parameter values we find that a long-term, moderately risk-averse investor
following our proposed strategy will suffer a loss less than 2.3% of total wealth for a zero correlation
between shocks to labor income and stock returns. When the correlation is increased, the upper bound
on the loss becomes even smaller, e.g. roughly 0.9% for a income-stock correlation of 0.6. Second, we
generalize to the case where \; is a deterministic, affine function of time. This leads to a significant
reduction of the upper bound on the loss, e.g. 0.36% for a zero correlation and 0.03% for a correlation
of 0.6. These results are robust to changes in key parameter values and also to the introduction of
stochastic interest rates. We generalize the idea and the procedure to the case, where the investor
endogenously determines his labor supply at a stochastic, unspanned wage rate. With constant A;’s
we find that the bound on the welfare loss is even smaller than in the exogenous income case, which
is intuitively due to the fact that the investor can partially control the exposure to the unspanned
income risk via his labor supply decisions. In sum, our numerical results demonstrate that the simple
consumption and investment strategy we propose is near-optimal.

As mentioned above, a number of related papers assume that labor income is spanned by traded
assets in order to obtain closed-form solutions for the optimal consumption and investment strategies or
to reduce the dimension of the numerical solution scheme. If the labor income is really unspanned, the
misspecified strategy derived assuming spanning is no longer optimal. We evaluate the performance
of this particular strategy in the same way as explained above for our near-optimal strategy. We
find that an investor following this misspecified strategy will suffer a significant loss when the true
income-asset correlation is low, but minor losses if the true correlation is higher. For example, in our
benchmark case the loss is approximately 14% of total wealth if the true income-stock correlation is

zero and approximately 3.2% if the correlation is 0.6. Empirical estimates of the correlation between



individual household income and returns on broad stock indices are typically close to zero (see, e.g,
Cocco, Gomes, and Maenhout 2005) so a strategy derived from a complete market model will perform
quite badly.”

The remainder of the paper is structured as follows. Section 2 describes the consumption and
portfolio choice problem of the investor and summarizes the solution for the case where labor income
is spanned by traded assets. Section 3 describes the artificially completed markets and derives the
optimal consumption and investment strategies in such markets. Section 4 explains how we transform
the optimal strategies in the artificial markets into admissible strategies in the real market, how we
find the best of such strategies, and how we evaluate the performance of these strategies. Section 5
discusses numerical results from an implementation of our procedure. Section 6 shows that our ideas
and impressive numerical results extend to the case of endogenous labor supply. Finally, Section 7

concludes. All proofs are summarized in the Appendix.

2 The problem

We are going to analyze the life-cycle consumption and portfolio problem of a utility-maximizing
investor receiving uncertain labor income until retirement. For simplicity we assume that the individual
can only invest in a bank account offering a constant risk-free rate of r (with continuous compounding)
and a single stock (e.g. representing the stock market index). The time ¢ price of the stock is denoted

by S; and the price dynamics is assumed to be
dSt = St [(7’+O’S>\S) dt"‘O’S th] 5 (1)

where W = (W,) is a standard Brownian motion. Hence, og is the volatility of the stock and Ag is the
Sharpe ratio of the stock, both assumed constant.

We assume in our main analysis that the individual earns an exogenously given labor income until
a predetermined retirement date T after which the individual lives on until time 7' > 7. The labor

income rate at time t is denoted by Y; and we assume that
dYt:Yt{adt—&—ﬁ(det—&—\/l—p?thﬂ, 0<t<T, 2)

where W = (Wt) is another standard Brownian motion, independent of WW. The parameter « is the
expected growth rate of labor income, 3 is the income volatility, and p is the instantaneous correlation
between stock returns and income growth. We assume that «, 3, and p are all constants, but our
analysis goes through with deterministic age-related variations in a and 3, as documented by e.g.
Cocco, Gomes, and Maenhout (2005). Note that, except for |p| = 1, the investor faces an incomplete
market, since he is not able to fully hedge against unfavorable income shocks.

The individual has to choose a consumption strategy represented by a stochastic process ¢ = (¢t)
and an investment strategy represented by a stochastic process mg = (ms¢), where mg; is the fraction
of financial wealth invested in the stock at time ¢ with the remaining financial wealth being invested in

the bank account. Let X; denote the financial wealth at time ¢. For a given consumption and portfolio

4House prices are more highly correlated with labor income so in a setting where investors are allowed to invest in
houses in addition to stocks, a complete market assumption will be less harmful, cf., e.g., Cocco (2005) and Kraft and
Munk (2008).



strategy (¢, mg), the wealth dynamics is given by
dX; = X, [(r + Tseoshs) dt + wsi05 dW,] + (1{@}1@ - ct) dt. (3)

We will say that a strategy (¢, ) is admissible, if it is adapted and X7 > 0 (almost surely). We denote
the set of admissible strategies from time ¢ and onwards by A;.

The individual has preferences consistent with time-additive expected utility of consumption and
terminal wealth. An admissible consumption and investment strategy (c,mg) generates the expected

utility

J(t,l’,y; c, 7rS) == Et

T
/ e 06U (¢) ds + ee?TOU(X7p) |, (4)

t

where the expectation is conditional on X; = x and Y; = y, J is the subjective time preference rate,
and e models the relative weight of terminal wealth (bequests) and intermediate consumption. The
indirect utility function is given by

J(t,l’,y) = max J(t,x,y;c, ’/TS)' (5)
(e,ms)EA:

We assume throughout that the utility function exhibits a constant relative risk aversion v > 1, i.e.

Ule) =c'77/(1 =)
If the market is indeed complete, that is |p| = 1, the problem has the following simple solution:

Theorem 2.1 (Solution in a truly complete market) Assume |p| = 1. Then the indirect utility

function is given by
1

Jcom(t71~7y) = ﬁ(gcom(t))’y(x + yFCOm(t))lf’Y, (6)
where
1
com(py _ L (1 omrg(T=) | /7 =1y (T—1)
O () ()
m 1 —r r—
Fee (t) — l{tST} E (1 —e r(T t)) , (8)

and we have introduced the constants’

6 -1 1v—1,
=— = A 9
ro= b g AN 9)
TF:T7a+p/8)\S' (10)

The optimal consumption and investment strategy is given by

B X, —i—Y;chom(t)

¢ = : (11)

geom(t)
As X; + Y Feom(t Y, Feom (i
ST £ i ORI 3. i O (12)
Yos X g X (t)

In the complete market, the labor income can be uniquely valued as a stream of dividends. Due
to the assumptions about the dynamics of labor income and asset prices, the time ¢ value of all future
income will be given by Y; F°°™(¢). The function g captures the non-wealth dependent parts of the

5In the case rg = 0, the term %(1 - e*TQ(T*”) is interpreted as its limit as ry — 0, which is simply 7" —¢. Similarly
g

for rp.



individual’s indirect utility. Compared to a problem without labor income, the initial financial wealth
is simply adjusted by adding the initial value of human wealth yF°™. The optimal consumption
strategy is to consume the fraction 1/¢°°™(¢) out of total wealth at any date. The optimal investment
strategy can be deduced in the following way. First, determine the optimal riskiness of total wealth
with respect to the exogenous shock, which was originally determined by Merton (1969, 1971). Then
subtract the risk exposure of human wealth in order to find the optimal exposure of financial wealth,
which pinpoints the investment strategy. The same intuitive approach holds with more general asset
price dynamics, as long as the income is spanned by the traded assets, cf. e.g. Munk and S¢rensen
(2008).

For the more reasonable situation of unspanned labor income risk, i.e. |p| < 1, it is impossible
to value the human wealth as a traded asset so that the separation (6) and the associated intuitive

derivation of the optimal strategy break down. This is demonstrated in the following theorem.

Theorem 2.2 (Expected Utility in the Incomplete Market) Assume |p| < 1. Then, for any
admissible consumption and investment strategy (c,mg) for which the consumption and portfolio at any
time t depends at most on t, X;, and Yy, the associated expected utility function J(t,x,y;c,mg) will

not satisfy the separation (6) for any functions g(t) and F(t).

In particular, this theorem implies that a separation like (6) does not hold for the optimal consumption
and investment strategy in the incomplete market case.

To summarize, a closed-form solution for the optimal consumption and investment strategy and the
investor’s indirect utility does not seem to be available when labor income risk is not fully spanned.
Consequently, one has to resort to numerical methods to find an optimal strategy. The numerical
methods appropriate for problems of this type are quite intricate and, by the nature of numerical
techniques, this will only give you an approximation to the optimal strategy.® Below we introduce
a specific consumption and investment strategy, which is very simple to compute and implement,
and we demonstrate that this strategy is close to optimal in a certain, very reasonable metric. The
consumption and investment strategy we suggest for the incomplete market will be motivated from

the optimal solution in an artificially completed market to which we turn now.

3 The artificially completed markets

Now make the realistic assumption that labor income shocks are not fully hedgeable by traded financial
assets, i.e. the income-asset correlation is less than perfect, |p| < 1. Following an idea originally
introduced by Karatzas, Lehoczky, Shreve, and Xu (1991) and Cvitanié¢ and Karatzas (1992), we will
consider an artificially completed market, which consists of the original risk-free bank account and the
stock, augmented by an asset making the market complete. Clearly, the individual can do at least as
well in any artificially completed market as in the original incomplete market. Karatzas, Lehoczky,
Shreve, and Xu (1991) and Cvitani¢ and Karatzas (1992) show that the solution to the incomplete
market problem is identical to the least favorable of solutions in artificially completed markets, but this

does not facilitate the actual computation of the optimal solution. We take the following approach. We

6See Cocco, Gomes, and Maenhout (2005), Koijen, Nijman, and Werker (2008), Munk and Sgrensen (2008), and
Van Hemert (2007) for examples of numerical approaches to consumption/investment choice problems with labor income.

Note that little is known about the precision of such methods.



look at a subset of artificially completed markets in which fairly simple closed-form expressions for the
optimal consumption and investment strategies exist. By ignoring the investment in the hypothetical
asset which these strategies involve, we obtain a family of consumption and investment strategies
admissible in the true incomplete market. We then perform a utility maximization over this family
of strategies. That will define a specific consumption and investment strategy in the incomplete
market. While this strategy is presumably different from the unknown optimal strategy, we show that
it provides almost as high a utility level as the optimal one. The utility generated by the optimal
incomplete market strategy is unknown, but certainly lower than the utility obtained in any of the
artificially completed markets. We can therefore derive an upper bound on the maximum obtainable
utility in the incomplete market by minimizing expected utility over our family of artificially completed
markets. We show that the difference between the expected utility induced by our specific strategy
and this upper bound on the maximum expected utility is very small (in certainty equivalent terms),
implying that our strategy is near-optimal.
More specifically, until retirement we will let the individual trade in a hypothetical asset with time ¢
price I; having dynamics
Al = I, [(r+ Ar)dt + dWV,] . (13)

Note that, for simplicity and without loss of generality, we assume that this asset only depends on
the second Brownian motion and has a unit volatility. We can interpret A\; as a market price of risk
associated with the unspanned income shock represented by dW,. We focus for now on a constant A I,
but we discuss generalizations later. After retirement, the labor income is assumed to be zero so that
the market is already complete. Shiller (1993) suggested to establish so-called macro markets where,
for instance, claims on (aggregate) income are traded. While Shiller’s suggestion has been implemented
in the housing market, claims on labor income remain hypothetical. In the following, we will refer
to the above hypothetical asset as a Shiller contract. The fraction of wealth invested in the Shiller
contract will be denoted by 7.

In the artificially completed market, the investor’s wealth dynamics for a given consumption-

investment strategy (c,mg,7y) is given by
dXt = Xt |:(7“ + WStUS)\S + l{tST}ﬂ-”AI) dt + Tst0s th + 1{t§f’}ﬂ-lt th:| + (1{t§7~“}}/t — Ct> dt.

For a given market price of risk Aj, the indirect utility in the artificially completed market is

(e,ms,mr)

T
Tt vy Ap) = max { / B, [0 c,) ds+ae—6<T—t)Et[U<XT>}}, (14)
t

where U is still the power utility function. The indirect utility and the corresponding optimal strategy

can be derived in closed form as summarized by the following theorem.

Theorem 3.1 (Solution with Shiller Contracts) If the investor has access to Shiller contracts

with constant A\; until retirement, then his indirect utility is given by

1
Tt @,y Ar) = ﬁgm(t; Ar)7(z + yF™ (5 A1) 7 (15)



where

E}rt (1— efr;”(f’ft)) + gcom(T)efrg”(f’ft)7 t < T’
gt () = " N (16)
g (), t>T,
ar 1 _part
FYU (A1) = 1oy ﬁ(l —e T E ), (17)
F
with
rE =1+ AL = p? =1 —a+ B(Asp + A1 - p?),
1v-1 0 ~-—1 1y-1
art __ - Ar = — - AZ A2 .
rgt =ret g M 7+ S T+ 3 2 (As + A7)
The optimal consumption and investment strategies are
art __ Xt + }/tFart(t) 18
t art (¢ ’ (18)
g (t)
page = 28 Xe A V() Gp Vi) (19)
yos X, os Xy
ar >\I Xt + Y'tFart (t) YiFart (t)
Wltt:]-{tgf}{,y)(t_ﬁ\/l_pQth : (20)

Note that after retirement, ¢ > T, the portfolio problem collapses into a problem without labor
income and without Shiller contracts. In particular, this implies that the solutions for the complete
and incomplete case coincide after retirement.

For any choice of Aj, the solution in the artificially completed market will be at least as good as
the unknown solution in the truly incomplete market. Given Theorem 3.1, it is easy to find A\; =

arg miny , J art(t x,y; A1), which defines an upper bound for the truly incomplete market, i.e.
J(t,w,y) < J(t,@,y) = T (t 2,y M) (21)

Although we only minimize over constant market prices of risk associated with the unspanned income
risk, it follows from our numerical results below that this upper bound will be very tight. We will
also discuss an extension to the class of deterministic market prices of risk that are affine in time.
Even for that class, we can compute the upper bound J(¢,z,y) explicitly. In principle, the ideas could
be extended to stochastic market prices of risk, but then it will be very difficult to find closed-form

solutions, and given the excellent results with simpler specifications the extra trouble is not worthwhile.

4 A simple, near-optimal strategy with unspanned income risk

While we are not able to derive the optimal consumption and investment strategy in the truly incom-
plete market, we can evaluate the performance of any admissible consumption and investment strategy
(¢, mg) in the following way. We compare the expected utility generated by the strategy, J (¢, x,y; ¢, 7g),
to the upper bound J(t,z,y) on the maximum utility. If the distance is close, the strategy is near-
optimal. More precisely, we can compute an upper bound on the welfare loss L = L(t,z,y;c, 7s)

suffered when following the specific strategy (¢, mg) by solving the equation

J(t,x,y;c,ms) = J(t,@[1 — L],y[1 — L]). (22)



L(t,x,y;c,mg) is interpreted as an upper bound on the fraction of total wealth (current wealth and
future income) that the individual would be willing to throw away to get access to the unknown optimal

strategy, instead of following the strategy (¢, 7s). Given Theorem 3.1,
J(t,x[l = L],y[1 = L]) = J**(t, 2[1 — L], y[l — L; Ar) = (1 = L)' VT2 (4, 2,95 M),

so the upper bound on the welfare loss becomes

J(t,x,y;c, 7TS)>1’Y (23)

L(t, z, —1- i
(t,2,9:0,7s) (Ja“(t,w,y;/\f)

Our basic idea for finding good strategies is the following. For any given Ay, we have found the
optimal consumption and investment strategy in the artificially completed market in the preceding
section. Disregarding the investment in the hypothetical Shiller contract leaves us with a specific

strategy for consumption and investments in the stock and the bank account, namely the strategy

Xy + Y FM(t Ag) As Xi + Vi Fart(t; \p) _ @YtFm(t; A1)

Gt = gart (t; >\I) , TSt = ~os X, og X,

. (24)

After retirement, the strategy is identical to the known optimal strategy without income, cf. Theo-
rem 2.1. Since this specific strategy is derived from the optimal strategy in a closely related market,
it seems reasonable to conjecture that it will perform well.

However, we have to modify the suggested strategy (24) slightly to ensure that it is admissible, i.e.
that it generates a non-negative terminal wealth, X > 0 (almost surely). With unspanned income
risk, this requires non-negative financial wealth at any date, X; > 0, as future income may dry out due
to negative shocks to W, and the investor cannot hedge that by financial investments. Hence, there is
no way to ensure that a negative financial wealth is made up by future labor income. In the artificial
complete market, the strategy stated in Theorem 3.1 is admissible exactly because of the hedge term.
The strategy (¢, ms) stated above is not admissible in the true, incomplete market as X; can become
negative. In fact, X; + Y;F**(¢; A\;) can become negative. To see this, substitute the strategy (24)
into (3) and apply It6’s lemma to find that

d(Xt + thFart (t; )\[)) = (Xt + Y}Fart(t; )\[))

22 1 As
(’“H‘gma;m)dt*wdwf]

(@)
+ Y F (M)A /1 — p2dt + Y F2 (4 M) By 1 — p2 dW, .
(i1) @)

The term (i) alone would be a geometric Brownian motion (with deterministic drift) and thus stays
positive. The term (ii) is a constant with a sign determined by A;. The term (iii) is normally
distributed and can thus become negative enough to pull X; + Y; F2(¢; A1) to a negative value. Since
Y F?**(t; Ar) > 0, the financial wealth will be negative in that case. We modify the strategy as follows.
As long as X; > k for some small positive k, we follow the strategy (24). Whenever X; < k, we replace
Fart(¢: \1) by zero in the expression for the stock investment, and if ¢; from (24) exceeds Y;, we set

consumption equal to some fraction ¢ € (0,1] of current income, i.e. ¢; = (Y;. The full strategy is



therefore

X+ Y F2 (1) if X+ Y F2 5 (51) <Y,or X, >k
b)

ct()\l) — gart(t;)\l) ) gart(t;)\l)
C}/ta Otherwise, (25)
Ny As Xt Lix, > YeF™ ( Ar) Bp Y F" (t; \p)
Tsi(Ar) = ’WTS X, o 1{Xt>k}gT'

Whenever X; is below k, the dynamics becomes
A As
dX, = X, Kr + fy) dt + o th] + (l{tST}Y} —c)dt, X; <k,
that is a geometric Brownian motion plus a non-negative net income, and therefore X; stays non-
negative. In our numerical implementation, it turned out that for our parametrization of the model
(see Table 1 below) the requirement was rarely binding.”
For any given A;, we can compute the expected utility J(¢,x,y;c(Ar), 7s(Ar)) generated by the
strategy (25) by Monte Carlo simulation of the processes X = (X;) and ¥ = (Y3). Since the market is

complete in the retirement phase, the dynamic programming principle and Theorem 2.1 imply that

J(t,z,y;c(Ar), ms(Ar)) = %Et {/tT e 0D (e g (M) ds + efé(T—t)(gcom(T))vX%*'y}’
where X7 is the time T wealth generated by the strategy (c(\;), ms(Ar)). Consequently, we only need
to simulate until the retirement date 7. In our implementation we use 10,000 paths and along each
path the consumption and investment strategy is reset with a frequency of A = 0.004, i.e. 250 times
a year (roughly corresponding to the number of trading days), unless mentioned otherwise.® We
maximize over A; to find the best strategy in this family of strategies parameterized by A;. Define
A\ = arg max,, J(t,x,y;c(Ar),7s(Ar)). This defines a specific admissible strategy

(e.7s) = (c(An)ms(Ar)) (26)

with associated expected utility J (t,z,y) = J(t,z,y; ¢ Ts). The unknown optimal expected utility is

now bounded from below and above by
J(t,z,y) < J(tz,y) < J(tz,y).
An upper bound on the welfare loss L = L(t, 2, y) associated with the strategy (¢, #s) follows from (23)

Lit,a,y)=1— (W) o (27)

Jart (tv Z, Y, 5‘[

as

In order to reduce any simulation bias in the loss, we also compute J*(t, 2, y; A\;) by Monte Carlo

simulation using the same set of random numbers as used in the computation of J (t,z,y).

"Note that when consumption and investments are really adjusted continuously in time, we can put k = 0 in the
modified strategy defined above. However, we will have to evaluate the performance of that strategy by a simulation
study with non-continuous decisions, hence a strictly positive k is needed to avoid that simulated wealth drops below
zero. The value of k can be lowered, if the frequency of decisions is increased, but that will be at the expense of increased

computation time.
8We find that rebalancing the portfolio 250 times per year leads to indirect utilities that are virtually indistinguishable

from the optimal indirect utilities that we can calculate explicitly and that obtain when the individuum rebalances his
holdings continuously. For a portfolio problem with stocks only, a similar pattern was observed by Rogers (2001). We
thus conclude that the bounds resulting from the Monte Carlo simulations are very close to the explicit ones, which is

also supported by very low standard errors.



Investor Characteristics Financial Market || Labor Income
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Table 1: Benchmark parameter values. The table shows the values of the model parameters used
in the numerical computations unless mentioned otherwise. Time is measured in years. The initial

wealth x = 2 and income y = 2 are interpreted as USD 20,000.

5 Numerical results

This section contains a quantitative study of the consumption and investment strategy suggested in (26)
above. Our benchmark values for the parameters describing the characteristics of the individual, the
income process, and the financial market are summarized in Table 1. The benchmark values are similar
to those used in the existing literature, c¢f. Munk and Sgrensen (2008) and the references therein.
Whenever we need to use levels of current wealth, labor income etc., we use a unit of USD 10,000
scaled by one plus the inflation rate in the perishable consumption good. As the benchmark we put
x = 2 and y = 2, which represents the initial endowment of an investor having USD 20,000 in financial
wealth and an annual income of USD 20,000. We will study the sensitivity of our results with respect
to various parameter values below. Note that we consider an individual with a relative risk aversion

of 4 who receives income for the next 20 years and subsequently lives for another 20 years.

5.1 Basic results

Table 2 reports the upper bounds on the welfare losses for different correlations p between stock market
and labor income as well as for three different weights e of terminal wealth. For all combinations of €
and p, the welfare loss from implementing the simple strategy (¢, g) is very small and at most 2.3%.
As can be seen in Table 2, the effect from changing the weight ¢ of bequest is negligible. The impact
of the correlation p between income and stock market shocks is more pronounced, and the welfare loss
increases with increasing incompleteness (decreasing p). This is not surprising because the investor
implements a strategy in the incomplete market that was derived from a complete market setting.’
Figures 1-3 provide additional information on the small welfare loss. Figure 1 shows how the various
expected utilities depend on the parameter A; for the case where p = 0.!” The dark-blue curve is the
graph of J*'*(¢,z,y; A\;) as a function of A\; using Theorem 3.1. The yellow curve depicts the same
expected utility computed by Monte Carlo simulation, and the fact that the two curves are almost
coinciding indicates that the simulation procedure is correctly implemented. The diamond on the

dark-blue curve marks the minimum value J(, z, y), which defines the upper bound for the obtainable

9Part of the loss is due to the introduction of the strictly positive wealth level k at which we force the investor to
switch to a more prudent strategy. As mentioned earlier, with truly continuous decision making we could let £k = 0. To
gauge the importance of k£ for the magnitude of the loss, we have also performed simulations with a lower k, namely
k = 0.15. In that case, we increased the number of time steps to 1000 per year. For an income-stock correlation of zero
and £ = 0, the upper bound on the welfare loss was reduced to 2.05% (from 2.27%) and the losses for positive correlation

were slightly reduced.
10All three figures are for the case € = 1, but the curves are similar for ¢ = 0.1 and ¢ = 10. The figures depict the

utility functions multiplied by § = 0.03, but this is without loss of generality.
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Income-stock correlation p

0 | 02 | 04 | o6 | 08

e=0.1]218% | 1.53% | 1.19% | 0.86% | 0.46%
e=1 | 227% | 1.55% | 1.20% | 0.86% | 0.48%
e=10 | 2.22% | 1.56% | 1.22% | 0.88% | 0.48%

Table 2: Welfare loss for the near-optimal strategy with constant A\;. The table shows the
upper bound L on the welfare loss associated with the strategy (¢,7g) defined in (26) for different
values of the income-stock correlation p and the parameter € capturing the relative weight of terminal
weight in the preferences. We use k = 0.3, ( = 0.5, and the benchmark parameter values of Table 1.
The expected utility from the near-optimal strategy is computed by Monte Carlo simulations involving

10,000 paths and 250 time steps per year.

utility in the incomplete market. The red curve shows how the expected utility J (¢, z,y; c(Ar), ms(Ar))
of our simple strategy varies with A\;. The diamond on the red curve marks the maximum value
J (t,x,y) obtained for the best of the simple strategies. The light-blue curve shows the upper bound
on the welfare loss associated with implementing the given strategy (c(Ar),ms(Ar)), compared to the
smallest upper bound on the obtainable expected utility, J(¢,z,%). The welfare loss is measured on
the vertical axis on the right-hand side of the diagram. Although the red curve seems to be very flat
around its maximum, the welfare loss does vary somewhat with A\; and, by definition, achieves its
minimum exactly where the red curve has its maximum. The flatness of the red curve also indicates
that the success of the suggested strategy does not require that the best A; is determined very precisely.
Figures 2 and 3 show the same curves for a correlation of p = 0.4 and p = 0.8, respectively. It can
be seen that the loss becomes less sensitive towards the market price of risk A; if p increases, i.e. the

incompleteness decreases.

5.2 Robustness

To check the robustness of our results, we now vary the parameters of our benchmark case. The
results are reported in Table 3. It can be seen that the welfare loss decreases with the risk aversion
~ and increases with the initial level of income y, the riskiness of the income stream measured by its
volatility 3, and the length of the life-cycle measured by T and T. A higher risk aversion makes the
optimal investment strategy less sensitive to the human wealth and therefore reduces the welfare loss.
The effects of variations in y and T stem from the fact that increasing these parameters leads to a
higher value of the individual’s labor income and thus makes labor income relatively more important.
Consequently, the welfare loss of strategies that are derived from simplifying assumptions about the
income stream becomes more significant. Finally, the volatility of the labor income stream also increases
the sensitivity of the individual’s life-cycle problem towards suboptimally specified strategies. To
summarize, the welfare losses remain very small even for fairly extreme parameter values.

We have also checked the sensitivity of our model to the introduction of stochastic interest rates

given by a Vasicek model of the short rate

th = ('19 — :‘ﬂ'/l"t) dt + o, dW'rt7
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Figure 1: Expected utilities and the welfare loss for a correlation of p = 0. The dark-blue curve
depicts the optimal expected utility in the artificially completed market, Ja7(¢, 2, y; A7) stated in (15),
as a function of A;. The yellow curve (almost coinciding with the dark-blue curve) depicts the same
expected utility computed by Monte Carlo simulation. The diamond on the dark-blue curve marks
the minimum value J(¢,z,y) defining the upper bound on the obtainable utility in the incomplete
market. The red curve shows the expected utility J(¢, x,y;c(Ar), ms(Ar)) of the simple strategy (25)
as a function of A\;. The diamond on the red curve marks the maximum value .J (t,z,y) obtained for
the best of the simple strategies.The expected utilities have been multiplied by ¢ = 0.03 and can be
read off the vertical axis to the left. The light-blue curve shows the upper bound on the welfare loss
associated with the strategy (c(Ar),ms(A7)) and is read off the vertical axis to the right. All graphs
are generated assuming k = 0.3, ¢ = 0.5, the benchmark parameters in Table 1, an income-stock

correlation of p =0, and € = 1.
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Figure 2: Expected utilities and the welfare loss for a correlation of p = 0.4. The dark-blue
curve depicts the optimal expected utility in the artificially completed market, Ja(¢, 2, y; A7) stated
in (15), as a function of A;. The yellow curve (almost coinciding with the dark-blue curve) depicts
the same expected utility computed by Monte Carlo simulation. The diamond on the dark-blue curve
marks the minimum value J (¢, z, ) defining the upper bound on the obtainable utility in the incomplete
market. The red curve shows the expected utility J(¢, x,y;c(Ar), ms(Ar)) of the simple strategy (25)
as a function of A\;. The diamond on the red curve marks the maximum value .J (t,z,y) obtained for
the best of the simple strategies. The expected utilities have been multiplied by § = 0.03 and can be
read off the vertical axis to the left. The light-blue curve shows the upper bound on the welfare loss
associated with the strategy (c(Ar),ms(A7)) and is read off the vertical axis to the right. All graphs
are generated assuming k = 0.3, ¢ = 0.5, the benchmark parameters in Table 1, an income-stock

correlation of p = 0.4, and € = 1.
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Figure 3: Expected utilities and the welfare loss for a correlation of p = 0.8. The dark-blue
curve depicts the optimal expected utility in the artificially completed market, Ja(¢, 2, y; A7) stated
in (15), as a function of A;. The yellow curve (almost coinciding with the dark-blue curve) depicts
the same expected utility computed by Monte Carlo simulation. The diamond on the dark-blue curve
marks the minimum value J (¢, z, ) defining the upper bound on the obtainable utility in the incomplete
market. The red curve shows the expected utility J(¢, x,y;c(Ar), ms(Ar)) of the simple strategy (25)
as a function of A\;. The diamond on the red curve marks the maximum value .J (t,z,y) obtained for
the best of the simple strategies. The expected utilities have been multiplied by § = 0.03 and can be
read off the vertical axis to the left. The light-blue curve shows the upper bound on the welfare loss
associated with the strategy (c(Ar),ms(A7)) and is read off the vertical axis to the right. All graphs
are generated assuming k = 0.3, ¢ = 0.5, the benchmark parameters in Table 1, an income-stock

correlation of p = 0.8, and € = 1.
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Income-stock correlation p

0 | 02 | 04 | 06 | 08
y =2 5.71% | 3.46% | 1.89% | 0.89% | 0.35%
Y =6 2.43% | 2.14% | 1.77% | 1.32% | 0.77%
y=1 1.74% | 1.32% | 1.06% | 0.76% | 0.41%
y=3 2.40% | 1.64% | 1.25% | 0.90% | 0.49%
5=005 | 1.52% | 0.87% | 0.49% | 0.24% | 0.11%
B=015 | 4.00% | 3.25% | 2.67% | 2.02% | 1.31%

T =307 =50 | 3.79% | 2.16% | 1.50% | 1.13% | 0.71% |

Table 3: Robustness of the welfare loss for the near-optimal strategy with constant \;.
The table shows the upper bound L on the welfare loss associated with the strategy (¢, 7rg) defined
in (26) with & = 0.3 and ¢ = 0.5, when key input variables are varied one by one. Other parameter
values are taken from Table 1 and we put € = 1. The expected utility from the near-optimal strategy

is computed by Monte Carlo simulations involving 10,000 paths and 250 time steps per year.

where 9, k, and o, are constants, and W, is a standard Brownian motion correlated with the other two
Brownian motions of the model, W and W. In this case the individual can invest in the stock, the bank
account, and a bond with a given maturity. Since stochastic interest rates do not change our results
significantly and lead to welfare losses of the same order as in the case with constant interest rates, we
do not report the results here and just emphasize that stochastic interest rates do not invalidate the

results of this paper.

5.3 An improvement

Although the welfare losses for strategies based on constant market prices of risk Ay are already small,
we now analyze whether these results can be further improved if we work with a time-dependent market

prices of risk of the affine form
)\](t) :A1t+A0, A17A0 e R. (28)

The closed-form solution of Theorem 3.1 carries over to this case with a slight modification of g (t)
and Fa°(¢):

- ST ettt = bas(s =) g 4 geom (Fe=ryt (=t +oa(TP =t bas(T0=t) |y o
g (G Ar) = i
goom(e), =t
(29)
) T art 1 \/172/\ 2_42
Fdrt(t; A7) = 1{t<f“} / e TF (5—t) =38/ 1-p?Ai(s"—t )dS, (30)
- t
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Income-stock correlation p

o | o2 | o4 | 06 | o8

Ay | -0.0165 | -0.0163 | -0.0154 | -0.0135 | -0.0102
Ao | 0.4059 | 0.3947 | 0.3675 | 0.3207 | 0.2415
L | 036% | 0.17% | 0.07% 0.03% | 0.02%

Table 4: Welfare loss for the near-optimal strategy with affine A;(¢). The table shows, for
different values of the income-stock correlation p, the coefficients Aj, Ay defining the lowest upper
bound on expected utility obtainable when A;(t) has the affine form (28) and the upper bound L on
the welfare loss associated with the specific strategy c(/_XO, /_Xl), ws(l_\m [_\1). The benchmark parameter
values of Table 1 and € = 1 are used. The expected utility from the specific strategy is computed by

Monte Carlo simulations involving 10,000 paths and 100 time steps per year.

with a9 = 1_’YA0A1, az = ]E;_T;Ai and

272
¥ =rp + BAoV/1 — p2 =71 —a+ B(Asp+ Ao/1 — p?),

1y-1 o -1 1vy—-1,, 9
- Ap = — = A Af).
5 oz Do 7+ 5 7"+2 " (A5 +Ag)

Of course, we can do at least as well with the affine specification as with the constant market price of
risk considered above. Intuitively, when the investor is young and has a long working life ahead, he
should be more concerned with the market incompleteness caused by labor income than when he is close
to retirement. Therefore, it seems relevant to let the market price of risk and thus the consumption
and investment strategy depend on time.

We can find an upper bound on the obtainable utility by minimizing the closed-form indirect utility
in the artificially completed market over (Ag, A;). Let Ag, A; denote the minimizing coefficients. On
the other hand, for any constants (Ao, A1), we can therefore define a strategy c(Ag, A1), ms(Ao, A1)
very similar to (25) and evaluate that strategy by Monte Carlo simulation and compute (an upper
bound on) the associated welfare loss. In principle, by maximizing the expected utility over Ag, A1,
we could find the best of these simple strategies. However, this is quite time-consuming due to the
Monte Carlo procedure. For simplicity, we thus take the strategy defined by the coefficients Ag, A;
defining the lowest upper bound on expected utility. The resulting upper bounds L on the welfare
losses are reported in Table 4. It can be seen that losses virtually drop to zero. This demonstrates
how close we can get to the optimum by allowing for time-dependent market prices of risk A;. Since
assumption (28) already leads to very small welfare losses, we have not tried to improve the results
further. Actually, estimation errors of the parameters in life-cycle portfolio problems might be more

relevant than welfare losses that are as small as 0.36% even for a correlation of p = 0.

5.4 The welfare loss from assuming market completeness

In the literature on optimal consumption and investment strategies with labor income some papers
assume that the labor income is spanned by traded assets so that markets are complete and a closed-
form solution can often be found, cf., e.g., Bodie, Merton, and Samuelson (1992) and Kraft and Munk

(2008). We now evaluate the welfare loss from using the consumption and investment strategy derived
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Income-stock correlation p

0o | o2 | 04 | 06 | 08

e=0.1] 14.41% | 9.95% | 6.21% | 3.25% | 1.15%
e=1 | 1443% | 9.93% | 6.21% | 3.24% | 1.14%
e=10 | 14.39% | 9.94% | 6.20% | 3.24% | 1.15%

Table 5: Welfare loss for the misspecified strategy. The table shows, for different values of the
true income-stock correlation p and the parameter ¢, the upper bound L on the welfare loss associated
with the misspecified strategy, i.e. the strategy followed by an investor believing that labor income
is perfectly correlated with stock returns. We use £ = 0.3, ( = 0.5, and the benchmark parameter
values of Table 1. The expected utility from the misspecified strategy is computed by Monte Carlo

simulations involving 10,000 paths and 250 time steps per year.

under a complete market assumption, when the labor income is really unspanned so that the true
market is incomplete. It follows from Theorem 2.1 that an investor believing in a complete market

with perfect income-stock correlation, p = 1, would follow the strategy

B Xt +}/thom(t)

. - )\7th _i_}/thom(t) B EY;Fcom(t)
t gcom(t)

) U - T~ N 0
st YOs Xt gs X(t)

where ¢g®™ and F°°™ are given by (7) and (8) and where p is replaced by 1 in the expression for rp.
Again, such a strategy is not admissible in an incomplete market as it may lead to bankruptcy. We
modify the strategy just as in Section 4 to ensure admissibility. Note that the modified strategy is
identical to the strategy c;(A;), ms(Ar) defined in (25) if we put A; = 0 and use p = 1 in the coefficient
T3 entering the function F2*(¢). With our parametrization, this modification becomes active only very
rarely. We will refer to the strategy (¢, 7s) defined this way as the misspecified strategy. We compute
the expected utility generated by this strategy using Monte Carlo simulation and let L denote the
upper bound on the associated welfare loss.

Table 5 shows the welfare loss from the misspecified strategy for different combinations of the
true income-stock correlation p and the terminal wealth coefficient €. If the true correlation is small,
there are significant welfare losses of up to 14.4%, which is much higher than for the near-optimal
strategy defined in (26). On the other hand, the welfare loss from the misspecified strategy is closer to
that of the near-optimal strategy and closer to zero if the correlation approaches unity (see p = 0.8).
The latter result follows from two facts: Firstly, for p = 0.8 the assumption of having a perfect
correlation is less problematic. Secondly, the indirect utility function interpreted as a function of
A7 becomes flatter if p increases, which can be seen by comparing the curves labeled “Incomplete
MC” in Figures 1-3. Therefore, the error from setting A\; equal to zero, which is what the investor
implementing 7g is doing, also becomes less pronounced. Consequently, both effects go in the same
direction bringing down the differences in the welfare losses of the two strategies as p approaches 1.
Additional numerical experiments have shown that the welfare loss associated with the misspecified
strategy increases significantly with the relative risk aversion, the initial labor income rate, the income

volatility, and the time until retirement.
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6 Extension: flexible labor supply

In the previous sections we have assumed that labor supply is exogenously fixed. In this section, we
relax this assumption by allowing the individual to decide on how much time he wishes to work. Let

w; denote the wage rate and assume that

dwy = wiladt + B(pdW, + /1 — p2 dW,)], (31)

where the Brownian motions W and W are uncorrelated. If I, denotes the fraction of time that the
individual chooses to work over a short time period [t,¢ + dt], the total labor income earned in that
period is l;w; dt. We continue to assume that the individual retires from the labor market at the
predetermined date T so that [, = 0 for t > T. As before, the dynamics of the stock price is given
by (1) and the risk-free bank account offers a constant rate of return of r. Given a consumption-labor-

investment strategy (c,l, mg), the dynamics of financial wealth is
dXt = Xt [(’I" =+ WStUS)\S) dt + TStOS th] =+ (ltwt — Ct) dt, (32)

and the expected utility is

T
J(t, x,w;e,l,mg) = Ey l/ e_‘s(s_t)U(cg[l - ls]l_f) ds + se_g(T_t)U(XT) ,
t

where ¢ € (0,1) defines the relative weight of consumption and leisure, and U(z) = 2177 /(1 — v) as
before. We assume & = 1 after retirement. Again, it seems impossible to find a closed-form solution
for the strategy (c,l,ms) maximizing the expected utility, and numerical solution techniques will be
complicated and of unknown precision.'! However, as before, we can find a closed-form solution
in an artificially completed market, where the individual can invest in Shiller contracts with price

dynamics (13).

Theorem 6.1 (Solution With Shiller Contracts and Endogenous Labor Supply) If, until re-
tirement, the investor can endogenously control his labor supply and invest in Shiller contracts with a

constant \r, his indirect utility is given by

1
T ) = T g M)+ w0 A) (33)

where F2* is given by (17), and
£-E0=D/1(1 = &) hyh L (1 _ e—Rg(T—t)) _;'_gcom(j—‘)e,rgrt(i“ft), t<T,

gCOm (t) , t

g¥ (twi Ar) = (34)

vV A

T,

with k = O7NAZ0 gpg Ry = port 4 L5%%(1 — k) — k (a - [Asp /1 p2D. The optimal

1 Only few papers have solved dynamic utility maximization problems with endogenous labor supply. Bodie, Mer-
ton, and Samuelson (1992) derive a closed-form solution for the case of perfect wage-stock correlation, while Cvitanié,

Goukasian, and Zapatero (2007) consider a slightly different setting with a fixed wage rate.
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consumption, labor supply, and investment strategy is given by

—e(y— —k, k Xetw P2 (55M1) 7
C?rt _ 61 § 1)/7(1 - f) Wy ga”(t,wt;)\l)l , t< T (35>
X -
ﬁ)v t>T
1 X we Bt )
ar —E(y— —k ok t t ;AT
I t _ 1{t<T} {1 —¢ &y 1)/7(1 _ 5)1 kwt 1 P ’ (36)
care _ As Xi w2t M) i Be [wtgﬁ,rt(t,wt; An) Xy +w P (A w (Y /\1)} (37)
5 o X, o5 | g7t (t,wis Ar) X, X ’
)\] Xt +thart(t.)\1) U}tgart(t ’U)t'A[) Xt +thart(t. A]) thart(t. )\])
art _ 1 . A ’ /1 2 w ’ ’ ) _ ) ]
T sty { v X, o P gt w Ar) X, X,
(38)

art

Note that, in contrast to the case of exogenous income, the function ¢** now depends on the income

art

ot = 0 after retirement, i.e. for ¢t > T, so that

stream via the wage level, which is stochastic. Also note g
the entire solution collapses to the solution in the truly complete market summarized in Theorem 2.1.

From the above solution in the artificially completed market, we can define a consumption, labor
supply, and investment strategy c(Ay), (A1), ms(As) in the true, incomplete market. As before, we do
that by ignoring the investment in the hypothetical Shiller contract and by modifying the remaining
elements of the strategy to ensure admissibility. The expected utility generated by such a strategy
is computed with Monte Carlo simulation and an optimization over A; gives us our candidate for
a near-optimal strategy. We can also obtain an upper bound on the expected utility by computing
the minimum of J2*(¢,z,w;A\;) over Ar, i.e. J(t,z,w) = miny, J¥(t, z,w; \;) = J(t, 2, w; Ap).
Analogously to the exogenous income case, we define an upper bound L on the welfare loss associated
with any given strategy (c,(,mg) as the solution to

ﬁgart(t7 w[l—L]; Ar)? (x + wF(t; 5\1))1_7 (1-L)'.

J(t,z,w;e,l,ms) = J(t,z[1-L],w[1—L]) =
Note that, in contrast to the situation with exogenous income, the function g®** depends on the wage
rate, and thus we cannot completely separate out L on the right-hand side but have to solve the
equation numerically for L.

We perform a numerical analysis along the lines of the case with exogenous income using the same
benchmark parameter values as in Table 1 together with £ = 0.5. We assume an initial wage rate
of w = 6 (instead of an exogenous income starting at y = 2) so that, with the optimal initial labor
supply, the initial income rates will be about the same as in the exogenous income case. Table 6 shows
the upper bound on the welfare loss for various combinations of the wage-stock correlation p and the
preference coefficient € on terminal wealth. The welfare losses are still very small for high correlations.
However, for zero or low correlations, the welfare loss is now bigger, although still not dramatically
high. This increase in the welfare loss may in part be due to the discretization needed to evaluate
the suggested strategy. To avoid negative wealth in the simulation we need to set the critical wealth
level k to 0.5, which is higher than in the case with exogenous income. This is due to the fact that the
wealth dynamics (32) involves the term [;w; instead of y; in the case with endogenous income so when
wealth is low, the individual wants to work harder (increase l;) but is then also hit more severely by
adverse, non-hedgeable shocks to the wage rate.

In our formulation of the problem and our solution for the artificially completed market, we did not

impose the very natural constraint {; < 1 on the labor supply of the individual. Indeed, there will be
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Income-stock correlation p

0 | 02 | 04 | o6 | 08

e=0.1|572% | 2.63% | 1.11% | 0.41% | 0.17%
e=1 | 556% | 2.59% | 1.09% | 0.41% | 0.17%
e=10 | 547% | 2.50% | 1.03% | 0.41% | 0.16%

Table 6: Welfare loss for the near-optimal strategy with endogenous income and con-
stant A;. The table shows the upper bound on the welfare loss associated with the near-optimal
consumption-labor-investment strategy for different values of the wage-stock correlation p and the pa-
rameter ¢ capturing the relative weight of terminal weight in the preferences. Only constant market
prices of risk A\; are considered. The benchmark parameter values of Table 1 are used together with
a consumption-leisure weight of £ = 0.5. The expected utility from the near-optimal strategy is com-
puted by Monte Carlo simulations involving 10,000 paths and 700 time steps per year, and the wealth
level at which the investor switches to a more prudent strategy is set to k = 0.5. The constraint [; < 1

on labor supply is not imposed.

some states of the world in which the labor supply specified in (36) does not satisfy the constraint. We
have also evaluated the strategy, where—on top of the admissibility modification already explained—
l; is capped at 1. In our implementation, this happens very rarely, and the welfare loss is thus almost
unaffected.

Finally, we have again considered the misspecified strategy that an investor assuming perfect wage-
stock correlation would follow, modified to ensure admissibility. This strategy corresponds to the
strategy c(Ar), (A1), ms(Ar) with A\f = 0 and p = 1. Table 7 illustrates that the welfare loss induced
by the misspecified strategy is much larger than for our near-optimal strategy, but even the misspec-
ified strategy performs quite well for fairly high wage-stock correlations. The welfare loss is again

considerably smaller than for the case with exogenous income, cf. Table 5.

7 Conclusion

This paper has suggested and tested an easy procedure for finding a simple, near-optimal consumption
and investment strategy of an investor receiving an unspanned labor income stream. This procedure
is valuable since it seems impossible to find the truly optimal solution in closed form and very difficult
to approximate it precisely using numerical solution techniques. For illustrative purposes we have
focused on fairly simple models of the price dynamics of traded assets. However, we emphasize that
the procedure can be generalized to models of the affine or quadratic classes considered in many recent
papers on portfolio choice in the absence of labor income, since in those settings (i) we would still be
able to find explicit solutions in the artificially completed markets and (ii) we can still evaluate the
performance of a specific strategy by Monte Carlo simulations. Therefore, our approach shows how
to include a realistic (unspanned) specification of the highly important human wealth in the recent
literature finding closed-form solutions to optimal consumption and investment problems.

Our ideas should be applicable to other portfolio problems with incomplete markets, e.g. problems

with stochastic volatility or stochastic market prices of risk not spanned by traded assets. Some papers
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Income-stock correlation p

0o | o2 | 04 | 06 | 08

e=0.1|12.33% | 8.20% | 4.86% | 2.34% | 0.70%
e=1 | 12.33% | 8.20% | 4.85% | 2.34% | 0.70%
e=10 | 12.33% | 8.20% | 4.85% | 2.34% | 0.70%

Table 7: Welfare loss for the misspecified strategy with endogenous income. The table shows,
for different values of the true income-stock correlation p and the parameter ¢, the upper bound on the
welfare loss associated with the misspecified consumption-labor-investment strategy, i.e. the strategy
followed by an investor believing that the wage rate is perfectly correlated with stock returns. The
benchmark parameter values of Table 1 are used together with a consumption-leisure weight of £ = 0.5
and € = 1. The expected utility from the misspecified strategy is computed by Monte Carlo simulations
involving 10,000 paths and 700 time steps per year, and the wealth level at which the investor switches

to a more prudent strategy is set to k = 0.5.

find closed-form solutions in such settings (Chacko and Viceira 2005; Kim and Omberg 1996), but only
for utility of terminal wealth only, whereas it seems impossible to find optimal strategies in closed
form when intermediate consumption is introduced. We conjecture that our approach would lead to

near-optimal strategies for investors with utility of intermediate consumption in those models.
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A Proofs

Proof of Theorem 2.1. In the retirement phase, the problem is identical to the problem solved by
Merton (1969) with the well-known solution

1 -
J(taxay) = mg(t)’yxli’n te [Ta T]>

where ¢(t) is given by (7), and with ¢; = X;/g(t) and 7g = A\g/(v0g). By dynamic programming, we
can write the indirect utility before retirement as

T
1 1
J(t,z,y) = max E / e 06 _— el ds 4 ——g(T) XL
(t,z,y) pmax t[t T 1_79( ) X5

The Hamilton-Jacobi-Bellman equation associated with this problem is

0J =L1J + Lod + L3, (39)
where
oJ 1 2 92
£1J=a—&-Jxr([m‘—&—yF]—yF)—|—Jwy—|—Jyyoz—|—§Jyyy 6, (40)
1
LoJ = max{ = — ch} ) (41)
c 1— ¥
1
L3J = max {Jxxﬂso's)\s + §x2Jm7r%a§ + mexyﬁpasmq} , (42)
TS

and p is either +1 or —1. We handle each of these terms separately and then combine them afterwards.
We conjecture that the indirect utility function is of the form J(¢,z,y) = ﬁg(t)”(m +yF(t).
With the conjecture for J, we get

/
L1J =g (x+yF) ™ (T + 179) +9"(@+yF) Ty (F' — (r—a)F +1)- %9”(x+yF)‘”‘1y2F2ﬁ2-
-9
(43)
The first-order condition for ¢ implies that ¢ = J, L 7 which leads to (11) and
Lod = ﬁgwfl(x +yF). (44)
The first-order condition for g implies that
__1s _Pr 45
s 09 Ty 05 XTIy (45)
which with the conjecture leads to (12) and
)\2
Lol = g (@ +yF)' 52 =0 (0 yF) Ty FBAs + 57 (0t yF) PR (46)

Substituting the above expressions back into the HJB-equation (39), we see that the terms involving
(x +yF)~7~! clearly cancel out (since p? = 1). Moreover, the terms involving (z + yF)? disappear
due to the fact the function F' = F°™ defined in (8) satisfies the ordinary differential equation
F' —rpF +1=0and F(T) = 0. All the remaining terms involve (2 4+ yF)'~7. For these terms to

cancel out, we need the function g to satisfy the ordinary differential equation ¢’ —r49 4+ 1 = 0, which
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is satisfied by the same function g(t) as in the retirement phase, namely the function stated in (7),

and thus clearly has the appropriate value at time 7. O

Proof of Theorem 2.2. For any admissible strategy (c,mg), the expected utility function

J(t,z,y;c,ms) will, under mild technical conditions, satisfy the partial differential equation'”

oJ 1
0=U(c)—6J + e +ax(r+msosAs)Jy + (y — ) J, + §$2U§W§Jx¢ + yady (47)
1
+ §y262']yy + yﬂl’PUSﬂ'Sny

for t < T. Without loss of generality, the proportion invested in stock can be written as

As Iz h
_ A b 48
s s xSy TOS (48)
for some function h(t, x,y). Rewriting (47) leads to
oJ 1, J7 Jo s
0 = Ule)=6J+ (y—c)Jo+ — +ardy + yad, — A& — yBpAs Y (49)
ot 2 7 Jpa e

1 1
+§y2ﬂ2<}yy + Ehzjzx - yﬁmey

Applying the separation (6) and simplifying the resulting equation, three types of terms occur: (i)
terms involving (z + yF)!=7, (ii) terms involving (z + yF)~7, and (iii) terms that involve neither
(r+yF)'=7 nor (x+yF)~7. The first, second, and third terms have to cancel out separately, otherwise
the separation is wrong (F' or g would depend on z or y, which violates the assumption that both

functions are only time-dependent). To be more precise, we rewrite (49) as
0=Hig+H29+H39+U(c)—cg”(x+yF)"7,

where

Hig= (e o2 g/g+r+§ g (x +yF)' ="
' y=1 y-1" 2y ’

Hog=(1+F —(r—a+pBprs)F)yg’ (z +yF)",
Hyg = —% (h2 = 2yBphF + y>B*F?) g"(x + yF) 7.

Depending on the choice of ¢, the terms U(c) and ¢g”(z + yF) ™7 can be included into H; g, Ha g, or
‘H3 g which then have to be zero separately. To show this, we distinguish between two cases. Let ¢ be
a deterministic function.

1st case: ¢ = (z+yF)¢/g. Then U(c) and cg”(x + yF)~7 is of the same type as the terms of H; g.
But then Hsz g # 0 for |p| # 1 and thus the separation (6) is violated.

2nd case: ¢ # (x 4+ yF)c/g. Then U(c) and ¢g”(x 4+ yF) ™7 cannot be included into H; g, Ha g, or

Hs g at the same time. However, since for v > 1 and |p| # 1, we have
Hsg<0 and U(c) —cg”(x+yF) 7 <0,

the separation (6) is again violated. O

123ee, e.g., Duffie (2001, p. 343). Notice that the PDE differs from a Hamilton-Jacobi-Bellman equation only because

the controls g and c are fixed.
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Proof of Theorem 3.1. In the retirement phase, the market is complete and Theorem 2.1 applies.
By dynamic programming, we can write the indirect utility function in the artificially completed market

before retirement as

T
1 1 .
J(t,z,y) = max E; / 675(54)170;7«/ ds + gcom(T)VX%—'v] '
' -

(e,ms,mr)

1—7

The Hamilton-Jacobi-Bellman equation associated with this problem is
0J = LyJ + Lod + L3J + L4, (50)

where £1J, L2J, and L3J are given by (40)—(42), and

1
L4J = II}TE;JX {wam + ixQJM.ﬂ'? + JwzwzB/1 — p27r1} .

Since we again conjecture a solution of the form J(t, z,y) = ﬁg(t)’y(x +yF(t))=7, we obtain (43)-

(46) and the optimal consumption and stock investment stated in (18)—(19). The first-order condition

for m; implies that

Ja Ja
T =—A1 ENAEL (51)
T e

o o -
which with the conjectured J leads to (20) and
/\2
Lol =g+ yF) o0 = " @k yF) yE VL= 026+ 197+ yF) TP (L= ).

Substituting the expressions for £;J back into the HJB-equation (50), we see that the terms involving
(z +yF)~7~! cancel out. The terms involving (z + yF)” disappear due to the fact the function F(¢)
defined in (17) satisfies the ordinary differential equation F’ — r&*F + 1 = 0 and F(T) = 0. All
the remaining terms involve (x + yF)!~7. For these terms to cancel out, we need g(t) to satisfy the
ordinary differential equation g’ — r;“g +1=0and g(T) = gcom(T). This is satisfied by the function
stated in (16). |

Proof of Theorem 6.1. After retirement, the market is complete and the solution from Theo-
rem 2.1 applies. By dynamic programming, the indirect utility function J(¢,z,w) in the artificially

completed market is therefore

T
1 1 -
J(t _ E —d(s—t) -7 — ls 1=801-7) g4 = geom(Pyr x|
(,x,w) c,;ﬁlrgf(ﬂl t[/t € lf’ycs [ ] s+17’}/g ( ) T
Given the wage dynamics (31) and the wealth dynamics
dXt = Xt |:(’I” + T"StO'S)\S + W]tA]) dt + TStOS th + T th] + (ltwt - Ct) dt, t S T,

the Hamilton-Jacobi-Bellman equation associated with the dynamic maximization problem becomes

0J = L1J + LoJ + LsJ + L4, (52)
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where

oJ 1
L1J =T (re+w) + — + Jpow + iwawQBQ,

ot
cﬂl—W)U__lrl—fﬂl—W)__J;(C_%[l__lhu)}’

1
LoJ = max{
c, 17’)/

1
L3J = max {mewsas)\s + iszsz%J% + wawmﬁpasws} ,
TS

1
L4J = max {meﬂ'] + ixQJ,mﬂ? + JpswzBy/1 — p2ﬂ'1} .
T

We handle each of these terms separately and then combine them afterwards.
Substitution of all relevant derivatives of the conjectured J in (33) into the expression for £1J, we

obtain

2 2
EIJ:g’Y(Z‘—‘FwF)l_’Y i & + Y awgw _ lﬁz (wgw> +T+ Y BQw GJww
g 2(1—7)

l=vg 1=7v g 2 g

+ 9 (z+wF)Tw {1 +F'(t)+ (a—7)F + ’yﬁzwng} - %52w2F2gA’(:c +wF)™7 1
)

The first-order conditions for the maximization over ¢ and [ in LoJ imply that

c:flfg(vfl)/'y(l—{)7]“wa;1/7, 1-1= 717510716.

§

With the conjecture for J, we have J, = ¢7(x + wF)~7. Substituting this into the above expressions
for ¢ and I, we obtain (35) and (36), and find

Lo = f%gfﬁ(vfl)/vu — &) Rk g (@ 4 wF) Y
v —

The first-order condition for g in £3J implies (45). With the conjectured J, we have J,, = —vg" (x —
wF) "t and Jy, = 79" H(z+wF) " Y (gy(x+wF)—gF), so that we get the optimal stock investment

stated in (37). Tedious, but straightforward, computations lead to

2 2
c;e,Jg”(:HwF)”{;7 + pBAs “’%+ 252<wgw) }

w 1
— g (z+wF) "wF {pﬁ)\s + 7p2ﬁ2wg} + ig"’(x +wF) " w? F2yp? 32
g
The first-order condition for 7y in £4J implies (51). Substituting in the derivatives of the conjectured

J, we easily get (38), and after further straightforward computations, we find

2
L4J =g (x +wF)'~ {4_\/1_7@)\]“)9“’_’_ 7(1_[))52(1”9“’)}

g

w 1 e
9”(x+wF)”wF{V1pQﬂAerv(lp2)52w§}+29”(x+wF) T B2y (1 - p?) 62,

When we substitute the above expressions back into the HJB-equation (52), we first note that
the terms involving (z + wF)~7~! cancel out. Collecting terms involving (z + wF)~7, we see that
they also cancel, because of the fact that F(t) = F?"*(t) satisfies the ordinary differential equation

F'(t) — ¥ F(t) + 1 = 0. All the remaining terms involve g”(z + wF)!~7. For our conjecture to be
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verified, we therefore need these terms to cancel as well, which implies that the function g(¢,w) has to

satisfy the partial differential equation

1 -1
552w29ww + (a _ WTMPAS +4/1— p2>\1]) W — T;rtg +g + 575(771)/7(1 _ 5)—kwk —0.

In order to ensure that J(T, z, w) = ﬁgcom(f)'yxl_'y, we need g(T,w) = g™ (T). It is easily verified
that the solution is given by (34). O
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